JPS6255542A - Optical system inspecting device - Google Patents
Optical system inspecting deviceInfo
- Publication number
- JPS6255542A JPS6255542A JP19565285A JP19565285A JPS6255542A JP S6255542 A JPS6255542 A JP S6255542A JP 19565285 A JP19565285 A JP 19565285A JP 19565285 A JP19565285 A JP 19565285A JP S6255542 A JPS6255542 A JP S6255542A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- pinhole
- laser light
- inspected
- pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕 −
この発明は、光学系に細い光線を所定の位置から所定の
角度で入射し、光学系の後方に置いた衝立上での出射光
の位置を測定して、光学系内での光路を光線追跡により
検査するための光学系検査装置に関するものである〇
〔従来の技術〕
従来、光学系の光路を検査するための装置として第2図
に示すものがあった。図において、(1)はレーザ光源
、(2)はレーザ光源fllから発生されるレーザ光を
平行光線にするための望遠光学系、(31は絞り、 +
41Jri被検光学系、(5)は被検光学系(4)に対
し細い光線の入射位置および入射方向を調整するための
第1の微動台、(6)は被検光学系(4)からの出射光
線を通過させるためのピンホール、(7)はピンホール
(6)の位置を調整するための第2の微動台である。[Detailed Description of the Invention] [Industrial Application Field] - This invention involves a method in which a narrow beam of light is incident on an optical system from a predetermined position at a predetermined angle, and the output light is emitted onto a screen placed behind the optical system. This relates to an optical system inspection device for measuring the position and inspecting the optical path within the optical system by ray tracing.〇 [Prior art] Conventionally, as a device for inspecting the optical path of an optical system, the device shown in Fig. 2 is used. There was something shown. In the figure, (1) is a laser light source, (2) is a telephoto optical system for converting the laser light generated from the laser light source fll into parallel rays, (31 is an aperture, +
41Jri optical system to be tested, (5) is the first fine movement table for adjusting the incident position and direction of the thin beam to the optical system to be tested (4), (6) is the optical system to be tested (4) (7) is a second fine movement table for adjusting the position of the pinhole (6).
次に動作について説明する。レーザ光源(1)から出る
レーザ光を望遠光学系(2)により平行光線KL。Next, the operation will be explained. The laser light emitted from the laser light source (1) is converted into parallel light KL by the telephoto optical system (2).
絞シ(32によシ細い平行光線を取シ出し、第1の微動
台(5)を調整して被検光学系(4)に所定の位置から
所定の角度で入射させると、光線は被検光学系(4)を
構成するレンズの各面でスネルの法則に従う屈折をくシ
返して進み反対側へ透過する。透過光がピンホール(6
)を通過するよう第2の微動台(7)を調整し、被検光
学系(4)を置かないときに光線が通るピンホール(6
)の位置を原点として2第2の微動台(7)の目盛を読
みと9.光線追跡による計算値と比較することによシ光
学系の検査ができる。When a thin parallel beam is taken out by the diaphragm (32) and made to enter the optical system under test (4) from a prescribed position at a prescribed angle by adjusting the first fine movement table (5), the beam is The refraction according to Snell's law is repeated on each surface of the lens constituting the analysis system (4), and the transmitted light passes through the pinhole (6).
), and adjust the second fine movement table (7) so that the light beam passes through the pinhole (6) when the optical system to be examined (4) is not placed.
9. Read the scale of the second fine movement table (7) using the position of ) as the origin. The optical system can be inspected by comparing it with the values calculated by ray tracing.
従来の光学系検査装置においては、細い平行光線を入射
しても、被検光学系(4)を通過した光は被検光学系(
4)により平行光線ではなくなるので、出射光の検出位
置すなわちピンホール(6)上では太い光線になってし
まい位置の検出精度が低いという問題点があった。幾何
光学的には絞りを小さくして入射光線を細くすると出射
光線も細くできるはずであるが、実際には光の強度が低
下して光線位置の検出が困難になるうえ絞りでの回折に
よりむしろ光線が広がってしまうため精度の向上は難し
い。In conventional optical system inspection equipment, even if a thin parallel light beam is incident, the light that has passed through the optical system to be inspected (4) is
4), the light beams are no longer parallel, and therefore the light beams become thick at the detection position of the emitted light, that is, on the pinhole (6), resulting in a problem that the position detection accuracy is low. In terms of geometrical optics, if you make the aperture smaller and make the incident light beam narrower, you should be able to make the output light beam narrower, but in reality, the intensity of the light decreases, making it difficult to detect the position of the light beam, and the diffraction at the aperture makes the output light beam narrower. Improving accuracy is difficult because the light beam spreads out.
この発明は上記のような問題点を解消するためになされ
たもので、被検光学系からの出射光線の強度が十分めυ
、かつ出射光線の中心位置が明確にわかり、精度良く出
射光線の位置を測定できる光学系検査装置を得ることを
目的とするGC問題点を解決するための手段〕
この発明による光学系検査装置は、レーザ光源と被検光
学系との間に金属顕微鏡用対物レンズとピンホールおよ
び開口径可変な絞りを設けたものである。This invention was made in order to solve the above-mentioned problems, and is designed to ensure that the intensity of the light beam emitted from the optical system under test is sufficient.
Means for solving the problems of GC aimed at obtaining an optical system inspection device that can clearly see the center position of the emitted light beam and measure the position of the emitted light beam with high precision] The optical system inspection device according to the present invention is , an objective lens for a metallurgical microscope, a pinhole, and a diaphragm with a variable aperture diameter are provided between the laser light source and the optical system to be tested.
この発明における対物レンズはレーザ光を集光し、集光
点において中心部が明るい同心円状の回折パタンを生じ
る。中心部の明るい部分の直径程度のピンホールを集光
点に置くと、集光点を中心とする球面波が得られる。絞
りはこの球面波の一部だけを通過させるので、絞りによ
る回折が起こる。回折光を被検光学系に入射させ、絞り
の口径を調整すると被検レンズの透過光は中心の明るい
同心円状の回折バタンとなり、出射光の中心位置が明確
にわかる。The objective lens in this invention condenses the laser beam and produces a concentric diffraction pattern with a bright center at the condensing point. If a pinhole about the diameter of the central bright part is placed at the focal point, a spherical wave centered at the focal point can be obtained. Since the aperture allows only a portion of this spherical wave to pass through, diffraction occurs due to the aperture. When the diffracted light is made incident on the optical system to be tested and the aperture of the diaphragm is adjusted, the transmitted light of the tested lens becomes a bright concentric diffraction bump in the center, and the center position of the emitted light can be clearly seen.
第1図はこの発明の一実施例を示す光学系検査装置の構
成図であり2第1図において、(l)はレーザ光源、(
3)は絞り、(4)は被検光学系、(5)は第1の微動
台、(6)はピンホール、(7)は第2の微動台、(8
)は金属顕微鏡用対物レンズ、(9)はレーザ光の集光
点に置き中心部の明るい部分のみを通過させるピンホー
ルである。FIG. 1 is a block diagram of an optical system inspection apparatus showing an embodiment of the present invention. 2 In FIG. 1, (l) is a laser light source, (
3) is the aperture, (4) is the optical system to be tested, (5) is the first fine movement table, (6) is the pinhole, (7) is the second fine movement table, (8
) is an objective lens for a metallurgical microscope, and (9) is a pinhole that is placed at the focal point of the laser beam and allows only the bright part in the center to pass through.
次に動作について説明する。レーザ光源fi+から出る
レーザ光を対物レンズ(8)で集光し、レーザ光の集光
点に置いたピンホール(9)V′Cよす対物レンズ(2
)による回折光の中央部の明るい部分のみを通過させる
とピンホール(9)の穴の位置から放射状に広がる空間
的なノイズのない球面波が得られる。絞り(3)はこの
球面波の一部分を通過させ、被検光学系(4)に入射す
るので、被検光学系(4)の透過光はピンホール(6)
の位置に同心円状の回折パタンをつくる。この同心円状
のパタンは、ピンホール(6)から被検光学系(4)を
通して絞、!:l f31を見たとき、絞り〔3)の穴
の中に入るフレネルシー7の数に依存し、絞り(3)の
穴径全調整することにより、同心円状のバタンの中心部
に輝点ができる状態にすることができる。この状態で第
2の微動台(7)を調整して、輝点かピンホール(6)
を通過するようにし、第2の微動台(7)の目盛を読み
取ることにより、出射光線の位置を精密に測定すること
ができる。第1の微動台(5)を動かし、各入射位置、
入射角について出射光線の位置を測定すると被検光学系
(4)の検査ができる。Next, the operation will be explained. The laser beam emitted from the laser light source fi+ is focused by an objective lens (8), and a pinhole (9) placed at the converging point of the laser beam is inserted into the objective lens (2).
), a spherical wave without spatial noise can be obtained that spreads radially from the position of the pinhole (9) by passing only the central bright part of the diffracted light. The diaphragm (3) allows a part of this spherical wave to pass through and enters the optical system to be tested (4), so the transmitted light from the optical system to be tested (4) passes through the pinhole (6).
Create a concentric diffraction pattern at the position. This concentric pattern passes from the pinhole (6) through the optical system to be tested (4) to the diaphragm, ! :l When looking at f31, depending on the number of fresnels 7 that fit into the hole of the diaphragm [3], by adjusting the hole diameter of the diaphragm (3), a bright spot will appear in the center of the concentric button. can be put into a state where it is possible. In this state, adjust the second fine movement table (7) to find the bright spot or pinhole (6).
By reading the scale of the second fine movement stage (7), the position of the emitted light beam can be precisely measured. Move the first fine movement table (5) to each incident position,
The optical system (4) to be inspected can be inspected by measuring the position of the emitted light beam with respect to the angle of incidence.
なお、上記実施例では、出射光線の位置検出にとンホー
ル(6)を使用したが、衝立や撮像素子の受光面に回折
バタンを投影してもよい。In the above embodiment, the hole (6) is used to detect the position of the emitted light beam, but a diffraction batten may be projected onto a screen or a light receiving surface of an image sensor.
以上のように、この発明によれば1回折を利用すること
により光線の中心位置が明瞭にわかるので、光線追跡を
実際に精度良く行え、従来結像特性による検査が困難で
あったレンズの軸ずれ、レンズの傾斜等の非対称要素を
含む光学系の横歪が可能となった。また、この発明によ
れば、測定呟は光学設計に用いる光線追跡法と直接対応
しているので設計値との対応が明らかであり、設計値か
らのずれがあった場合の光学系の修正が容易に行える。As described above, according to the present invention, the center position of the light ray can be clearly seen by using single diffraction, so ray tracing can be actually performed with high precision, and the axis of the lens, which was previously difficult to inspect based on imaging characteristics. Lateral distortion of the optical system, including asymmetric elements such as misalignment and lens tilt, is now possible. Furthermore, according to this invention, since the measurement pattern directly corresponds to the ray tracing method used for optical design, the correspondence with the design value is clear, and the optical system can be corrected if there is a deviation from the design value. It's easy to do.
第1図はこの発明の一実施例による光学系検査装置を示
す図、第2図は従来の光学系検査装置を示す図である。
図において、(1)はレーザ光源、 +31Fi絞り、
(4)は被検光学系、 +51U第1の微動台、 (6
1,+91はピンホール、(7)は第2の微動台、(8
)は金属顕微鏡用対物レンズである。
なお図中同一あるいは相当部分には同一符号を付して示
しである。FIG. 1 is a diagram showing an optical system inspection device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional optical system inspection device. In the figure, (1) is a laser light source, +31Fi aperture,
(4) is the optical system to be tested, +51U first fine movement table, (6
1, +91 is the pinhole, (7) is the second fine movement table, (8
) is an objective lens for metallurgical microscopes. In the drawings, the same or corresponding parts are designated by the same reference numerals.
Claims (1)
光するための金属顕微鏡用対物レンズと、レーザ光の集
光点に置いたピンホールと、このピンホールから出る発
散レーザ光の一部を通す開口径が可変な絞りと、この絞
りで制限された発散レーザ光に対し被検光学系の位置お
よび角度を調整するための第1の微動台と、上記被検光
学系を透過したレーザ光の中心部が通るよう位置を調整
するための第2の微動台に取付けたピンホールとを具備
したことを特徴とする光学系検査装置。A laser light source, an objective lens for a metallurgical microscope to focus the laser light emitted from this laser light source, a pinhole placed at the focal point of the laser light, and a part of the diverging laser light emitted from this pinhole to pass through. A diaphragm with a variable aperture diameter, a first fine movement stage for adjusting the position and angle of the optical system to be tested with respect to the diverging laser beam limited by the diaphragm, and a first fine movement stage for adjusting the position and angle of the optical system to be tested with respect to the diverging laser beam limited by the diaphragm, and a An optical system inspection device comprising: a pinhole attached to a second fine movement table for adjusting the position so that the center portion passes through.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19565285A JPS6255542A (en) | 1985-09-04 | 1985-09-04 | Optical system inspecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19565285A JPS6255542A (en) | 1985-09-04 | 1985-09-04 | Optical system inspecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6255542A true JPS6255542A (en) | 1987-03-11 |
JPH0471453B2 JPH0471453B2 (en) | 1992-11-13 |
Family
ID=16344732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19565285A Granted JPS6255542A (en) | 1985-09-04 | 1985-09-04 | Optical system inspecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6255542A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474141B1 (en) * | 2001-07-06 | 2005-03-08 | 전자빔기술센터 주식회사 | Method for aligning apertures of parts using laser and method for aligning parts using the same |
WO2006033544A1 (en) * | 2004-09-20 | 2006-03-30 | Cebt Co. Ltd. | Method for aligning micro-apertures of parts using laser difflection patern and system using the same |
CN104807614A (en) * | 2014-01-23 | 2015-07-29 | 苏州智华汽车电子有限公司 | Method for manufacturing calibrating gold sample for optical axis checking machine of vehicle-mounted camera |
CN107687937A (en) * | 2017-08-10 | 2018-02-13 | 苏州精濑光电有限公司 | A kind of quasi-molecule laser annealing ELA processing procedure quality method for measurement and system |
-
1985
- 1985-09-04 JP JP19565285A patent/JPS6255542A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474141B1 (en) * | 2001-07-06 | 2005-03-08 | 전자빔기술센터 주식회사 | Method for aligning apertures of parts using laser and method for aligning parts using the same |
WO2006033544A1 (en) * | 2004-09-20 | 2006-03-30 | Cebt Co. Ltd. | Method for aligning micro-apertures of parts using laser difflection patern and system using the same |
CN104807614A (en) * | 2014-01-23 | 2015-07-29 | 苏州智华汽车电子有限公司 | Method for manufacturing calibrating gold sample for optical axis checking machine of vehicle-mounted camera |
CN107687937A (en) * | 2017-08-10 | 2018-02-13 | 苏州精濑光电有限公司 | A kind of quasi-molecule laser annealing ELA processing procedure quality method for measurement and system |
CN107687937B (en) * | 2017-08-10 | 2020-02-07 | 苏州精濑光电有限公司 | Excimer laser annealing ELA process quality measurement method and system |
Also Published As
Publication number | Publication date |
---|---|
JPH0471453B2 (en) | 1992-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3565568A (en) | Method and apparatus for ascertaining geometric deviations from an ideal surface by optical means | |
JP2002071513A (en) | Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective | |
US4281926A (en) | Method and means for analyzing sphero-cylindrical optical systems | |
JPH10311779A (en) | Equipment for measuring characteristics of lens | |
US6794625B2 (en) | Dynamic automatic focusing method and apparatus using interference patterns | |
JPH02238338A (en) | Lens inspecting apparatus | |
JPS60196605A (en) | Scattering-light detecting optical device | |
JPS6255542A (en) | Optical system inspecting device | |
JP2008026049A (en) | Flange focal distance measuring instrument | |
JPH06508218A (en) | Deflection type optical device with wide measurement range | |
JPH11304640A (en) | Inspection apparatus for optical element | |
KR100738387B1 (en) | Wavefront measuring devices with off-axis illumination | |
JPS62502421A (en) | Equipment for orienting, inspecting and/or measuring two-dimensional objects | |
JP2672771B2 (en) | Through hole inner diameter measuring device | |
JPH01502535A (en) | Optical inspection system for cylindrical objects | |
JPS63263412A (en) | Noncontact displacement meter | |
CN115200471A (en) | Speckle device for lead bonding machine and control method thereof | |
JP2565496B2 (en) | Imaging device for the object to be inspected | |
JP2657405B2 (en) | How to measure anamorphic lens | |
JPS63182547A (en) | Particle analyzer | |
JPH01180403A (en) | Measuring method for extremely small hole diameter | |
RU1830500C (en) | Apparatus for a measurement of particles traces | |
JPH10197397A (en) | Method and equipment for measuring nonspherical shape | |
JPH03261808A (en) | Minute shape measuring apparatus | |
JPS61120912A (en) | Distance measuring device |