JPH10197397A - Method and equipment for measuring nonspherical shape - Google Patents

Method and equipment for measuring nonspherical shape

Info

Publication number
JPH10197397A
JPH10197397A JP35672196A JP35672196A JPH10197397A JP H10197397 A JPH10197397 A JP H10197397A JP 35672196 A JP35672196 A JP 35672196A JP 35672196 A JP35672196 A JP 35672196A JP H10197397 A JPH10197397 A JP H10197397A
Authority
JP
Japan
Prior art keywords
test object
light
light beam
lens
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35672196A
Other languages
Japanese (ja)
Inventor
Masaaki Takai
雅明 高井
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP35672196A priority Critical patent/JPH10197397A/en
Publication of JPH10197397A publication Critical patent/JPH10197397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the three-dimensional shape of an optical element having a nonspherical shape, e.g. a nonspherical lens, easily and quickly. SOLUTION: A parallel luminous flux is converged through an illumination lens 35 and projected to the surface of a nonspherical object 10. While varying the interval between the illumination lens 35 and the nonspherical object 10, the luminous flux impinging vertically on each zone of the object 10 is detected and variation in the interval between the illumination lens 35 and the nonspherical object 10 is determined from the moving distance of the illumination lens 35. Subsequently, the height from the optical axis and the radius of curvature are operated for each zone based on the variation of interval, the setting of a variable diaphragm 34 and the focal length of the illumination lens 35. Finally, the shape data of the object 10, i.e., the displacement from the vertex, is operated based on the height, from the optical axis and the radius of curvature operated for each zone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はズ−ムレンズや光
ディスク等に使用される非球面レンズ等非球面形状をし
た光学素子の形状を測定する非球面形状測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical shape measuring device for measuring the shape of an optical element having an aspherical shape such as an aspherical lens used for a zoom lens or an optical disk.

【0002】[0002]

【従来の技術】非球面レンズの形状を測定するために、
例えば特公平6−29715号公報に示されているような走
査型の形状測定装置が使用されている。走査型の形状測
定装置はレ−ザ光を利用した光学プロ−ブや接触型プロ
−ブにより任意の1断面を走査して非球面の形状を測定
するものであり、非球面形状を高精度に測定することが
できる。
2. Description of the Related Art In order to measure the shape of an aspheric lens,
For example, a scanning type shape measuring device as disclosed in Japanese Patent Publication No. 6-29715 is used. A scanning type shape measuring device is to measure an aspherical shape by scanning an arbitrary cross section with an optical probe or a contact type probe using laser light. Can be measured.

【0003】[0003]

【発明が解決しようとする課題】上記走査型の形状測定
装置は非球面形状を高精度に測定できるが、その反面装
置の調整や測定が難しく、測定が容易でないとともに測
定時間に多くの時間を要するという問題があった。特
に、非球面形状の全面を測定しようとした場合には、測
定に大変な時間を要するいう難点があった。
Although the above-mentioned scanning type shape measuring apparatus can measure an aspherical shape with high accuracy, it is difficult to adjust and measure the device, but it is not easy to measure and a lot of time is required for the measuring time. There was a problem of cost. In particular, when trying to measure the entire surface of the aspherical shape, there is a disadvantage that the measurement requires a very long time.

【0004】この発明はかかる短所を改善するためにな
されたものであり、非球面レンズ等の非球面形状を持つ
光学素子の3次元形状を簡易的にかつ迅速に測定するこ
とができる非球面形状測定装置を得ることを目的とする
ものである。
The present invention has been made in order to improve such disadvantages, and has an aspherical shape capable of easily and quickly measuring a three-dimensional shape of an optical element having an aspherical shape such as an aspherical lens. It is intended to obtain a measuring device.

【0005】[0005]

【課題を解決するための手段】この発明に係る非球面形
状測定装置は、被検物保持手段と照射光学系と結像光学
系と表示手段と絞り量検出手段と移動距離検出手段及び
演算処理手段とを有し、被検物保持手段は中心軸を照射
光学系の光軸と一致して配置され、被検物である非球面
形状の光学素子を保持し、照射光学系は光源から出射さ
れた光束を平行光束にするコリメ−タと、コリメ−タか
らの平行光束を絞る可変絞りと、可変絞りで絞られた平
行光束を収束性又は発散性の光束として被検物に入射す
る照射用レンズ及び照射用レンズと被検物の距離を可変
する間隔可変手段とを有し、結像光学系は被検物に入射
する光束と被検物からの反射光束とを分離するビ−ムス
プリッタと、ビ−ムスプリッタで分離した被検物からの
反射平行光束を集光するコリメ−タレンズと、コリメ−
タレンズで集光したスポット光を検出する光検出手段と
を有し、表示手段は光検出手段からの画像信号により被
検物からの反射光束によるスポット光の画像を表示し、
絞り量検出手段は可変絞りの絞り量を検出し、移動距離
検出手段は間隔可変手段で移動した照射用レンズの移動
距離を検出し、演算処理手段は表示手段に被検物の各輪
帯からの反射光束によるスポット光の画像が形成された
ときに、移動距離検出手段で検出した照射用レンズの移
動距離と絞り量検出手段で検出した可変絞りの絞り量か
ら被検物の各輪帯の光軸からの高さと曲率半径を演算す
ることを特徴とする。
An aspherical shape measuring apparatus according to the present invention comprises: an object holding means; an irradiation optical system; an imaging optical system; a display means; a diaphragm amount detecting means; a moving distance detecting means; The object holding means is arranged so that the central axis coincides with the optical axis of the irradiation optical system, holds the aspherical optical element as the object to be tested, and the irradiation optical system emits light from the light source. A collimator for converting the luminous flux into a parallel luminous flux, a variable diaphragm for converging the parallel luminous flux from the collimator, and an irradiation of the parallel luminous flux converged by the variable diaphragm as a convergent or divergent luminous flux to be incident on the object. A lens for irradiating the object and an irradiating lens and a distance varying means for varying the distance between the object and the imaging optical system for separating a light beam incident on the object and a light beam reflected from the object. The reflected parallel light beams from the test object separated by the splitter and the beam splitter are collected. Collimator to - and Tarenzu, collimator -
Light detection means for detecting the spot light collected by the lens, the display means displays an image of the spot light by the reflected light beam from the test object by the image signal from the light detection means,
The diaphragm amount detecting means detects the diaphragm amount of the variable diaphragm, the moving distance detecting means detects the moving distance of the irradiation lens moved by the variable distance means, and the arithmetic processing means displays on the display means from each orbicular zone of the test object. When an image of a spot light is formed by the reflected light beam, the moving distance of the irradiation lens detected by the moving distance detecting means and the diaphragm amount of the variable diaphragm detected by the diaphragm amount detecting means are used to detect each annular zone of the test object. It is characterized in that the height from the optical axis and the radius of curvature are calculated.

【0006】上記間隔可変手段は被検物である非球面形
状の光学素子を保持した被検物保持手段を光軸に沿って
移動しても良い。
The distance varying means may move the object holding means holding the aspherical optical element as the object along the optical axis.

【0007】また、上記照射用レンズを着脱自在として
異なる焦点距離を持った照射用レンズを使い分けること
が望ましい。
[0007] It is also desirable that the irradiation lens be detachable so that different irradiation lenses having different focal lengths are used.

【0008】さらに、上記結像光学系のビ−ムスプリッ
タと光検出手段の間に拡大光学系を有すると良い。
Further, it is preferable that a magnifying optical system is provided between the beam splitter of the image forming optical system and the light detecting means.

【0009】この発明に係る他の非球面形状測定装置
は、被検物保持手段と照射光学系と結像光学系と表示手
段と絞り量検出手段と移動距離検出手段及び演算処理手
段とを有し、被検物保持手段は中心軸を照射光学系の光
軸と一致して配置され、被検物である非球面形状の光学
素子を保持し、照射光学系は光源から出射された光束を
平行光束にするコリメ−タと、コリメ−タからの平行光
束を絞る可変絞りと、可変絞りで絞られた平行光束を収
束性又は発散性の光束として被検物に入射する照射用レ
ンズ及び照射用レンズを光軸に沿って移動する間隔可変
手段とを有し、結像光学系は被検物に入射する光束と被
検物からの反射光束とを分離するビ−ムスプリッタと、
ビ−ムスプリッタで分離した被検物からの反射平行光束
を集光するコリメ−タレンズと、コリメ−タレンズで集
光したスポット光を検出する光検出手段とを有し、表示
手段は光検出手段からの画像信号により被検物からの反
射光束によるスポット光の画像を表示し、絞り量検出手
段は可変絞りの絞り量を検出し、移動距離検出手段は間
隔可変手段で移動した照射用レンズの移動距離を検出
し、演算処理装置は表示手段に被検物の各輪帯からの反
射光束によるスポット光の画像がそれぞれ形成されたと
きに、移動距離検出手段で検出した照射用レンズの移動
距離と絞り量検出手段で検出した可変絞りの絞り量及び
照射用レンズの焦点距離から被検物の各輪帯の光軸から
の高さと曲率半径を演算し、演算した被検物の各輪帯の
光軸からの高さと曲率半径から被検物の形状デ−タを演
算することを特徴とする。
Another aspherical surface shape measuring apparatus according to the present invention has an object holding means, an irradiation optical system, an imaging optical system, a display means, a diaphragm amount detecting means, a moving distance detecting means, and an arithmetic processing means. The object holding means is arranged so that the central axis coincides with the optical axis of the irradiation optical system, holds the aspherical optical element as the object to be tested, and the irradiation optical system emits a light beam emitted from the light source. A collimator for converting the collimator into a collimated light beam, a variable diaphragm for converging the collimated light beam from the collimator, an irradiation lens and an irradiation lens for projecting the parallel light beam converged by the variable diaphragm as a convergent or divergent light beam A beam splitter for separating a light beam incident on the object and a light beam reflected from the object, the image forming optical system comprising:
A collimator lens for condensing the reflected parallel light beam from the test object separated by the beam splitter; and a light detecting means for detecting spot light condensed by the collimator lens, and the display means is a light detecting means. An image of a spot light by a reflected light beam from the test object is displayed by an image signal from the object, an aperture amount detecting means detects an aperture amount of a variable aperture, and a moving distance detecting means of the irradiation lens moved by the interval variable means. The moving distance is detected, and the arithmetic processing unit detects the moving distance of the irradiating lens detected by the moving distance detecting means when the image of the spot light by the reflected light flux from each orbicular zone of the test object is formed on the display means. The height and radius of curvature of each orb of the test object from the optical axis and the radius of curvature are calculated from the stop amount of the variable stop and the focal length of the irradiation lens detected by the stop amount detecting means and the respective orb of the test object. Height from the optical axis and the song Shape data of the test object from a radius - characterized by calculating the data.

【0010】この発明に係る非球面形状測定方法は、光
源から出射されコリメ−トされた平行光束を可変絞り及
びビ−ムスプリッタを通してから照射用レンズで収束性
又は発散性の光束として非球面形状の光学素子である被
検物に入射し、照射用レンズと被検物の間隔を可変し、
被検物の各輪帯からの反射平行光束によるスポット光の
画像がそれぞれ形成されたときに、照射用レンズと被検
物の間隔変化と可変絞りの絞り量及び照射用レンズの焦
点距離から各輪帯の光軸からの高さと曲率半径を演算す
ることを特徴とする。
According to the method of measuring an aspherical shape according to the present invention, a collimated parallel light beam emitted from a light source passes through a variable stop and a beam splitter, and is then converted into a convergent or divergent light beam by an irradiation lens. Incident on the test object which is an optical element, the distance between the irradiation lens and the test object is changed,
When an image of a spot light is formed by a parallel light flux reflected from each orbicular zone of the test object, the distance between the irradiation lens and the test object, the stop amount of the variable stop, and the focal length of the irradiation lens are determined. It is characterized in that the height and the radius of curvature of the orbicular zone from the optical axis are calculated.

【0011】この発明に係る他の非球面形状測定方法
は、光源から出射されコリメ−トされた平行光束を可変
絞り及びビ−ムスプリッタを通してから照射用レンズで
収束性又は発散性の光束として非球面形状の光学素子で
ある被検物に入射し、照射用レンズと被検物の間隔を可
変し、被検物の各輪帯からの反射平行光束によるスポッ
ト光の画像がそれぞれ形成されたときに、照射用レンズ
と被検物の間隔変化と可変絞りの絞り量及び照射用レン
ズの焦点距離から各輪帯の光軸からの高さと曲率半径を
演算し、演算した被検物の各輪帯の光軸からの高さと曲
率半径から被検物の形状デ−タを演算することを特徴と
する。
In another aspherical shape measuring method according to the present invention, a collimated collimated light beam emitted from a light source passes through a variable stop and a beam splitter, and is then converted into a convergent or divergent light beam by an irradiation lens. When the light is incident on the test object, which is a spherical optical element, the distance between the irradiation lens and the test object is changed, and the image of the spot light is formed by the reflected parallel light flux from each annular zone of the test object. Then, the height from the optical axis and the radius of curvature of each ring zone are calculated from the change in the distance between the irradiation lens and the test object, the stop amount of the variable stop, and the focal length of the irradiation lens, and the calculated ring of the test object is calculated. It is characterized in that the shape data of the test object is calculated from the height of the band from the optical axis and the radius of curvature.

【0012】[0012]

【発明の実施の形態】この発明の非球面形状測定装置
は、照射光学系と非球面形状の光学素子である被検物の
中心軸を照射光学系の光軸と一致して保持する被検物保
持手段と結像光学系と表示手段と絞り量検出手段と移動
距離検出手段及び演算処理手段とを有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An aspherical shape measuring apparatus according to the present invention is a test apparatus for holding an irradiation optical system and an aspherical optical element, the center axis of which is aligned with the optical axis of the irradiation optical system. It has an object holding means, an imaging optical system, a display means, a diaphragm amount detecting means, a moving distance detecting means, and an arithmetic processing means.

【0013】照射光学系は光源とコリメ−タレンズと可
変絞りと照射用レンズ及び間隔可変手段を有し、光源か
ら出射された光束を平行光束にし、可変絞りにより平行
光束の光量を可変し、照射用レンズで光束を収束して被
検物に入射し、被検物の輪帯表面からの反射光束を平行
光束にする。間隔可変手段は照射用レンズを移動して照
射用レンズと被検物間の距離を可変する。結像光学系は
照射用レンズと可変絞りの間に設けたハ−フミラ−から
なるビ−ムスプリッタとコリメ−タレンズ及びCCDか
らなる光検出手段とを有し、ビ−ムスプリッタで分離し
た被検物からの反射平行光束を集光したスポット光を検
出して画像信号に変換する。表示手段は光検出手段から
の画像信号により被検物からの反射光束によるスポット
光の画像を表示する。絞り量検出手段は可変絞りの絞り
量を検出し、移動距離検出手段は間隔可変手段で可変し
た照射用レンズの移動距離を検出する。
The irradiating optical system has a light source, a collimator lens, a variable aperture, an irradiating lens and an interval varying means. The light emitted from the light source is converted into a parallel light, and the amount of the parallel light is varied by the variable aperture to irradiate the light. The luminous flux is converged on the test object by the lens for use, and the reflected light beam from the surface of the orbicular zone of the test object is converted into a parallel light beam. The interval varying means changes the distance between the irradiation lens and the test object by moving the irradiation lens. The imaging optical system has a beam splitter composed of a half mirror provided between an irradiation lens and a variable stop, and a light detecting means composed of a collimator lens and a CCD. A spot light in which the reflected parallel light flux from the specimen is collected is detected and converted into an image signal. The display means displays an image of a spot light based on a light beam reflected from the test object based on an image signal from the light detection means. The stop amount detecting means detects the stop amount of the variable stop, and the moving distance detecting means detects the moving distance of the irradiation lens changed by the interval changing means.

【0014】そして、光源から出射されコリメ−タレン
ズと可変絞り及びビ−ムスプリッタを通った光を照射用
レンズで集光して被検物の表面に照射し、被検物の表面
の集光状況を観察しながら、間隔可変手段により照射用
レンズの位置を可変して、照射用レンズからの光束を被
検物の頂点に集光させ、照射用レンズと被検物の間隔を
焦点距離fと一致させる。この状態で被検物の表面に入
射して反射した光を照射用レンズとビ−ムスプリッタを
介してCCD等の光検出手段で受光し、受光した被検物
からの反射光による画像を表示手段で観察しながら、可
変絞りの開口を最大限に開いてから照射用レンズを移動
して、照射用レンズからの光束の外縁が被検物の外周端
の輪帯Nに垂直に入射する位置まで照射用レンズを移動
する。この輪帯Nに入射して反射した光を照射用レンズ
とビ−ムスプリッタとコリメ−タレンズを介してスポッ
ト光として光検出手段に入射し、表示手段に輪帯Nによ
るスポット光の画像を形成する。この輪帯Nのスポット
光の画像が形成されたことを確認することにより、照射
用レンズからの光束の外縁が被検物の外周端の輪帯Nに
垂直に入射したことを検出することができる。
The light emitted from the light source and passing through the collimator lens, the variable aperture, and the beam splitter is condensed by the irradiation lens and irradiated on the surface of the test object, and condensed on the surface of the test object. While observing the situation, the position of the irradiating lens is changed by the interval varying means so that the light beam from the irradiating lens is focused on the vertex of the test object, and the distance between the irradiating lens and the test object is determined by the focal length f. To match. In this state, the light incident on the surface of the test object and reflected is received by a light detecting means such as a CCD via an irradiation lens and a beam splitter, and an image based on the received light reflected from the test object is displayed. While observing by means, open the aperture of the variable aperture to the maximum and then move the irradiation lens so that the outer edge of the light beam from the irradiation lens is perpendicularly incident on the annular zone N at the outer peripheral end of the test object. Move the irradiation lens up to. The light incident on and reflected by the annular zone N is incident on the light detecting means as spot light via the irradiation lens, the beam splitter and the collimator lens, and an image of the spot light by the annular zone N is formed on the display means. I do. By confirming that the image of the spot light of the annular zone N has been formed, it is possible to detect that the outer edge of the light beam from the irradiation lens is perpendicularly incident on the annular zone N at the outer peripheral end of the test object. it can.

【0015】このときに演算処理装置は移動距離検出手
段で検出した照射用レンズの移動距離から、照射用レン
ズと被検物の間隔を焦点距離fと一致させときからの照
射用レンズの位置変化を求め、この間隔の変化と絞り量
検出手段で検出した可変絞りの絞り量及び照射用レンズ
の焦点距離から被検物の輪帯Nの光軸からの高さと曲率
半径を演算する。また、演算した輪帯Nの光軸からの高
さと曲率半径から被検物の形状デ−タである頂点からの
変位量を演算する。
At this time, the arithmetic processing unit calculates a change in the position of the irradiation lens from the time when the distance between the irradiation lens and the test object matches the focal length f based on the movement distance of the irradiation lens detected by the movement distance detecting means. Is calculated from the change in the interval, the stop amount of the variable stop detected by the stop amount detecting means, and the focal length of the irradiation lens. Further, the displacement from the vertex, which is the shape data of the test object, is calculated from the calculated height of the orbicular zone N from the optical axis and the radius of curvature.

【0016】この処理を可変絞りの絞り量を可変して照
射用レンズを移動しながら逐次繰り返して被検物の各輪
帯の光軸からの高さと曲率半径及び形状デ−タを求め
る。
This process is repeated successively while moving the irradiation lens while changing the stop amount of the variable stop to obtain the height, radius of curvature, and shape data of the test object from the optical axis of each orbicular zone.

【0017】[0017]

【実施例】図1はこの発明の一実施例の構成を示すブロ
ック図である。図に示すように、非球面形状測定装置1
は、被検物保持手段2と照射光学系3と結像光学系4と
表示手段5と絞り量検出手段6と移動距離検出手段7と
入力手段8及び演算処理手段9とを有する。被検物保持
手段2は中心軸を照射光学系3の光軸と一致して配置さ
れ、非球面形状の光学素子である被検物10を保持す
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. As shown in FIG.
Has an object holding means 2, an irradiation optical system 3, an imaging optical system 4, a display means 5, a diaphragm amount detecting means 6, a moving distance detecting means 7, an input means 8, and an arithmetic processing means 9. The test object holding means 2 is arranged so that its central axis coincides with the optical axis of the irradiation optical system 3, and holds the test object 10, which is an aspheric optical element.

【0018】照射光学系3は光源31とコリメ−タレン
ズ32,33と可変絞り34と照射用レンズ35及び間
隔可変手段36を有する。光源31は被検物10に照射
する光束を出射する。コリメ−タレンズ32,33は光
源31から出射された光束を平行光束にする。可変絞り
34は絞り341と絞り可変手段342を有し、絞り可
変手段342で絞り341の開口の大きさを可変してコ
リメ−タレンズ32,33からの平行光束の光量を可変
する。照射用レンズ35は可変絞り34で絞られた平行
光束を収束光束又は発散光束として被検物10に入射
し、被検物10の表面からの反射光束を平行光束にす
る。間隔可変手段36は照射用レンズ35を移動して照
射用レンズ35と被検物10間の距離を可変する。結像
光学系4は照射用レンズ35と例えばハ−フミラ−から
なるビ−ムスプリッタ41とコリメ−タレンズ42と例
えばCCDからなる光検出手段43とを有する。ビ−ム
スプリッタ41は被検物10に入射する光束と被検物1
0から反射した光束とを分離する。コリメ−タレンズ4
2はビ−ムスプリッタ41で分離した被検物10からの
反射平行光束を集光して光検出手段43にスポット光を
入射する。光検出手段43は入射したスポット光を画像
信号に変換する。表示手段5は光検出手段43からの画
像信号により被検物10からの反射平行光束によるスポ
ット光の画像を表示する。
The irradiation optical system 3 has a light source 31, collimator lenses 32 and 33, a variable stop 34, an irradiation lens 35, and a variable distance means 36. The light source 31 emits a light beam for irradiating the test object 10. The collimator lenses 32 and 33 convert the light beam emitted from the light source 31 into a parallel light beam. The variable diaphragm 34 has a diaphragm 341 and a diaphragm varying unit 342, and the aperture varying unit 342 varies the size of the aperture of the diaphragm 341 to vary the amount of parallel light beams from the collimator lenses 32 and 33. The irradiation lens 35 enters the test object 10 with the parallel light beam converged by the variable stop 34 as a convergent light beam or a divergent light beam, and converts the reflected light beam from the surface of the test object 10 into a parallel light beam. The interval varying means 36 moves the irradiation lens 35 to change the distance between the irradiation lens 35 and the test object 10. The imaging optical system 4 has an irradiation lens 35, a beam splitter 41 composed of, for example, a half mirror, a collimator lens 42, and light detecting means 43 composed of, for example, a CCD. The beam splitter 41 detects the light beam incident on the test object 10 and the test object 1.
The light flux reflected from zero is separated. Collimator lens 4
Reference numeral 2 condenses the reflected parallel light flux from the test object 10 separated by the beam splitter 41 and makes the spot light incident on the light detecting means 43. The light detecting means 43 converts the incident spot light into an image signal. The display unit 5 displays an image of a spot light based on a parallel light beam reflected from the test object 10 based on an image signal from the light detection unit 43.

【0019】絞り量検出手段342は絞り可変手段34
2による絞り341の絞り量を検出する。移動距離検出
手段7は間隔可変手段36で可変した照射用レンズ35
の移動距離を検出する。入力手段8は表示手段5のスポ
ット光の画像の有無を観察している測定者の操作により
演算処理手段9に被検物10の形状デ−タの演算を指示
する。
The diaphragm amount detecting means 342 is provided with a diaphragm varying means 34.
2, the amount of aperture of the aperture 341 is detected. The moving distance detecting means 7 includes an irradiation lens 35 that is changed by an interval changing means 36.
The moving distance of is detected. The input means 8 instructs the arithmetic processing means 9 to calculate the shape data of the test object 10 by the operation of the measurer observing the presence or absence of the spot light image on the display means 5.

【0020】演算処理手段9は、図2のブロック図に示
すように、曲率半径演算部91と測定高さ演算部92と
変位量演算部93と出力部94及びメモリ95を有す
る。曲率半径演算部91は入力手段8から形状デ−タの
演算指示を受けたときに移動距離検出手段7で検出した
照射用レンズ35の移動距離から照射用レンズ35と被
検物10間の間隔の変化を求め、そのとき画像を形成し
ている被検物10の輪帯の曲率半径R(Hj)を演算す
る。測定高さ演算部92は絞り量検出手段6で検出した
可変絞り34の絞り量Djと曲率半径演算部91で演算
した被検物10の輪帯の曲率半径R(Hj)及び照射用
レンズ35の焦点距離fから、光束の外縁が入射する被
検物10の輪帯の光軸からの高さHjを演算する。変位
量演算部93は曲率半径演算部91で演算した曲率半径
R(Hj)と測定高さ演算部92で演算した輪帯の光軸
からの高さHjとから、輪帯の変位量f(Hj)を演算
する。出力部94は曲率半径演算部91で演算した曲率
半径R(Hj)と測定高さ演算部92で演算した輪帯の
光軸からの高さHj及び変位量演算部93で演算した輪
帯の変位量f(Hj)をメモリ95や表示手段5に出力
する。
As shown in the block diagram of FIG. 2, the arithmetic processing means 9 has a radius of curvature arithmetic unit 91, a measured height arithmetic unit 92, a displacement arithmetic unit 93, an output unit 94, and a memory 95. The curvature radius calculating section 91 calculates the distance between the irradiation lens 35 and the test object 10 based on the movement distance of the irradiation lens 35 detected by the movement distance detection means 7 when receiving the calculation instruction of the shape data from the input means 8. Is calculated, and the radius of curvature R (Hj) of the orbicular zone of the test object 10 forming the image at that time is calculated. The measurement height calculator 92 calculates the aperture Dj of the variable aperture 34 detected by the aperture detector 6, the radius of curvature R (Hj) of the orbicular zone of the test object 10 calculated by the radius of curvature calculator 91, and the irradiation lens 35. Is calculated from the optical axis of the annular zone of the test object 10 on which the outer edge of the light beam enters. The displacement calculator 93 calculates the displacement f () of the annular zone from the radius of curvature R (Hj) calculated by the radius of curvature calculator 91 and the height Hj from the optical axis of the zone calculated by the measured height calculator 92. Hj) is calculated. The output unit 94 outputs the curvature radius R (Hj) calculated by the curvature radius calculation unit 91, the height Hj from the optical axis of the ring calculated by the measured height calculation unit 92, and the radius of the ring calculated by the displacement amount calculation unit 93. The displacement f (Hj) is output to the memory 95 and the display unit 5.

【0021】上記のように構成された非球面形状測定装
置1で非球面形状の光学素子である被検物10の形状を
測定するときの動作原理を説明する。
The principle of operation when measuring the shape of the test object 10 which is an aspherical optical element with the aspherical shape measuring apparatus 1 configured as described above will be described.

【0022】非球面レンズ等のように回転対称体である
非球面の形状は、f(H)を非球面の光軸方向の変化量、
Hを光軸からの高さ、R0を非球面の頂点の曲率半径、
C=1/R0、Kを円錐定数、Aiを非球面係数とする
と、一般に下記(1)式で表せる。
The shape of a rotationally symmetric aspherical surface, such as an aspherical lens, is represented by f (H), the amount of change in the optical axis direction of the aspherical surface,
H is the height from the optical axis, R 0 is the radius of curvature of the apex of the aspheric surface,
Assuming that C = 1 / R 0 , K is a conical constant, and Ai is an aspheric coefficient, it can be generally expressed by the following equation (1).

【0023】[0023]

【数1】 (Equation 1)

【0024】上記(1)式の第1項は円錐曲線を表し、
第2項以降は円錐曲線からの偏差を多項式で表してい
る。この非球面の光軸方向の変化量f(H)は光軸からの
高さHの輪帯における曲率半径R(H)の変化量として
とらえることができる。光軸からの高さHの輪帯におけ
る曲率半径R(H)は下記(2)式で近似することがで
きる。
The first term of the above equation (1) represents a conic curve,
From the second term onward, the deviation from the conic curve is represented by a polynomial. The amount of change f (H) of the aspheric surface in the optical axis direction can be regarded as the amount of change of the radius of curvature R (H) in the annular zone having a height H from the optical axis. The radius of curvature R (H) in the annular zone having a height H from the optical axis can be approximated by the following equation (2).

【0025】[0025]

【数2】 (Equation 2)

【0026】回転対称体である非球面形状12において
光軸からの高さHa〜Hnの輪帯A〜Nの曲率中心Za
〜Znは、図3、図4に示すように、光軸上の異なる位
置に存在する。この各曲率中心Za〜Znに集光する光
束を検出することにより各輪帯A〜Nの曲率半径R(H
a)〜R(Hn)を得ることができる。そして各輪帯A〜
Nの曲率半径R(Ha)〜R(Hn)から非球面の光軸方向
の変化量f(Ha)〜f(Hn)を求めることができる。
In the aspherical shape 12 which is a rotationally symmetric body, the center of curvature Za of the annular zones A to N having heights Ha to Hn from the optical axis.
3 to 4 exist at different positions on the optical axis as shown in FIGS. By detecting a light beam condensed on each of the centers of curvature Za to Zn, the radius of curvature R (H
a) to R (Hn) can be obtained. And each zone A ~
From the curvature radii R (Ha) to R (Hn) of N, the variation amounts f (Ha) to f (Hn) of the aspheric surface in the optical axis direction can be obtained.

【0027】次に上記のように構成した非球面形状測定
装置1で、図3に示すように光軸からの高さHa〜Hn
が大きくなるにしたがって輪帯の曲率中心Za〜Znが
頂点から離れていく非球面形状の光学素子である被検物
10の形状を測定するときの動作を図5の動作工程図を
参照して説明する。
Next, as shown in FIG. 3, the heights Ha to Hn from the optical axis are measured by the aspherical shape measuring apparatus 1 constructed as described above.
The operation when measuring the shape of the test object 10 which is an aspherical optical element in which the center of curvature Za to Zn of the annular zone moves away from the apex as the radius of the circle increases becomes larger, with reference to the operation process diagram of FIG. explain.

【0028】光源31から出射されコリメ−タレンズ3
2,33と可変絞り34及びビ−ムスプリッタ41を通
った光を照射用レンズ35で集光して被検物10の表面
に照射し、被検物10の表面の集光状況を観察しなが
ら、間隔可変手段36により照射用レンズ35の位置を
可変して、図5(a)に示すように、照射用レンズ35
からの光束を被検物10の頂点Oに集光させ、照射用レ
ンズ35と被検物10の頂点Oとの間隔を照射用レンズ
35の焦点距離fと一致させる。この状態で被検物10
の頂点Oで反射した光は入射光と同じ光路を通り照射用
レンズ35で平行光束となり、ビ−ムスプリッタ41で
反射してコリメ−タレンズ42で集光されスポット光と
なり光検出手段43に入射する。このスポット光の画像
が表示手段5に形成される。このスポット光の画像が表
示手段5に形成されたことを確認して照射用レンズ35
からの光束が被検物10の頂点Oに集光したことを検知
できる。
Collimator lens 3 emitted from light source 31
The light passing through the lenses 2 and 33, the variable stop 34, and the beam splitter 41 is condensed by the irradiation lens 35 and irradiated on the surface of the test object 10, and the state of light condensing on the surface of the test object 10 is observed. Meanwhile, the position of the irradiation lens 35 is changed by the interval changing means 36, and as shown in FIG.
Is focused on the vertex O of the test object 10, and the distance between the irradiation lens 35 and the vertex O of the test object 10 is made to match the focal length f of the irradiation lens 35. In this state, the test object 10
The light reflected at the vertex O passes through the same optical path as the incident light, becomes a parallel light beam at the irradiation lens 35, is reflected by the beam splitter 41, is collected by the collimator lens 42, becomes a spot light, and enters the light detecting means 43. I do. An image of the spot light is formed on the display unit 5. After confirming that the image of the spot light is formed on the display means 5, the irradiation lens 35 is checked.
Can be detected that the luminous flux from the light is focused on the vertex O of the test object 10.

【0029】次に、被検物10からの反射光による画像
を表示手段5で観察しながら、可変絞り34の開口を最
大限Dnに開いてから照射用レンズ35を被検物10の
方に移動すると、表示手段5に形成されているスポット
光は一旦消える。そして図5(b)に示すように、照射
用レンズ35からの光束の外縁が被検物10の外周端の
輪帯Nに垂直に入射する位置まで照射用レンズ35を移
動すると、輪帯Nに入射して反射した光は入射光と同じ
光路を通り照射用レンズ35で、図6(a)に示すよう
に輪帯Nの形状11nに相当する平行光束となってビ−
ムスプリッタ41で反射してコリメ−タレンズ42で集
光されスポット光となり光検出手段43に入射し、スポ
ット光の画像が表示手段5に形成される。このとき、輪
帯N以外の輪帯に入射した光の反射光は散乱して照射用
レンズ35を通ったときに平行光束とはならず、光検出
手段43にスポット光として集光せず、輪帯Nからの反
射光だけが光検出手段43に集光する。この輪帯Nのス
ポット光の画像が形成されたことを確認することによ
り、照射用レンズ35からの光束の外縁が被検物10の
外周端の輪帯Nに垂直に入射したことを検出することが
できる。
Next, while observing the image by the reflected light from the test object 10 with the display means 5, the opening of the variable stop 34 is opened to the maximum Dn, and the irradiation lens 35 is moved toward the test object 10. When it moves, the spot light formed on the display means 5 once disappears. Then, as shown in FIG. 5B, when the irradiation lens 35 is moved to a position where the outer edge of the light beam from the irradiation lens 35 is perpendicularly incident on the ring N at the outer peripheral end of the test object 10, the ring N The light incident on and reflected by the light passes through the same optical path as the incident light, and becomes a parallel light beam corresponding to the shape 11n of the annular zone N as shown in FIG.
The light is reflected by the splitter 41 and condensed by the collimator lens 42 to become spot light, which is incident on the light detecting means 43, and an image of the spot light is formed on the display means 5. At this time, the reflected light of the light incident on an annular zone other than the annular zone N is scattered and does not become a parallel light beam when passing through the irradiation lens 35, and is not condensed as spot light on the light detecting means 43. Only the reflected light from the annular zone N is collected on the light detecting means 43. By confirming that the image of the spot light of the annular zone N has been formed, it is detected that the outer edge of the light beam from the irradiation lens 35 is vertically incident on the annular zone N at the outer peripheral end of the test object 10. be able to.

【0030】このとき絞り量検出手段342は絞り可変
手段342による絞り341の絞り量Dnを検出して演
算処理手段9に送り、移動距離検出手段7は間隔可変手
段36で可変した照射用レンズ35の移動距離を検出し
て演算処理手段9に送っている。
At this time, the diaphragm amount detecting means 342 detects the diaphragm amount Dn of the diaphragm 341 by the diaphragm varying means 342 and sends it to the arithmetic processing means 9, and the moving distance detecting means 7 changes the irradiation lens 35 varied by the distance varying means 36. Is detected and sent to the arithmetic processing means 9.

【0031】そして輪帯Nによるスポット光の画像が形
成されたことを確認して入力手段8から演算処理手段9
に被検物10の形状デ−タの演算指示が入力されると、
曲率半径演算部91はそのとき移動距離検出手段7から
入力している照射用レンズ35の移動距離と照射用レン
ズ35の焦点を被検物10の頂点Oと一致させたときの
照射用レンズ35の位置とから照射用レンズ35と被検
物10間の間隔の変化Rnを演算し、演算した間隔変化
Rnを輪帯Nの曲率半径R(Hn)とする。測定高さ演
算部92は絞り量検出手段6で検出した可変絞り34の
絞り量Dnと曲率半径演算部91で求めた輪帯Nの曲率
半径R(Hn)及び照射用レンズ35の焦点距離fか
ら、光束の外縁が入射する被検物10の輪帯Nの光軸か
らの高さHnを演算する。変位量演算部93は曲率半径
演算部91で求めた曲率半径R(Hn)と測定高さ演算
部92で演算した輪帯Nの光軸からの高さHnから、上
記(2)式により輪帯Nの変位量f(Hn)を演算す
る。出力部94は演算した輪帯の変位量f(Hn)を曲
率半径R(Hn)と光軸からの高さHnとともにメモリ
95に格納し、表示手段5に出力して表示する。
After confirming that a spot light image has been formed by the annular zone N, the input means 8 sends the arithmetic processing means 9
When an instruction to calculate the shape data of the test object 10 is input to the
The radius of curvature calculation unit 91 determines whether or not the movement distance of the irradiation lens 35 input from the movement distance detection means 7 and the focal point of the irradiation lens 35 coincide with the vertex O of the test object 10. , A change Rn in the space between the irradiation lens 35 and the test object 10 is calculated, and the calculated space change Rn is defined as the radius of curvature R (Hn) of the orbicular zone N. The measurement height calculation unit 92 calculates the stop amount Dn of the variable stop 34 detected by the stop amount detection unit 6, the radius of curvature R (Hn) of the orbicular zone N obtained by the curvature radius calculation unit 91, and the focal length f of the irradiation lens 35. Then, the height Hn from the optical axis of the annular zone N of the test object 10 on which the outer edge of the light beam enters is calculated. The displacement amount calculation unit 93 calculates the ring by the above equation (2) from the radius of curvature R (Hn) calculated by the curvature radius calculation unit 91 and the height Hn from the optical axis of the ring zone N calculated by the measured height calculation unit 92. The displacement f (Hn) of the band N is calculated. The output unit 94 stores the calculated displacement amount f (Hn) of the orbicular zone in the memory 95 together with the radius of curvature R (Hn) and the height Hn from the optical axis, and outputs the same to the display means 5 for display.

【0032】次に、照射用レンズ35と被検物10間の
間隔の変化Rnをそのままにして可変絞り34を絞る
と、被検物10の外周端の輪帯Nに入射する光束は可変
絞り34により遮られ、表示手段5に形成されていた輪
帯Nによるスポット光の画像は消える。そこで再び表示
手段5に被検物10の輪帯によるスポット光の画像が形
成されるように、間隔可変手段36により照射用レンズ
35の位置を移動して、図5(c)に示すように、照射
用レンズ35からの光束の外縁が被検物10の外周端の
輪帯Nの内側の輪帯Mに垂直に入射させる位置まで照射
用レンズ35を移動する。そして、図6(b)に示すよ
うに輪帯Mに対応した形状11mの反射平行光束よるス
ポット光が結像光学系4で形成され、その画像が表示手
段5に表示されたら、演算処理手段9の曲率半径演算部
91は移動距離検出手段7で検出した移動距離から、そ
のときの照射用レンズ35と被検物10間の間隔の変化
ΔRmを求め、先に検出した間隔変化Rnの和(Rn+
ΔRm)を演算して輪帯Mの曲率半径R(Hm)とす
る。測定高さ演算部92は絞り量検出手段6で検出した
可変絞り34の絞り量Dmと輪帯Mの曲率半径R(H
m)及び照射用レンズ35の焦点距離fから、被検物1
0の輪帯Mの光軸からの高さHmを演算する。変位量演
算部93は曲率半径演算部91で求めた曲率半径R(H
m)と測定高さ演算部92で演算した輪帯Mの光軸から
の高さHmから、輪帯Mの変位量f(Hm)を演算す
る。この処理を逐次繰り返して、図5(d)と図6
(c)に示すように被検物10の近軸光線が入射する頂
点の球面Aからの反射光11aを検出して、頂点の球面
Aの画像曲率半径R(Ha)を求めたら処理を終了す
る。
Next, when the variable stop 34 is stopped down while the change Rn in the distance between the irradiation lens 35 and the test object 10 is kept as it is, the light beam entering the annular zone N at the outer peripheral end of the test object 10 is The image of the spot light due to the annular zone N formed on the display means 5 is blocked by the display means 5 and disappears. Then, the position of the irradiation lens 35 is moved by the interval varying means 36 so that an image of the spot light due to the annular zone of the test object 10 is formed on the display means 5 again, as shown in FIG. Then, the irradiation lens 35 is moved to a position where the outer edge of the light beam from the irradiation lens 35 is perpendicularly incident on the inner annular zone M of the outer annular zone N of the test object 10. Then, as shown in FIG. 6 (b), when a spot light of a reflected parallel light beam having a shape 11m corresponding to the annular zone M is formed by the imaging optical system 4, and the image is displayed on the display means 5, the arithmetic processing means The curvature radius calculator 91 of 9 calculates the change ΔRm in the distance between the irradiation lens 35 and the test object 10 at that time from the moving distance detected by the moving distance detecting means 7, and calculates the sum of the previously detected distance change Rn. (Rn +
ΔRm) is calculated as a radius of curvature R (Hm) of the orbicular zone M. The measured height calculator 92 determines the aperture amount Dm of the variable aperture 34 detected by the aperture amount detection means 6 and the radius of curvature R (H
m) and the focal length f of the irradiation lens 35,
The height Hm of the zero zone M from the optical axis is calculated. The displacement calculator 93 calculates the radius of curvature R (H
m) and the height Hm of the orbicular zone M from the optical axis computed by the measured height computing unit 92, the displacement f (Hm) of the orbicular zone M is computed. This processing is sequentially repeated, and FIG.
As shown in (c), the reflected light 11a from the spherical surface A at the vertex on which the paraxial ray of the test object 10 is incident is detected, and the process ends when the image curvature radius R (Ha) of the spherical surface A at the vertex is obtained. I do.

【0033】このようにして、図7に示すように、被検
物10の光軸からの高さHj(j=a〜n)の各輪帯の
曲率半径R(Hj)の変化特性と、各輪帯の変位量f(H
j)を検出することができ、被検物10の非球面形状を
簡単に測定することができる。また被検物10の光軸か
らの高さHjと各輪帯の曲率半径R(Hj)を変位量f
(Hj)を使用して被検物10の非球面形状を示す上記
(1)式を作成して、被検物10の非球面形状を特定す
ることができる。
In this manner, as shown in FIG. 7, the change characteristic of the radius of curvature R (Hj) of each orbicular zone at a height Hj (j = a to n) from the optical axis of the test object 10 is represented by: The displacement f (H
j) can be detected, and the aspherical shape of the test object 10 can be easily measured. Further, the height Hj of the test object 10 from the optical axis and the radius of curvature R (Hj) of each ring zone are determined by the displacement amount f.
The formula (1) indicating the aspherical shape of the test object 10 is created using (Hj), and the aspherical shape of the test object 10 can be specified.

【0034】なお、上記実施例は間隔可変手段36で照
射用レンズ35を移動して被検物10の光軸からの高さ
Hjの輪帯Jの曲率半径R(Hj)を求める場合につい
て説明したが、被検物10を保持する被検物保持手段2
を移動して照射用レンズ35と被検物10間の間隔の変
化を検出するようにしても良い。
In the above embodiment, the case where the irradiation lens 35 is moved by the interval varying means 36 to obtain the radius of curvature R (Hj) of the orbicular zone J having the height Hj from the optical axis of the test object 10 will be described. However, the object holding means 2 for holding the object 10
May be moved to detect a change in the interval between the irradiation lens 35 and the test object 10.

【0035】また、照射用レンズ35を着脱自在とし、
異なる焦点距離を持った照射用レンズを使い分けること
により、多種多様な非球面形状の光学素子に対して測定
可能範囲を広げることができる。
Further, the irradiation lens 35 is made detachable,
By properly using irradiation lenses having different focal lengths, the measurable range can be expanded for a wide variety of aspherical optical elements.

【0036】さらに、図8に示すように、ビ−ムスプリ
ッタ41と光検出手段43の間にコリメ−タレンズ4
2,44を組み合わせた拡大光学系45を設けることに
より、被検物10からの反射光を拡大して光検出手段4
3に入射することができ、被検物10の各輪帯からの反
射光の検出感度を高めることができ、非球面形状の測定
精度をより向上させることができる。
Further, as shown in FIG. 8, a collimator lens 4 is provided between the beam splitter 41 and the light detecting means 43.
By providing the magnifying optical system 45 that combines the light detecting means 4 and the light detecting means 4, the light reflected from the test object 10 is magnified.
3, the detection sensitivity of the reflected light from each annular zone of the test object 10 can be increased, and the measurement accuracy of the aspherical shape can be further improved.

【0037】[0037]

【発明の効果】この発明は以上説明したように、平行光
束を照射用レンズで収束性または発散性の光束として非
球面形状の光学素子である被検物の表面に入射し、照射
用レンズと被検物の間隔を可変して被検物の各輪帯に垂
直に入射した光束を検出し、このときの照射用レンズの
移動距離から照射用レンズと被検物の間隔変化を求め、
照射用レンズと被検物の間隔変化と可変絞りの絞り量及
び照射用レンズの焦点距離から各輪帯の光軸からの高さ
と曲率半径を演算するようにしたから、簡単な装置で迅
速に非球面形状の光学素子の各輪帯の曲率半径を得るこ
とができる。
As described above, according to the present invention, a parallel light beam is incident on a surface of a test object which is an aspherical optical element as a convergent or divergent light beam by an irradiation lens. The distance between the test objects is varied to detect a light beam that is vertically incident on each orbicular zone of the test object, and a change in the distance between the irradiation lens and the test object is obtained from the moving distance of the irradiation lens at this time,
The height and radius of curvature of each ring zone from the optical axis are calculated from the change in the distance between the irradiation lens and the test object, the stop amount of the variable stop, and the focal length of the irradiation lens. The radius of curvature of each annular zone of the aspherical optical element can be obtained.

【0038】また、演算した被検物の各輪帯の光軸から
の高さと曲率半径から被検物の形状デ−タである頂点か
らの変位量を演算するから、非球面形状とその特性を簡
単に得ることができる。
Further, since the displacement from the vertex, which is the shape data of the test object, is calculated from the calculated height of the orbicular zone from the optical axis and the radius of curvature of the test object, the aspherical shape and its characteristics are calculated. Can be easily obtained.

【0039】また、照射用レンズと被検物の間隔を可変
するときに、被検物を保持する被検物保持手段を移動す
るようにすると、照射用レンズと被検物の間隔を簡単に
可変できるとともに光学系をより単純化することができ
る。
When the distance between the irradiation lens and the test object is changed, the distance between the irradiation lens and the test object can be easily adjusted by moving the test object holding means for holding the test object. The optical system can be varied and the optical system can be further simplified.

【0040】また、照射用レンズを着脱自在とし、異な
る焦点距離を持った照射用レンズを使い分けることによ
り、1台の測定装置で多種多様な非球面形状の光学素子
の形状を測定することができる。
Further, by making the irradiation lens detachable and properly using irradiation lenses having different focal lengths, it is possible to measure the shapes of various kinds of aspherical optical elements with one measuring device. .

【0041】さらに、ビ−ムスプリッタと光検出手段の
間にコリメ−タレンズを組み合わせた拡大光学系を設け
ることにより、被検物からの反射光を拡大して光検出手
段に入射することができ、被検物の各輪帯に垂直に入射
した光束の検出感度を高めることができ、非球面形状の
測定精度をより向上させることができる。
Further, by providing a magnifying optical system combining a collimator lens between the beam splitter and the light detecting means, the reflected light from the test object can be magnified and incident on the light detecting means. In addition, the detection sensitivity of a light beam that is perpendicularly incident on each orbicular zone of the test object can be increased, and the measurement accuracy of the aspherical shape can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】上記実施例の演算処理手段の構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a configuration of an arithmetic processing unit of the embodiment.

【図3】非球面形状の各輪帯の曲率中心を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a center of curvature of each of the aspherical annular zones.

【図4】非球面形状の各輪帯の曲率中心を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing the center of curvature of each aspherical annular zone.

【図5】上記実施例の動作を示す動作工程図である。FIG. 5 is an operation process chart showing the operation of the embodiment.

【図6】上記実施例による被検物の反射光の画像を示す
表示図である。
FIG. 6 is a display diagram showing an image of reflected light of a test object according to the embodiment.

【図7】上記実施例による得た各光軸の高さと曲率半径
の変化特性図である。
FIG. 7 is a change characteristic diagram of the height and the radius of curvature of each optical axis obtained according to the embodiment.

【図8】他の実施例の光学系を示す構成図である。FIG. 8 is a configuration diagram illustrating an optical system according to another embodiment.

【符号の説明】[Explanation of symbols]

1 非球面形状測定装置 2 被検物保持手段 3 照射光学系 4 結像光学系 5 表示手段 6 絞り量検出手段 7 移動距離検出手段 8 入力手段 9 演算処理手段 10 被検物 31 光源 32,33 コリメ−タレンズ 34 可変絞り 35 照射用レンズ 36 間隔可変手段 41 ビ−ムスプリッタ 42 コリメ−タレンズ 43 光検出手段 91 曲率半径演算部 92 測定高さ演算部 93 変位量演算部 94 出力部 95 メモリ DESCRIPTION OF SYMBOLS 1 Aspherical surface shape measuring apparatus 2 Object holding means 3 Irradiation optical system 4 Imaging optical system 5 Display means 6 Aperture amount detecting means 7 Moving distance detecting means 8 Input means 9 Arithmetic processing means 10 Object 31 Light source 32, 33 Collimator lens 34 Variable aperture 35 Irradiation lens 36 Interval variable means 41 Beam splitter 42 Collimator lens 43 Light detection means 91 Curvature radius calculator 92 Measured height calculator 93 Displacement calculator 94 Output unit 95 Memory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検物保持手段と照射光学系と結像光学
系と表示手段と絞り量検出手段と移動距離検出手段及び
演算処理手段とを有し、 被検物保持手段は中心軸を照射光学系の光軸と一致して
配置され、被検物である非球面形状の光学素子を保持
し、 照射光学系は光源から出射された光束を平行光束にする
コリメ−タと、コリメ−タからの平行光束を絞る可変絞
りと、可変絞りで絞られた平行光束を収束性又は発散性
の光束として被検物に入射する照射用レンズ及び照射用
レンズと被検物の距離を可変する間隔可変手段とを有
し、 結像光学系は被検物に入射する光束と被検物からの反射
光束とを分離するビ−ムスプリッタと、ビ−ムスプリッ
タで分離した被検物からの反射平行光束を集光するコリ
メ−タレンズと、コリメ−タレンズで集光したスポット
光を検出する光検出手段とを有し、 表示手段は光検出手段からの画像信号により被検物から
の反射光束によるスポット光の画像を表示し、 絞り量検出手段は可変絞りの絞り量を検出し、移動距離
検出手段は間隔可変手段で移動した照射用レンズの移動
距離を検出し、 演算処理手段は表示手段に被検物の各輪帯からの反射光
束によるスポット光の画像が形成されたときに、移動距
離検出手段で検出した照射用レンズの移動距離と絞り量
検出手段で検出した可変絞りの絞り量から被検物の各輪
帯の光軸からの高さと曲率半径を演算することを特徴と
する非球面形状測定装置。
1. An object holding means, an irradiation optical system, an imaging optical system, a display means, a diaphragm amount detecting means, a moving distance detecting means, and an arithmetic processing means, wherein the object holding means has a central axis. A collimator for collimating a light beam emitted from a light source into a collimated light beam; A variable aperture for narrowing the parallel light beam from the projector, and an irradiation lens that enters the test object as the convergent or divergent light beam from the parallel light beam narrowed by the variable stop, and varies the distance between the irradiation lens and the test object. A beam splitter for separating a light beam incident on the test object and a reflected light beam from the test object; and an imaging optical system for separating the light beam from the test object separated by the beam splitter. A collimator lens that collects the reflected parallel light beam and a collimator lens Light detecting means for detecting the spot light that has been detected, the display means displays an image of the spot light based on the reflected light beam from the test object based on the image signal from the light detecting means, and the diaphragm amount detecting means has a diaphragm of a variable diaphragm. The moving distance detecting means detects the moving distance of the irradiation lens moved by the variable distance means, and the arithmetic processing means displays on the display means a spot light image by the reflected light flux from each orbicular zone of the test object. When formed, the height and radius of curvature of the test object from the optical axis of each annular zone are determined from the moving distance of the irradiation lens detected by the moving distance detecting means and the stop amount of the variable stop detected by the stop amount detecting means. An aspherical shape measuring device characterized by performing calculations.
【請求項2】 上記間隔可変手段は被検物である非球面
形状の光学素子を保持した被検物保持手段を光軸に沿っ
て移動する請求項1記載の非球面形状測定装置。
2. The aspherical shape measuring apparatus according to claim 1, wherein said variable distance means moves the object holding means holding an aspherical optical element as an object along the optical axis.
【請求項3】 上記照射用レンズを着脱自在として異な
る焦点距離を持った照射用レンズを使い分ける請求項1
または2記載の非球面形状測定装置。
3. An irradiation lens having a different focal length, wherein said irradiation lens is detachable.
Or the aspherical shape measuring device according to 2.
【請求項4】 上記結像光学系のビ−ムスプリッタと光
検出手段の間に拡大光学系を有する請求項3記載の非球
面形状測定装置。
4. An aspherical shape measuring apparatus according to claim 3, further comprising an enlargement optical system between said beam splitter of said image forming optical system and said light detecting means.
【請求項5】 被検物保持手段と照射光学系と結像光学
系と表示手段と絞り量検出手段と移動距離検出手段及び
演算処理手段とを有し、 被検物保持手段は中心軸を照射光学系の光軸と一致して
配置され、被検物である非球面形状の光学素子を保持
し、 照射光学系は光源から出射された光束を平行光束にする
コリメ−タと、コリメ−タからの平行光束を絞る可変絞
りと、可変絞りで絞られた平行光束を収束性又は発散性
の光束として被検物に入射する照射用レンズ及び照射用
レンズを光軸に沿って移動する間隔可変手段とを有し、 結像光学系は被検物に入射する光束と被検物からの反射
光束とを分離するビ−ムスプリッタと、ビ−ムスプリッ
タで分離した被検物からの反射平行光束を集光するコリ
メ−タレンズと、コリメ−タレンズで集光したスポット
光を検出する光検出手段とを有し、 表示手段は光検出手段からの画像信号により被検物から
の反射光束によるスポット光の画像を表示し、 絞り量検出手段は可変絞りの絞り量を検出し、移動距離
検出手段は間隔可変手段で移動した照射用レンズの移動
距離を検出し、 演算処理装置は表示手段に被検物の各輪帯からの反射光
束によるスポット光の画像がそれぞれ形成されたとき
に、移動距離検出手段で検出した照射用レンズの移動距
離と絞り量検出手段で検出した可変絞りの絞り量及び照
射用レンズの焦点距離から被検物の各輪帯の光軸からの
高さと曲率半径を演算し、演算した被検物の各輪帯の光
軸からの高さと曲率半径から被検物の形状デ−タを演算
することを特徴とする非球面形状測定装置。
5. An object holding means, an irradiation optical system, an imaging optical system, a display means, a diaphragm amount detecting means, a moving distance detecting means, and an arithmetic processing means, wherein the object holding means has a central axis. A collimator for collimating a light beam emitted from a light source into a collimated light beam; A variable aperture for reducing the parallel light beam from the light source, and an irradiation lens that enters the test object as a convergent or divergent light beam from the parallel light beam narrowed by the variable aperture, and an interval for moving the irradiation lens along the optical axis. A beam splitter for separating a light beam incident on the object and a light beam reflected from the object, and a reflection from the object separated by the beam splitter. A collimator lens that collects parallel light beams and a collimator lens Light detecting means for detecting the spot light; display means for displaying an image of the spot light by the reflected light beam from the test object based on the image signal from the light detecting means; The moving distance detecting means detects the moving distance of the irradiating lens moved by the variable distance means, and the arithmetic processing unit displays on the display means the spot light images by the reflected light fluxes from the respective annular zones of the test object. When formed, the optical axis of each annular zone of the test object is determined from the moving distance of the irradiation lens detected by the moving distance detecting means, the aperture amount of the variable diaphragm detected by the diaphragm amount detecting means, and the focal length of the irradiating lens. An aspherical shape measuring apparatus, which calculates a height and a radius of curvature of the object from the optical axis and calculates shape data of the object from the calculated height and a radius of curvature of each orbicular zone from the optical axis. .
【請求項6】 光源から出射されコリメ−トされた平行
光束を可変絞り及びビ−ムスプリッタを通してから照射
用レンズで収束性又は発散性の光束として非球面形状の
光学素子である被検物に入射し、照射用レンズと被検物
の間隔を可変し、被検物の各輪帯からの反射平行光束に
よるスポット光の画像がそれぞれ形成されたときに、照
射用レンズと被検物の間隔変化と可変絞りの絞り量及び
照射用レンズの焦点距離から各輪帯の光軸からの高さと
曲率半径を演算することを特徴とする非球面形状測定方
法。
6. A collimated collimated light beam emitted from a light source passes through a variable stop and a beam splitter, and is converted into a convergent or divergent light beam by an irradiation lens. The distance between the irradiation lens and the test object is changed when the distance between the irradiation lens and the test object is changed, and the image of the spot light is formed by the parallel light flux reflected from each annular zone of the test object. An aspherical shape measuring method, wherein a height from an optical axis and a radius of curvature of each orbicular zone are calculated from a change, an aperture amount of a variable aperture, and a focal length of an irradiation lens.
【請求項7】 光源から出射されコリメ−トされた平行
光束を可変絞り及びビ−ムスプリッタを通してから照射
用レンズで収束性又は発散性の光束として非球面形状の
光学素子である被検物に入射し、照射用レンズと被検物
の間隔を可変し、被検物の各輪帯からの反射平行光束に
よるスポット光の画像がそれぞれ形成されたときに、照
射用レンズと被検物の間隔変化と可変絞りの絞り量及び
照射用レンズの焦点距離から各輪帯の光軸からの高さと
曲率半径を演算し、演算した被検物の各輪帯の光軸から
の高さと曲率半径から被検物の形状デ−タを演算するこ
とを特徴とする非球面形状測定方法。
7. A collimated collimated light beam emitted from a light source passes through a variable stop and a beam splitter, and is converged or divergent by an irradiation lens to an object which is an aspherical optical element. The distance between the irradiation lens and the test object is changed when the distance between the irradiation lens and the test object is changed, and the image of the spot light is formed by the parallel light flux reflected from each annular zone of the test object. The height and radius of curvature of the orbicular zone from the optical axis and the radius of curvature are calculated from the change and the aperture amount of the variable aperture and the focal length of the irradiation lens. An aspherical shape measuring method comprising calculating shape data of a test object.
JP35672196A 1996-12-27 1996-12-27 Method and equipment for measuring nonspherical shape Pending JPH10197397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35672196A JPH10197397A (en) 1996-12-27 1996-12-27 Method and equipment for measuring nonspherical shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35672196A JPH10197397A (en) 1996-12-27 1996-12-27 Method and equipment for measuring nonspherical shape

Publications (1)

Publication Number Publication Date
JPH10197397A true JPH10197397A (en) 1998-07-31

Family

ID=18450453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35672196A Pending JPH10197397A (en) 1996-12-27 1996-12-27 Method and equipment for measuring nonspherical shape

Country Status (1)

Country Link
JP (1) JPH10197397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534245A (en) * 2001-07-09 2004-11-11 ミヒャエル キュッヘル, Scanning interferometer for aspheric and wavefronts
JP2008532010A (en) * 2005-02-24 2008-08-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
CN109238657A (en) * 2018-08-28 2019-01-18 南京理工大学 A kind of aspherical rise method for reconstructing based on annulus phase and posture information

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534245A (en) * 2001-07-09 2004-11-11 ミヒャエル キュッヘル, Scanning interferometer for aspheric and wavefronts
JP2008532010A (en) * 2005-02-24 2008-08-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
JP4771487B2 (en) * 2005-02-24 2011-09-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
CN109238657A (en) * 2018-08-28 2019-01-18 南京理工大学 A kind of aspherical rise method for reconstructing based on annulus phase and posture information

Similar Documents

Publication Publication Date Title
JP2001021449A (en) Method and system for automatically non-contact measuring optical characteristics of optical object
JPH03505130A (en) Particle size analysis method and apparatus
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
JP6218261B2 (en) Optical element characteristic measuring device
JPH10311779A (en) Equipment for measuring characteristics of lens
JP2007170888A (en) Optical element testing device
JPH02161332A (en) Device and method for measuring radius of curvature
JP2015108582A (en) Three-dimensional measurement method and device
JPH06294629A (en) Device for measuring curvature of surface
JPH10197397A (en) Method and equipment for measuring nonspherical shape
JPH02238338A (en) Lens inspecting apparatus
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JP2008026049A (en) Flange focal distance measuring instrument
Bolbasova et al. Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor
JP2010216922A (en) Optical displacement meter and optical displacement measurement method
JPH06508218A (en) Deflection type optical device with wide measurement range
JP2016003900A (en) Measuring device, measuring method, optical element processing device, and optical element
JPH10253331A (en) Method and device for measuring surface shape
JP2002048673A (en) Physical quantity measuring method of optical element or optical system
JPH06205739A (en) Organism eye measuring device
JP3167870B2 (en) Apparatus and method for measuring eccentricity of aspherical lens
JP2015094703A (en) Spectral transmission measuring instrument
JPH0471453B2 (en)
JP2001027580A (en) Method and apparatus for measurement of transmission decentration of lens
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby