JPH02238338A - Lens inspecting apparatus - Google Patents

Lens inspecting apparatus

Info

Publication number
JPH02238338A
JPH02238338A JP5774089A JP5774089A JPH02238338A JP H02238338 A JPH02238338 A JP H02238338A JP 5774089 A JP5774089 A JP 5774089A JP 5774089 A JP5774089 A JP 5774089A JP H02238338 A JPH02238338 A JP H02238338A
Authority
JP
Japan
Prior art keywords
light
lens
plate
measured
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5774089A
Other languages
Japanese (ja)
Inventor
Shunichi Akiba
俊一 秋葉
Kazuto Kinoshita
和人 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5774089A priority Critical patent/JPH02238338A/en
Publication of JPH02238338A publication Critical patent/JPH02238338A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To expand the measuring range of aberration in a Hartmann type lens inspecting apparatus by making the output light-ray group from a Hartmann plate pass through a screening plate which is moved up and down and right and left, and making the input and output lights correspond in the vicinity of a focal point. CONSTITUTION:Laser light from an oscillator 1 becomes parallel luminous flux through a collimate lens 4 and reaches a separating plate (Hartmann plate) 5 having many pinholes. The light reaches a screening plate 6 through the pinhole part. The plate 6 has a mechanism which can move the plate up and down and left and right. The mechanism is controlled with a control circuit and a computer 10. The light which is not shielded with the plate 6 reaches an image sensing plane 8 of a MOS camera through a lens 7 to be measured. At this time, the position of the light point of each pinhole of the separating plate 5 is made to correspond to the position of the light point on the image sensor plane 8. Thus, the position of the light ray can be recognized even for the light-ray group which crosses in the vicinity of the focal point. Therefore, the aberration of any lens can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光線追跡を実験的に行なう結像系の収差測定
装置に関するものであり,特に収差大のレンズの良・不
良の合否判定を自動的に行なうレンズ検査装置に関する
. 〔従来の技術〕 従来のハルトマン式レンズ検査装置にっていは、オブテ
イ力ル ショップ テステイング(1978)第323
頁から第349頁(Optical ShopTest
ing (1978)PP323−349)において論
じられている。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an aberration measuring device for an imaging system that experimentally performs ray tracing, and is particularly useful for determining pass/fail of lenses with large aberrations. This article relates to an automatic lens inspection device. [Prior art] Regarding the conventional Hartmann type lens inspection device, the method described in Obteil Shop Testing (1978) No. 323
Page to page 349 (Optical ShopTest
ing (1978) PP 323-349).

し発明が解決しようとする課題〕 上記従来技術は被検レンズを透過した光線の焦点付近の
2点における光軸からの距離を測定し、それから収差を
算出するが,位置を測定する2点における光線位置の対
応の点について配慮がされておらず、光線がクロスする
場合に光線位置の識別に問題があった。
[Problems to be Solved by the Invention] The above conventional technology measures the distance from the optical axis at two points near the focal point of the light beam that has passed through the test lens, and then calculates the aberration. No consideration was given to the correspondence of the light beam positions, and there was a problem in identifying the light beam positions when the light beams crossed.

本発明は光線位置を認識する事を目的としており、さら
に簡便な装置で収差,レンズ性能が容易,に高速で測定
できることを目的としている。
The present invention aims to recognize the position of a light ray, and further aims to enable easy and high-speed measurement of aberrations and lens performance using a simple device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、移動機構付きの遮へい板を
設け、遮へい板を上下、左右2方向に移動させ、焦点付
近での入射光位置と出射光位置を対応できるようにした
ものである.また光線位置の測定のために移動機構付き
のMOSカメラを設けたものである. さらに撮像信号を演算処理するため演算処理装置で設け
たものである. 〔作用〕 本発明では遮へい板は上下、左右2方向に動き、隔板(
ハルトマン板)から出射された光線群が、焦点付近でど
の光線が、どの位置を通るかが認識できる.それによっ
て焦点付近でクロスする様な光線群であっても光線位置
が認識,81!定できるのでどんなレンズでも収差が測
定できる。
In order to achieve the above objective, a shielding plate with a moving mechanism is provided, and the shielding plate can be moved in two directions, up and down and left and right, so that the position of the incident light near the focal point corresponds to the position of the outgoing light. It is also equipped with a MOS camera with a moving mechanism to measure the position of the light beam. Furthermore, it is equipped with an arithmetic processing unit to perform arithmetic processing on the imaging signal. [Function] In the present invention, the shielding plate moves in two directions, up and down, left and right, and the partition plate (
It is possible to recognize which rays of light rays emitted from the Hartmann plate pass through which position near the focal point. As a result, the position of the rays can be recognized even in a group of rays that cross near the focal point, 81! The aberrations can be measured for any lens.

〔実施例〕 以下、本発明の一実旅例を第1図により説明する. まず全体構成を説明する.1はレーザ光を発するレーザ
発振器,2はレーザ発振器1からの′レーザ光を集光し
発散させる顕微鏡用対物レンズ、3は集光レンズ2の焦
点に配置し回折によるノイズを除去するピンホール、4
は発散光を平行光にするコリメートレンズ、5は平行光
束中に垂直に配置する多数のピンホールを持つ隔板(ハ
ルトマン板)、6は上下、左右2方向に移動できる機構
を持ち隔板から発したレーザ光を走査させる遮へい板、
7は被測定レンズ、8は隔板によって生じる多数の光線
が照射した位置が画素単位で識別可能なMOSカメラの
撮像面、9は撮像面を移動させる移動機構、10は遮へ
い板6と撮像面9の移動をコントロールする為の制御回
路と測定結果を演算処理するコンピュータ、11は演算
処理結果を作画するプロツター、12は測定データ,演
算内容をプリントアウトするプリンターである。
[Example] A practical example of the present invention will be explained below with reference to FIG. First, I will explain the overall configuration. 1 is a laser oscillator that emits a laser beam; 2 is a microscope objective lens that focuses and diverges the laser beam from the laser oscillator 1; 3 is a pinhole that is placed at the focal point of the condenser lens 2 to remove noise due to diffraction; 4
is a collimating lens that converts diverging light into parallel light; 5 is a diaphragm (Hartmann plate) with many pinholes arranged perpendicularly in the parallel beam; 6 is a mechanism that can move in two directions, up and down and left and right, from the diaphragm. A shielding plate that scans the emitted laser light,
7 is a lens to be measured, 8 is an imaging surface of a MOS camera whose position irradiated by a large number of light beams generated by a partition plate can be identified in pixel units, 9 is a moving mechanism for moving the imaging surface, and 10 is a shielding plate 6 and an imaging surface. A control circuit for controlling the movement of 9 and a computer for arithmetic processing of the measurement results, 11 a plotter for plotting the arithmetic processing results, and 12 a printer for printing out the measurement data and calculation contents.

次に上述した全体構成の動作について説明する。Next, the operation of the above-mentioned overall configuration will be explained.

レーザ発振器1より放射されたレーザ光は顕微鏡用対物
レンズ2で集束発散する。対物レンズ2の焦点(集光点
)位置にピンホール3を置き回折によって生じるノイズ
光成分を除去する.対物レンズ2で集束発散した光は,
収差のないコリメートレンズ4によって平行光束となり
、多数のピンホール5′を有する隔板5に達し,ピンホ
ール部分を通過する.ピンホールを通過した多数の光線
群は、詳細を後述する遮へい板6に達する。遮へい板に
は図示していないが、上下、左右2方向に移動できる機
構を有し、制御回路とコンピュータ10によってコント
ロールされる.遮へい板6の移動で,遮へい板6に遮ら
れない光線は被測定レンズ7に達し、被測定レンズ7が
凸レンズの場合は図示している如く収束光となりMOS
カメラの撮像面8に達する.被測定レンズ7が凹レンズ
の場合は透過光が発散光となるが、これを無収差の集光
レンズにより収束光とし同様に撮像面8に達する。次に
撮像面8をコンピュータと制御回路10の制御信号でコ
ントロールされる移動機構9によりA点からB点に移動
させる.B点での撮像面を8′とする.A点における撮
像面8の測定しようとする光点の光細から高さをhz 
,B点における撮像面8′の測定しようとする光点の光
軸からの高さをh2とする。光軸と測定しようとする光
線の交点FからA点での撮像面8までの距離Ωとhz 
,h2の関係は次式となる。
Laser light emitted from a laser oscillator 1 is converged and diverged by a microscope objective lens 2. A pinhole 3 is placed at the focal point (focus point) of the objective lens 2 to remove noise light components caused by diffraction. The light converged and diverged by objective lens 2 is
The collimating lens 4, which has no aberration, converts the light into a parallel beam, which reaches the partition plate 5, which has a large number of pinholes 5', and passes through the pinholes. A large number of light beams passing through the pinhole reach a shielding plate 6, the details of which will be described later. Although not shown in the drawings, the shielding plate has a mechanism that allows it to move in two directions, up and down and left and right, and is controlled by a control circuit and computer 10. As the shielding plate 6 moves, the light rays that are not blocked by the shielding plate 6 reach the lens 7 to be measured, and if the lens 7 to be measured is a convex lens, it becomes convergent light as shown in the figure, and the MOS
It reaches the imaging plane 8 of the camera. When the lens 7 to be measured is a concave lens, the transmitted light becomes diverging light, but this is converted into convergent light by an aberration-free condensing lens and similarly reaches the imaging surface 8. Next, the imaging surface 8 is moved from point A to point B by a moving mechanism 9 controlled by control signals from a computer and a control circuit 10. Let the imaging plane at point B be 8'. The height from the optical fiber of the light spot to be measured on the imaging surface 8 at point A is hz
, B is the height from the optical axis of the light spot to be measured on the imaging surface 8' at point B. Distance Ω and hz from the intersection point F of the optical axis and the ray to be measured to the imaging surface 8 at point A
, h2 is expressed by the following equation.

h 工+ h 2 L:A点とB点の距離 より詳しい説明を焦点部分のみを示す第4図(a)によ
り行なう。撮像面8のあるA点において光軸との交点P
z を原点とし、光軸に沿ってQ軸,それと垂直方向に
h軸をとると,光線はC点とD点を横切るのでPzC=
ht,PzD=hzが撮像面8での光点位置として測定
される。光線と光軸との交点FはPzF=fl  が(
1)式で求められる。さらに、最良の焦点位置(最小錯
乱円またはガウス像点)Fo を考えると、P1からの
距離をLo とすればFoとFの距離ΔQが、縦収差と
呼ばれる量であり(2)式となる。
h + h 2 L: A more detailed explanation of the distance between points A and B will be given with reference to FIG. 4(a), which shows only the focal point. Intersection point P with the optical axis at a certain point A on the imaging surface 8
If we take z as the origin, the Q axis along the optical axis, and the h axis perpendicular to it, the ray crosses points C and D, so PzC=
ht, PzD=hz is measured as the light spot position on the imaging surface 8. The intersection point F between the ray and the optical axis is PzF=fl (
1) It can be obtained using the formula. Furthermore, considering the best focal position (circle of least confusion or Gaussian image point) Fo, if the distance from P1 is Lo, then the distance ΔQ between Fo and F is an amount called longitudinal aberration, which is expressed by equation (2). .

Δn = Q − L o             
・・・(2)Foからh軸方向への光線との距離Δhが
横収差と呼ばれる量で(3)式となる。
Δn = Q − Lo
(2) The distance Δh from Fo to the light beam in the h-axis direction is an amount called lateral aberration, and is expressed by equation (3).

Δ Ω Ah=−h                   ・
・・(3)Q 第3図(a)にも示したように,ピンホールは直径方向
に多数並んでおり、これらhの異なる一列の光線に関し
て収差を計算し、縦軸にh横軸に2またはΔaをとれば
収差曲線Q (h)が得られる。これら一連の演算処理
はコンピュータ10で行なわれ、その結果はプロツタ1
1、プリンタ12に出力される。代表的な球面収差の測
定例を第4図(b)に示す. 遮へい板6を上下、左右2方向に移動させる機構の一例
を第2図により説明する。まず全体構成を説明する.1
3,14,15.16は遮へい板の移動を案内する為の
シャフト、13’ ,14’15’   16’はポー
ルスライダ、6は遮へい板、17は筐体、18.19は
シャフト13,14,15,6をスライドさせる為の機
構、20.21は移動機構の駆動源であるモータである
。制御回路10からの移動制御信号がモータ20,21
に入力されるとモータ20,21が回転し、モータに直
結されモータ軸と共に回転する(図示していない)スク
リューシャフトを持つ機構18.19によって遮へい板
6が移動される。
Δ Ω Ah=-h ・
...(3)Q As shown in Figure 3(a), there are many pinholes lined up in the diameter direction, and the aberrations are calculated for a line of rays with different h, and the vertical axis is h and the horizontal axis is h. 2 or Δa, an aberration curve Q (h) can be obtained. These series of arithmetic processing are performed by the computer 10, and the results are sent to the plotter 1.
1. Output to printer 12. A typical measurement example of spherical aberration is shown in Figure 4(b). An example of a mechanism for moving the shielding plate 6 in two directions, up and down and left and right, will be explained with reference to FIG. First, I will explain the overall configuration. 1
3, 14, 15, 16 are shafts for guiding the movement of the shielding plates, 13', 14', 15', 16' are pole sliders, 6 is the shielding plate, 17 is the housing, 18.19 are the shafts 13, 14 , 15, and 6, and 20.21 is a motor that is a driving source of the moving mechanism. A movement control signal from the control circuit 10 is transmitted to the motors 20 and 21.
When input to , the motors 20 and 21 rotate, and the shielding plate 6 is moved by a mechanism 18, 19 having a screw shaft (not shown) that is directly connected to the motor and rotates together with the motor shaft.

次に隔板(ハルトマン板)5の形状を第3図,第5図で
説明する。第3図(a)に示す隔板は径方向の4直径に
ついて測定する為の隔板である。
Next, the shape of the partition plate (Hartmann plate) 5 will be explained with reference to FIGS. 3 and 5. The diaphragm shown in FIG. 3(a) is a diaphragm for measuring four diameters in the radial direction.

ピンホールの各点毎の撮像而8での位置を測定したい時
は第3図(b)に示す様な中央部にピンホールより若干
大きな穴を一ケ設けた遮へい板を用いれば良く、この遮
へい板を径方向にピンホールのピッチ毎に走査する。又
、他の方法としては,第5図に示す遮へい板を用い、第
7図に示す如く遮へい板を上下方向と左右方向に各々移
動させ、上下方向移動時の各行における光点位置を記憶
しておき、左右方向移動時の各列毎の光点位置データと
のANDを取ると隔板5のピンホールの各光点位置とピ
ンホールから出射された各光線が撮像面8に達してとき
の位置が対応づけられてる。ここまでの説明では被測定
レンズの焦点前後2点の光線位置より収差を測定するも
のであったが、設計上の光線追跡データとの差を求め合
否判定するレンズ検査装置においては、隔板5のピンホ
ールを通過した光線全てが撮像面8の全面に到達する様
な焦点付近1点の測定で良い。
If you want to measure the position at each point of the pinhole, you can use a shielding plate with one hole slightly larger than the pinhole in the center as shown in Figure 3(b). The shielding plate is scanned radially at each pinhole pitch. Another method is to use the shielding plate shown in Fig. 5, move the shielding plate vertically and horizontally as shown in Fig. 7, and memorize the position of the light spot in each row when moving in the vertical direction. Then, by ANDing with the light spot position data for each column when moving in the left-right direction, the positions of each light spot of the pinhole in the partition plate 5 and the time when each light ray emitted from the pinhole reaches the imaging surface 8 are calculated. The positions of are associated with each other. In the explanation so far, aberrations are measured from two light ray positions before and after the focal point of the lens to be measured, but in a lens inspection device that determines pass/fail by determining the difference from the designed ray tracing data, the diaphragm 5 It suffices to measure one point near the focal point where all the light rays passing through the pinhole reach the entire surface of the imaging surface 8.

次に被測定レンズの表面形状の球面収差が歪みを測定す
る場合の構成において説明する,測定データの演算処理
については前記透過光収差と同様である。被測定レンズ
7の表面が凹面の場合の構成を第6図に示す。レーザ発
振器1から出射したレーザ光は対物レンズ2により収束
・発散光となり、回折光のノイズ成分を除去するピンホ
ール3を通り、コリートレンズ4で平行光となり、等間
隔のピンホールを多数持つ隔板を経て、光線群となり、
集光レンズ7′で収束光となり、ミラー22、ハーフミ
ラー23で反射し、被測定レンズ7の表面で反射し,ビ
ームスプリツタ23を透過し撮像面8に達する.遮へい
板6を上下、左右2方向移動する事によって隔板5のピ
ンホール位置と撮像面8での光点位置が対応づけられコ
ンビュータ1oで演算処理し被測定レンズ7の表面形状
によって生ずる収差が測定できる。被測定レンズ7の表
面が凸面の場合の構成を第8図に示す。レーザ発振器1
より出射したレーザ光は対物レンズ2で収束発散する。
Next, the arithmetic processing of the measurement data, which will be described in a configuration in which distortion due to spherical aberration of the surface shape of the lens to be measured is measured, is the same as that for the transmitted light aberration. FIG. 6 shows a configuration in which the surface of the lens 7 to be measured is a concave surface. The laser beam emitted from the laser oscillator 1 becomes convergent and divergent light by the objective lens 2, passes through the pinhole 3 that removes the noise component of the diffracted light, and becomes parallel light by the collet lens 4. After passing through the plate, it becomes a group of light rays,
The light is converged by the condenser lens 7', reflected by the mirror 22 and half mirror 23, reflected by the surface of the lens 7 to be measured, transmitted through the beam splitter 23, and reaches the imaging surface 8. By moving the shielding plate 6 in two directions, up and down and left and right, the pinhole position of the partition plate 5 is associated with the light spot position on the imaging surface 8, and the aberration caused by the surface shape of the lens 7 to be measured is calculated by the computer 1o. Can be measured. FIG. 8 shows a configuration in which the surface of the lens 7 to be measured is a convex surface. Laser oscillator 1
The emitted laser light is converged and diverged by the objective lens 2.

ピンホール3によって回折によるノイズ光成分が除去さ
れコリメートレンズ4によって平行光束となり隔板5に
達する.隔板5には等間隔の多数のピンホールがあり,
ピンホールを通過した光線群はハーフミラー25を透過
し、無収差の集光レンズ7′により被測定レンズ7の表
面に達する.被測定レンズ7の表面で反射した光線群は
ハーフミラー25で反射し、集光レンズ24で撮像面8
に達する。遮へい板6を上下、左右2方向移動し、隔板
5のピンホール位置と撮像面8での光線位置を対応づけ
て、コンピュータ1oで演算処理被測定レンズ7の表面
形状によって生ずる収差を測定する. 〔発明の効果〕 本発明によればハルトマン法での光線追跡において、隔
板のピンホール位置と撮像面上の光点位置が対応づけら
れるので、光線がクロスする様な収差大のレンズであっ
ても測定できるので測定範囲が大きくなる効果がある。
Noise light components due to diffraction are removed by the pinhole 3 and converted into a parallel light beam by the collimating lens 4, which reaches the diaphragm 5. The partition plate 5 has a large number of equally spaced pinholes.
The group of light rays that have passed through the pinhole are transmitted through the half mirror 25 and reach the surface of the lens 7 to be measured by the aberration-free condensing lens 7'. The group of light rays reflected on the surface of the lens 7 to be measured is reflected on the half mirror 25 and focused on the imaging surface 8 by the condensing lens 24.
reach. The shielding plate 6 is moved in two directions, up and down, right and left, and the pinhole position of the partition plate 5 is correlated with the position of the light beam on the imaging surface 8, and the aberration caused by the surface shape of the lens 7 to be processed and measured is measured by the computer 1o. .. [Effects of the Invention] According to the present invention, in ray tracing using the Hartmann method, the pinhole position of the diaphragm and the light spot position on the imaging surface are correlated, so that a lens with large aberrations that causes rays to cross can be avoided. This has the effect of widening the measurement range.

また、光線位置の対応づけによって演算処理が容易とな
るので測定時間が短縮される効果がある。
Furthermore, since the arithmetic processing is facilitated by associating the light beam positions, the measurement time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図はの説明図
、第5図は隔板の一例を示す図、第6図は被測定面が凹
面の場合の一実施例の構成図、第7図は収差算出の演算
処理を説明するフローチャート図,第8図は被測定面が
凸面の場合の一実施例の構成図である。 1・・・レーザ発振器、2・・・対物レンズ,3・・・
ピンホール、4・・・コリメートレンズ、5・・・隔板
(ハルトマン板)、6・・・遮へい板,7・・・被測定
レンズ、8・・・撮像面、9・・・移動機構、10・・
・制御回路とコンピュータ.
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram, Fig. 5 is a diagram showing an example of a partition plate, and Fig. 6 is an illustration of an embodiment in which the surface to be measured is a concave surface. FIG. 7 is a flowchart for explaining arithmetic processing for calculating aberrations, and FIG. 8 is a configuration diagram of an embodiment in which the surface to be measured is a convex surface. 1... Laser oscillator, 2... Objective lens, 3...
Pinhole, 4... Collimating lens, 5... Partition plate (Hartmann plate), 6... Shielding plate, 7... Lens to be measured, 8... Imaging surface, 9... Moving mechanism, 10...
・Control circuit and computer.

Claims (1)

【特許請求の範囲】[Claims] 1、被検査体である単レンズに光を照射する為の点光源
となる照明手段と、該照明手段から出射された発散光を
平行光束とする為のコリメートレンズと、前記レンズに
よつて得られる平行光束中に等間隔に配置されたピンホ
ールを持つ隔板(ハルトマン板)と、前記隔板から出射
された光線群の位置を識別する為の移動機構を持つた遮
へい板、該遮へい板によつて位置の判つた光線群が被検
査体である単レンズを透過し、収束、発散する光の位置
を認識する為の移動機構を持つた撮像手段と、前記撮像
手段の信号を処理し演算する演算処理手段と、演算処理
結果を出力し作画する手段を具備したことを特徴とする
レンズ検査装置。
1. An illumination means that serves as a point light source for irradiating light onto a single lens, which is an object to be inspected; a collimating lens for converting the diverging light emitted from the illumination means into a parallel light beam; A shielding plate having a diaphragm (Hartmann plate) having pinholes arranged at equal intervals in a parallel beam of light emitted from the diaphragm, and a moving mechanism for identifying the position of a group of light rays emitted from the diaphragm, the shielding plate A group of light rays whose positions have been determined are transmitted through a single lens, which is an object to be inspected, and an imaging means having a moving mechanism for recognizing the position of converging and diverging light, and processing the signals of the imaging means. A lens inspection device characterized by comprising a calculation processing means for performing calculations and a means for outputting the calculation processing results and drawing an image.
JP5774089A 1989-03-13 1989-03-13 Lens inspecting apparatus Pending JPH02238338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5774089A JPH02238338A (en) 1989-03-13 1989-03-13 Lens inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5774089A JPH02238338A (en) 1989-03-13 1989-03-13 Lens inspecting apparatus

Publications (1)

Publication Number Publication Date
JPH02238338A true JPH02238338A (en) 1990-09-20

Family

ID=13064311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5774089A Pending JPH02238338A (en) 1989-03-13 1989-03-13 Lens inspecting apparatus

Country Status (1)

Country Link
JP (1) JPH02238338A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060361A1 (en) * 1998-05-19 1999-11-25 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
US6480267B2 (en) * 1999-12-28 2002-11-12 Kabushiki Kaisha Topcon Wavefront sensor, and lens meter and active optical reflecting telescope using the same
US6548797B1 (en) 2000-10-20 2003-04-15 Nikon Corporation Apparatus and method for measuring a wavefront using a screen with apertures adjacent to a multi-lens array
US6819414B1 (en) 1998-05-19 2004-11-16 Nikon Corporation Aberration measuring apparatus, aberration measuring method, projection exposure apparatus having the same measuring apparatus, device manufacturing method using the same measuring method, and exposure method
KR100526275B1 (en) * 2001-06-28 2005-11-03 주식회사 휴비츠 An automatic lensmeter and a theory of measurement
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2006170958A (en) * 2004-12-20 2006-06-29 Olympus Corp Chart for inspection, and lens performance inspection device
JP2008135745A (en) * 2007-11-22 2008-06-12 Nikon Corp Wave front aberration measuring device and projection aligner
JP2008180722A (en) * 1994-06-14 2008-08-07 Visionix Ltd Apparatus for mapping optical elements
JP2009258046A (en) * 2008-04-21 2009-11-05 Fujikoden Corp Eccentricity amount measuring method, eccentricity amount measuring device and eccentricity adjusting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180722A (en) * 1994-06-14 2008-08-07 Visionix Ltd Apparatus for mapping optical elements
EP1079223A1 (en) * 1998-05-19 2001-02-28 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
EP1079223A4 (en) * 1998-05-19 2002-11-27 Nikon Corp Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
US6819414B1 (en) 1998-05-19 2004-11-16 Nikon Corporation Aberration measuring apparatus, aberration measuring method, projection exposure apparatus having the same measuring apparatus, device manufacturing method using the same measuring method, and exposure method
WO1999060361A1 (en) * 1998-05-19 1999-11-25 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
JP4505989B2 (en) * 1998-05-19 2010-07-21 株式会社ニコン Aberration measurement apparatus, measurement method, projection exposure apparatus including the apparatus, device manufacturing method using the method, and exposure method
US6480267B2 (en) * 1999-12-28 2002-11-12 Kabushiki Kaisha Topcon Wavefront sensor, and lens meter and active optical reflecting telescope using the same
US6548797B1 (en) 2000-10-20 2003-04-15 Nikon Corporation Apparatus and method for measuring a wavefront using a screen with apertures adjacent to a multi-lens array
KR100526275B1 (en) * 2001-06-28 2005-11-03 주식회사 휴비츠 An automatic lensmeter and a theory of measurement
JP2006047292A (en) * 2004-06-30 2006-02-16 Olympus Corp System and method for evaluating optical component
JP2006170958A (en) * 2004-12-20 2006-06-29 Olympus Corp Chart for inspection, and lens performance inspection device
JP2008135745A (en) * 2007-11-22 2008-06-12 Nikon Corp Wave front aberration measuring device and projection aligner
JP2009258046A (en) * 2008-04-21 2009-11-05 Fujikoden Corp Eccentricity amount measuring method, eccentricity amount measuring device and eccentricity adjusting device

Similar Documents

Publication Publication Date Title
US3877788A (en) Method and apparatus for testing lenses
JP2530081B2 (en) Mask inspection equipment
JP2007078593A (en) Light wave interference device
JPH0363009B2 (en)
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JPH02238338A (en) Lens inspecting apparatus
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
CN109540474B (en) Rear-mounted pupil laser differential confocal focal length measuring method and device
CN111220088B (en) Measurement system and method
US6597442B2 (en) Apparatus for measuring aberration of a lens and an apparatus for adjusting a position of the lens
US11808931B2 (en) Image pickup apparatus with rotation unit
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JPH06508218A (en) Deflection type optical device with wide measurement range
JP2987540B2 (en) 3D scanner
JPH0471453B2 (en)
JPS59171812A (en) Optical inspection device and method
JPH09229639A (en) Automatic hole diameter measuring device
JPH0536726B2 (en)
JP2001166202A (en) Focus detection method and focus detector
KR940002504B1 (en) Detecting device for extremely small defect of thin wire
CN115839826B (en) Detection device and detection method for optical fiber transmittance and numerical aperture
JPH0682373A (en) Inspection of defect
JP3167870B2 (en) Apparatus and method for measuring eccentricity of aspherical lens
JPH01502535A (en) Optical inspection system for cylindrical objects
JPH1047938A (en) Measuring device for laser beam spread angle