JP2007170888A - Optical element testing device - Google Patents

Optical element testing device Download PDF

Info

Publication number
JP2007170888A
JP2007170888A JP2005365865A JP2005365865A JP2007170888A JP 2007170888 A JP2007170888 A JP 2007170888A JP 2005365865 A JP2005365865 A JP 2005365865A JP 2005365865 A JP2005365865 A JP 2005365865A JP 2007170888 A JP2007170888 A JP 2007170888A
Authority
JP
Japan
Prior art keywords
optical element
light beam
test
optical
light flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005365865A
Other languages
Japanese (ja)
Inventor
Kentaro Sekiyama
健太郎 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005365865A priority Critical patent/JP2007170888A/en
Publication of JP2007170888A publication Critical patent/JP2007170888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Lenses (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of determining acceptability of an optical element under inspection by detecting with once measurement of surface shape error, eccentric error between surfaces, refractive index distribution etc. , even without reference lens. <P>SOLUTION: The optical element inspection device comprises: a light source 11; a light flux splitting means 18 for splitting the light flux from the light source 11 into light flux M to be inspected and reference light flux R; a correction optical system 23 arranged in a light flux M to be inspected in which an optical element 22 under inspection is arranged for converting the transmission wave front of the optical element 22 under inspection based on the design value; a light flux composition means 26 for compositing the light flux M to be inspected transmitted through the correction optical system 23 and reference light flux R collimated via different light path from the light flux M to be inspected; an imaging means 28 for imaging the light flux transmitted through the light flux composition means 26; a parameter calculation means 31 for calculating the parameter regarding the wave front transmitted through the detection optical element 22 based on the interference fringe formed by the imaging means 28; and an evaluation value operation means 31 for calculating the evaluation value of the optical element 22 under inspection based on the parameters. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子検査装置に関し、詳しくは、光学素子の透過波面の干渉縞を測定して光学素子の検査を行う装置に関するものであり、特に、光学素子の面形状、面間隔、面間偏心、屈折率分布等を一度に測定して光学素子の合否を判定できる検査装置に関する。   The present invention relates to an optical element inspection apparatus, and more particularly, to an apparatus for inspecting an optical element by measuring interference fringes on a transmission wavefront of the optical element, and in particular, a surface shape, a surface interval, and a surface-to-surface distance of the optical element. The present invention relates to an inspection apparatus capable of determining pass / fail of an optical element by measuring decentration, refractive index distribution and the like at a time.

従来、光学素子の総合検査方法としては、例えば特許文献1に開示されたレンズ総合検査機がある。この検査機は、光源からの光束を2つに分割し、その2つの光路に被検レンズと基準レンズを配置し、被検レンズの光路で発生する波面収差と基準レンズの光路で発生する波面収差の差として得られる干渉縞を解析して、レンズ面形状、レンズ肉厚、偏心等の値を知るものである。基準レンズとしては、いくつかの被検レンズの中から被検レンズの設計値に近いレンズを見つけ出すか、あるいは、研削加工等によって設計値に近い精度の良いレンズを作り、基準レンズとして使用するものである。
特許第3206984号公報
Conventionally, as a comprehensive inspection method for optical elements, for example, there is a comprehensive lens inspection machine disclosed in Patent Document 1. This inspection machine divides a light beam from a light source into two parts, a test lens and a reference lens are arranged in the two optical paths, and a wavefront aberration generated in the optical path of the test lens and a wavefront generated in the optical path of the reference lens By analyzing the interference fringes obtained as the difference in aberration, the values of the lens surface shape, lens thickness, decentration, etc. are known. As a reference lens, find a lens close to the design value of the test lens from several test lenses, or create a lens with high accuracy close to the design value by grinding or the like and use it as the reference lens It is.
Japanese Patent No. 3206984

しかしながら、被検レンズがプラスチック光学素子の場合は、基準レンズを製作することが次の理由により非常に困難なため、上記従来技術で検査を行うことができない。すなわち、プラスチック光学素子は吸湿等によって光学特性が経時的に大きく変化し、また、レンズの光学面にキズが付きやすいために、被検レンズの中から基準レンズを見つけ出しても、時間が経つと基準レンズとして使用できなくなる。また、プラスチック光学素子はその材料特性から成形自由度が高く、ガラス光学素子よりも複雑な形状の光学素子である場合が多い。よって、ガラスでプラスチックと等価な基準レンズを製作することが非常に困難である。   However, when the lens to be tested is a plastic optical element, it is very difficult to manufacture a reference lens for the following reason, so that the inspection cannot be performed by the conventional technique. In other words, the optical characteristics of plastic optical elements change over time due to moisture absorption, etc., and the optical surface of the lens is easily scratched. Cannot be used as a reference lens. In addition, plastic optical elements have a high degree of freedom in molding due to their material characteristics, and are often optical elements having a more complicated shape than glass optical elements. Therefore, it is very difficult to manufacture a reference lens equivalent to plastic with glass.

本発明は従来技術のこのような問題点に着目してなされたものであり、その目的は、基準レンズがなくても被検光学素子の面形状誤差、面間偏心誤差、屈折率分布等を一度の測定で検知し、被検光学素子の合否を判定できる検査装置を提供することである。   The present invention has been made by paying attention to such problems of the prior art, and its purpose is to reduce the surface shape error, inter-surface decentration error, refractive index distribution, etc. of the optical element to be tested without a reference lens. An object of the present invention is to provide an inspection apparatus that can detect a single measurement and determine whether the optical element to be detected is acceptable or not.

上記課題を解決するための本発明の第1の光学素子検査装置は、光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞に基づいて前記被検光学素子を透過した波面に係るパラメータを算出するパラメータ算出手段と、前記パラメータに基づいて前記被検光学素子の評価値を算出する評価値演算手段とを備えたことを特徴とするものである。   In order to solve the above problems, a first optical element inspection apparatus of the present invention includes a light source, a light beam splitting unit that splits a light beam from the light source into a test light beam and a reference light beam, and a test optical element. A correction optical system that is arranged in the test light beam and converts the transmitted wavefront of the test optical element based on a design value into a substantially flat surface, and a test light beam that passes through the correction optical system and the optical path different from the test light beam A light beam synthesizing unit that synthesizes the reference light beam that has been converted into a parallel light beam, an imaging unit that images the light beam that has passed through the light beam synthesizing unit, and the optical to be tested based on interference fringes formed by the imaging unit Parameter calculating means for calculating a parameter relating to a wavefront transmitted through the element, and evaluation value calculating means for calculating an evaluation value of the optical element to be tested based on the parameter are provided.

この構成によれば、被検光学素子を透過した誤差の成分が乗った波面が、設計値に基づく被検光学素子の透過波面を略平面に変換する補正光学系によって誤差を含んで略平面波に変換されるので、基準レンズを用いることなく被検光学素子の透過波面を測定することができ、被検光学素子の合否を判定することが可能となる。特に被検光学素子がプラスチック光学素子の場合に好適である。   According to this configuration, the wavefront on which the error component transmitted through the test optical element is mounted becomes a substantially plane wave including an error by the correction optical system that converts the transmitted wavefront of the test optical element based on the design value into a substantially plane. Since it is converted, the transmitted wavefront of the test optical element can be measured without using a reference lens, and it is possible to determine whether the test optical element is acceptable. It is particularly suitable when the optical element to be tested is a plastic optical element.

本発明の第2の光学素子検査装置は、光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光束を偏向させる少なくとも一つの反射手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞から前記被検光学素子の合否を判定する演算手段とを備えた光学素子検査装置であって、被検光束を偏向させる前記反射手段の少なくとも一つが前記被検光学素子の反射面であることを特徴とするものである。   The second optical element inspection apparatus of the present invention includes a light source, a light beam dividing means for dividing the light beam from the light source into a test light beam and a reference light beam, at least one reflecting means for deflecting the test light beam, A correction optical system that is disposed in a test light beam in which an optical element is disposed and converts a transmitted wavefront of the test optical element based on a design value into a substantially flat surface; a test light beam that has passed through the correction optical system; From a light beam combining means for combining the reference light beam that has been converted into a parallel light beam through an optical path different from the inspection light beam, an image pickup means for picking up the light beam that has passed through the light beam combining means, and an interference fringe formed by the image pickup means An optical element inspection apparatus comprising a calculation means for determining whether or not the test optical element is acceptable, wherein at least one of the reflection means for deflecting the test light beam is a reflection surface of the test optical element. Is what .

この構成によれば、被検光束の偏向を被検光学素子の反射面で行うので、少なくとも一つの反射面を含むプリズムタイプの被検光学素子の透過波面を容易に測定することができ、被検光学素子の合否を判定することが可能となる。   According to this configuration, since the test light beam is deflected by the reflection surface of the test optical element, the transmitted wavefront of the prism type test optical element including at least one reflection surface can be easily measured. It is possible to determine whether the optical analysis element is acceptable or not.

本発明の第3の光学素子検査装置は、第1、第2の光学素子検査装置において、前記補正光学系は、少なくとも一つの回転対称な光学面と、少なくとも一つの回転非対称な光学面を有していることを特徴とするものである。   According to a third optical element inspection apparatus of the present invention, in the first and second optical element inspection apparatuses, the correction optical system has at least one rotationally symmetric optical surface and at least one rotationally asymmetric optical surface. It is characterized by that.

この構成によれば、被検光学素子を透過した波面が回転非対称な形状である場合でも、補正光学系によって透過波面を略平面波に変換して解析可能な干渉縞を形成することが可能となり、光学素子の合否を判定することが可能となる。   According to this configuration, even when the wavefront transmitted through the test optical element has a rotationally asymmetric shape, it is possible to form an interference fringe that can be analyzed by converting the transmitted wavefront into a substantially plane wave by the correction optical system, It is possible to determine whether or not the optical element is acceptable.

本発明の第4の光学素子検査装置は、第1の光学素子検査装置において、前記評価値演算手段は、前記被検光学素子の設計値を用いて計算された前記被検光学素子の透過波面に係るパラメータと、前記パラメータ算出手段からのパラメータとを比較することで、前記被検光学素子の評価値を算出することを特徴とするものである。   According to a fourth optical element inspection apparatus of the present invention, in the first optical element inspection apparatus, the evaluation value calculating means calculates the transmitted wavefront of the optical element to be calculated using the design value of the optical element to be detected. The evaluation value of the optical element to be measured is calculated by comparing the parameter according to the above and the parameter from the parameter calculation means.

この構成によれば、基準となる透過波面を計算によって求めておくので、製造誤差のないマスターサンプル(基準レンズ等)を準備する必要がなくなるため、被検光学素子の合否判定を簡便かつ安価に行うことが可能となる。   According to this configuration, since the transmitted wavefront serving as a reference is obtained by calculation, it is not necessary to prepare a master sample (such as a reference lens) having no manufacturing error. Can be done.

以上の説明から明らかなように、本発明の光学素子検査装置によると、基準レンズがなくとも被検光学素子の面形状誤差、面間偏心誤差、屈折率分布等を一度の測定で検知して被検光学素子の合否を判定することができる。特に被検光学素子がプラスチック光学素子の場合は、本発明の光学検査装置を用いることによって、合否判定を容易に行うことが可能となる。   As is clear from the above description, according to the optical element inspection apparatus of the present invention, even if there is no reference lens, the surface shape error, inter-surface decentration error, refractive index distribution, etc. of the optical element to be detected can be detected by one measurement. The pass / fail of the test optical element can be determined. In particular, when the optical element to be tested is a plastic optical element, the pass / fail judgment can be easily performed by using the optical inspection apparatus of the present invention.

以下に、本発明の光学素子検査装置を実施例に基づいて説明する。   Below, the optical element inspection apparatus of this invention is demonstrated based on an Example.

図1は、本発明の実施例1の光学素子検査装置の構成を示す図である。光学素子検査装置51は、マッハツェンダー干渉計を用いて被検光学素子の透過波面を干渉縞として測定し、その干渉縞を解析して数値化された透過波面をZernike多項式にフィッティングし、Zernike多項式の係数を用いて被検光学素子の合否を判定する検査装置である。   FIG. 1 is a diagram showing a configuration of an optical element inspection apparatus according to Embodiment 1 of the present invention. The optical element inspection apparatus 51 measures the transmission wavefront of the optical element to be detected as an interference fringe using a Mach-Zehnder interferometer, analyzes the interference fringe, fits the digitized transmission wavefront to a Zernike polynomial, and then uses the Zernike polynomial. It is the inspection apparatus which determines the pass / fail of the optical element to be tested using the coefficient.

図1において、レーザ光源11からの光束は、可変NDフィルタ12と偏光板13を通過した後、対物レンズ14とピンホール15で構成されるスペイシャルフィルタ16によって波面ノイズが除去された理想的な球面波となる。そして、スペイシャルフィルタ16を通過した光束は、コリメートレンズ17によって平行光となり、光束分割手段18によって透過光と反射光に分割される。この透過光と反射光がそれぞれ参照光束Rと被検光束Mに相当する。   In FIG. 1, the light beam from the laser light source 11 passes through the variable ND filter 12 and the polarizing plate 13, and then the wavefront noise is removed by the spatial filter 16 including the objective lens 14 and the pinhole 15. It becomes a spherical wave. The light beam that has passed through the spatial filter 16 becomes parallel light by the collimator lens 17 and is divided into transmitted light and reflected light by the light beam dividing means 18. This transmitted light and reflected light correspond to the reference light beam R and the test light beam M, respectively.

参照光束Rは、ビームエクスパンダ19によって適切な光束径に拡大された後に、参照光束反射部材20で反射し、光束合成手段26に入射する。一方、被検光束Mは、被検光束反射部材21で反射した後に、被検光学素子22を通過し、2枚の球面レンズ24、25で構成され、設計値に基づく被検光学素子22の透過波面を略平面に変換する補正光学系23を通過することで、被検光学素子22によって変形した波面が誤差を含んで略平面波に変換され、光束合成手段26に入射する。そして、参照光束Rと被検光束Mが光束合成手段26で重畳されることによって干渉縞が生成される。   The reference light beam R is expanded to an appropriate light beam diameter by the beam expander 19, reflected by the reference light beam reflecting member 20, and enters the light beam combining unit 26. On the other hand, the test light beam M is reflected by the test light beam reflecting member 21, passes through the test optical element 22, is composed of two spherical lenses 24 and 25, and is formed of the test optical element 22 based on the design value. By passing through the correction optical system 23 that converts the transmitted wavefront into a substantially plane, the wavefront deformed by the optical element 22 to be tested is converted into a substantially plane wave including an error, and enters the light beam combining means 26. Then, the reference light beam R and the test light beam M are superimposed by the light beam combining unit 26 to generate interference fringes.

このように、本発明の光学素子検査装置51は、被検光学素子22の透過波面を測定しているため、被検光学素子22の面形状、面間隔、面間偏心、絶対屈折率、屈折率分布等の光学素子22を構成する全ての項目を検査することが可能である。そのため、本発明の光学素子検査装置51は、製造された光学素子22が良品か不良品かを判断する合否判定に適している。   As described above, since the optical element inspection apparatus 51 of the present invention measures the transmitted wavefront of the optical element 22 to be measured, the surface shape, the surface interval, the inter-surface eccentricity, the absolute refractive index, the refraction of the optical element 22 to be measured All items constituting the optical element 22 such as a rate distribution can be inspected. Therefore, the optical element inspection apparatus 51 of the present invention is suitable for pass / fail determination for determining whether the manufactured optical element 22 is a good product or a defective product.

本実施例において、被検光学素子22は回転対称な光学面で構成されている。その場合は、波面を略平面に変換するための補正光学系23も回転対称な光学素子で構成されることになる。本実施例では、補正光学系23は2枚の球面レンズ24、25で構成されているが、もちろん平面や非球面等が含まれるレンズで構成されていてもよい。また、もちろんレンズ枚数の制限もない。   In the present embodiment, the test optical element 22 is constituted by a rotationally symmetric optical surface. In that case, the correction optical system 23 for converting the wavefront into a substantially plane is also composed of rotationally symmetric optical elements. In this embodiment, the correction optical system 23 is composed of two spherical lenses 24 and 25, but may of course be composed of lenses including a flat surface, an aspherical surface and the like. Of course, there is no limit on the number of lenses.

光束合成手段26を通過した干渉光束は、視野絞り27によって解析範囲を規定された後に、ズームレンズ29とCCD30とで構成される撮像手段28に入射し、干渉縞解析装置31に画像情報として取り込まれ、干渉縞解析が行われる。干渉縞解析は、フリンジスキャン法によって行われる。参照光束反射部材20を圧電素子によって反射面に対して垂直な方向に移動させて、被検光束Mと参照光束Rとの光路差を変化させる。光路差を変化させた複数の干渉縞を画像情報として干渉縞解析装置(PC)31に取り込み、演算処理によって干渉波面の位相データW(ρ,θ)の数値化が行われる。なお、図1の符号32は干渉縞解析装置(PC)31への入力装置、符号33は干渉縞解析装置(PC)31の結果が出力される出力装置である。   The interference light beam that has passed through the light beam combining unit 26 is defined by the field stop 27 and then enters the image pickup unit 28 including the zoom lens 29 and the CCD 30, and is taken into the interference fringe analyzer 31 as image information. Interference fringe analysis is performed. Interference fringe analysis is performed by a fringe scan method. The reference light beam reflecting member 20 is moved in the direction perpendicular to the reflecting surface by the piezoelectric element, and the optical path difference between the test light beam M and the reference light beam R is changed. A plurality of interference fringes with different optical path differences are taken into the interference fringe analyzer (PC) 31 as image information, and the phase data W (ρ, θ) of the interference wavefront is digitized by arithmetic processing. 1 is an input device to the interference fringe analyzer (PC) 31, and reference numeral 33 is an output device from which the result of the interference fringe analyzer (PC) 31 is output.

数値化された干渉波面の位相データW(ρ,θ)は、Zernike多項式(特許文献1の式(1))にフィッティングされ、Zernike多項式の係数が解析結果として出力装置33に出力される。被検光学素子の合否は、このZernike多項式の係数によって判定される。詳細は後述する。   The digitized phase data W (ρ, θ) of the interference wavefront is fitted to a Zernike polynomial (formula (1) of Patent Document 1), and the coefficient of the Zernike polynomial is output to the output device 33 as an analysis result. The pass / fail of the test optical element is determined by the coefficient of the Zernike polynomial. Details will be described later.

なお、被検光学素子22からの出射波面は一般に平面波から大きく乖離した波面になるため、その波面と参照平面波との干渉縞を測定すると、干渉縞の密度が高くなりすぎるために干渉縞解析ができなくなるが、補正光学系23によって被検光学素子22からの出射波面が略平面波に変換されることで干渉縞の密度が低くなり、干渉縞解析装置31による干渉縞解析が可能になる。   Note that the wavefront emitted from the optical element 22 to be measured is generally a wavefront greatly deviated from the plane wave. Therefore, when the interference fringe between the wavefront and the reference plane wave is measured, the interference fringe density becomes too high, and the interference fringe analysis is performed. Although it becomes impossible, the correction optical system 23 converts the outgoing wavefront from the optical element 22 to be tested into a substantially plane wave, so that the density of the interference fringes is lowered and the interference fringe analysis device 31 can perform the interference fringe analysis.

また、光束合成手段26は、2軸のティルト調整が可能なステージによって保持されている。被検光学素子22の設置位置によっては、生成される干渉縞に大きなティルト成分が加わる場合があるが、光束合成手段26の2軸のティルト調整によって、干渉縞に含まれるティルト成分を除去することができる。   The light beam combining means 26 is held by a stage capable of biaxial tilt adjustment. Depending on the installation position of the optical element 22 to be detected, a large tilt component may be added to the generated interference fringe. However, the tilt component included in the interference fringe is removed by the biaxial tilt adjustment of the light beam combining unit 26. Can do.

上記光学素子検査装置51は、マッハツェンダー型の干渉計によって被検光学素子22の透過波面を測定している。このような構成をとることにより、光束が被検光学素子22を通過する回数が1回だけとなるため、測定感度が上がりすぎないので、被検光学素子22の設置時における位置誤差の許容値を大きくすることが可能となる。また、適切な測定感度を保ちつつ、ダイナミックレンジと測定領域を両立することが可能となる。なお、本発明の実施例は全てマッハツェンダー型の干渉計の構成をとっているため、全ての実施例において上記の効果が得られる。   The optical element inspection apparatus 51 measures the transmitted wavefront of the optical element 22 to be measured by a Mach-Zehnder interferometer. By adopting such a configuration, since the number of times the light beam passes through the test optical element 22 is only one, the measurement sensitivity does not increase excessively. Therefore, the allowable position error when the test optical element 22 is installed. Can be increased. It is also possible to achieve both a dynamic range and a measurement region while maintaining appropriate measurement sensitivity. Since all the embodiments of the present invention have the configuration of a Mach-Zehnder interferometer, the above-described effects can be obtained in all the embodiments.

図2に、被検光学素子22の合否判定手順を示すフローチャートを示す。図2の上側のラインに示すように、まず、被検光学素子22の干渉波面を測定し、干渉縞解析によりZernike多項式の係数を導出する。それとは別に、図2の下側のラインに示すように、被検物の設計値(面形状、面間隔、屈折率等) を用いた干渉縞のシミュレーションを行い、同様に、Zernike多項式の係数を導出する。そして、図2の中央のラインに示すように、双方のZernike多項式の係数同士を比較し、双方の差分が予め設定された閾値よりも大きいかどうかを判断し、被検光学素子22の合否判定を行う。なお、Zernike多項式のどの項を合否判定に用いるかは、被検光学素子22の光学特性や、製造過程に応じて適宜決定される。   FIG. 2 is a flowchart showing the pass / fail determination procedure of the optical element 22 to be tested. As shown in the upper line of FIG. 2, first, the interference wavefront of the optical element 22 to be measured is measured, and the coefficient of the Zernike polynomial is derived by interference fringe analysis. Separately, as shown in the lower line of FIG. 2, the interference fringes are simulated using the design values (surface shape, surface interval, refractive index, etc.) of the test object, and similarly, the coefficients of the Zernike polynomial are used. Is derived. Then, as shown in the center line of FIG. 2, the coefficients of both Zernike polynomials are compared with each other, and it is determined whether or not the difference between both is larger than a preset threshold value. I do. It should be noted that which term of the Zernike polynomial is used for pass / fail determination is appropriately determined according to the optical characteristics of the optical element 22 to be measured and the manufacturing process.

このように、実施例1の光学素子検査装置51は、基準レンズを用いることなく、被検光学素子22の合否判定を行うことが可能なため、基準レンズを製作することが困難なプラスチック光学素子の合否判定に適している。   As described above, since the optical element inspection apparatus 51 according to the first embodiment can perform pass / fail determination of the optical element 22 to be tested without using the reference lens, it is difficult to manufacture the reference lens. It is suitable for pass / fail judgment.

次に、本発明の実施例2の光学素子検査装置について説明する。図3は、本発明の実施例2の光学素子検査装置の構成を示す図である。基本的な構成は、図1に示した実施例1の光学素子検査装置と同様であるが、被検光学素子34が異なるために、被検光路の構成が異なっている。   Next, an optical element inspection apparatus according to Example 2 of the present invention will be described. FIG. 3 is a diagram showing the configuration of the optical element inspection apparatus according to Embodiment 2 of the present invention. The basic configuration is the same as that of the optical element inspection apparatus according to the first embodiment shown in FIG. 1, but the configuration of the test optical path is different because the test optical element 34 is different.

すなわち、被検光学素子34は3面(A面、B面、C面)の光学面を含んでおり、それぞれの光学面が自由曲面形状となっている。この被検光学素子34の光学面にレーザからの平行光を入射すると、別な光学面から出射する波面は平面から大きく乖離した形状になるため、このままでは干渉縞密度が高くなり干渉縞解析を行うことができないが、実施例1の補正光学系23と同様の機能を有する補正光学系35によって波面変換、すなわち、略平面波への変換を行うことで、干渉縞解析が可能となる。   That is, the test optical element 34 includes three optical surfaces (A surface, B surface, and C surface), and each optical surface has a free-form surface shape. When the parallel light from the laser is incident on the optical surface of the optical element to be tested 34, the wavefront emitted from another optical surface has a shape greatly deviated from the plane, so that the interference fringe density increases and the interference fringe analysis is performed. Although it cannot be performed, interference fringe analysis can be performed by performing wavefront conversion, that is, conversion to a substantially plane wave, by the correction optical system 35 having the same function as the correction optical system 23 of the first embodiment.

なお、本発明における自由曲面とは、以下の式(a)で定義されるものである。   The free-form surface in the present invention is defined by the following formula (a).


Z=cr2 /[1+√{1−(1+k)c2 2 }]+Σ Cj m n
j=2
・・・(a)
ここで、(a)式の第1項は球面項、第2項は自由曲面項である。

Z = cr 2 / [1 + √ {1− (1 + k) c 2 r 2 }] + ΣC j X m Y n
j = 2
... (a)
Here, the first term of the equation (a) is a spherical term, and the second term is a free-form surface term.

球面項において、c、k、rの意味は以下の通りである。
c:頂点の曲率
k:コーニック定数(円錐定数)
r=√(X2 +Y2
また、自由曲面項を展開すると、以下のように表される。
In the spherical term, the meanings of c, k, and r are as follows.
c: curvature of vertex k: conic constant (conical constant)
r = √ (X 2 + Y 2 )
Moreover, when the free-form surface term is expanded, it is expressed as follows.


Σ Cj m n
j=2
=C2 X+C3
+C4 2 +C5 XY+C6 2
+C7 3 +C8 2 Y+C9 XY2 +C103
+C114 +C123 Y+C132 2 +C14XY3 +C154
+C165 +C174 Y+C183 2 +C192 3 +C20XY4
+C215
+C226 +C235 Y+C244 2 +C253 3 +C262 4
+C27XY5 +C286
+C297 +C306 Y+C315 2 +C324 3 +C333 4
+C342 5 +C35XY6 +C367
・・・・・・
ただし、Cj (jは2以上の整数)は係数である。

ΣC j X m Y n
j = 2
= C 2 X + C 3 Y
+ C 4 X 2 + C 5 XY + C 6 Y 2
+ C 7 X 3 + C 8 X 2 Y + C 9 XY 2 + C 10 Y 3
+ C 11 X 4 + C 12 X 3 Y + C 13 X 2 Y 2 + C 14 XY 3 + C 15 Y 4
+ C 16 X 5 + C 17 X 4 Y + C 18 X 3 Y 2 + C 19 X 2 Y 3 + C 20 XY 4
+ C 21 Y 5
+ C 22 X 6 + C 23 X 5 Y + C 24 X 4 Y 2 + C 25 X 3 Y 3 + C 26 X 2 Y 4
+ C 27 XY 5 + C 28 Y 6
+ C 29 X 7 + C 30 X 6 Y + C 31 X 5 Y 2 + C 32 X 4 Y 3 + C 33 X 3 Y 4
+ C 34 X 2 Y 5 + C 35 XY 6 + C 36 Y 7
・ ・ ・ ・ ・ ・
However, C j (j is an integer of 2 or more) is a coefficient.

図4に、被検光学素子34を用いた撮像光学系48における光束の通過する様子を示す。画角0°における主光線とマージナル光線を図示してある。撮像光学系48には、被検光学素子34(実施例2の被検光学素子)と被検光学素子40(実施例3の被検光学素子) とカバーガラス45、46が含まれる。なお、符号47は撮像光学系48の撮像面である。   FIG. 4 shows how light beams pass through the imaging optical system 48 using the optical element 34 to be tested. A chief ray and a marginal ray at an angle of view of 0 ° are shown. The imaging optical system 48 includes a test optical element 34 (test optical element of Example 2), a test optical element 40 (test optical element of Example 3), and cover glasses 45 and 46. Reference numeral 47 denotes an imaging surface of the imaging optical system 48.

撮像光学系48を構成する光学部材の数値データを表1に示す。この実施例の構成パラメータにおいては、軸上主光線を、物体中心から光学系の絞りの中心を垂直に通り、像面中心に至る光線で定義する。そして、光学系の最も物体側の第1面(図4の場合は、カバーガラス45の物体側の面)の軸上主光線と交差する位置を偏心光学系の偏心光学面の原点として、軸上主光線に沿う方向をZ軸方向とし、物体から第1面に向かう方向をZ軸正方向とし、光軸が折り曲げられる平面をY−Z平面とし、原点を通りY−Z平面に直交する方向をX軸方向とし、図4の紙面の表から裏へ向かう方向をX軸正方向とし、X軸、Z軸と右手直交座標系を構成する軸をY軸とする。   Table 1 shows numerical data of optical members constituting the imaging optical system 48. In the configuration parameters of this embodiment, the axial principal ray is defined as a ray that passes from the center of the object vertically through the center of the stop of the optical system to the center of the image plane. Then, the position intersecting the axial principal ray of the first surface closest to the object side of the optical system (in the case of FIG. 4, the surface on the object side of the cover glass 45) is defined as the origin of the decentered optical surface of the decentered optical system. The direction along the upper principal ray is the Z-axis direction, the direction from the object toward the first surface is the Z-axis positive direction, the plane on which the optical axis is bent is the YZ plane, passes through the origin, and is orthogonal to the YZ plane. The direction is the X-axis direction, the direction from the front to the back of FIG. 4 is the X-axis positive direction, and the X-axis, the Z-axis, and the axis constituting the right-handed orthogonal coordinate system are the Y-axis.

偏心面については、光学系の原点の中心からその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、その面の中心軸のX軸、Y軸、Z軸それぞれを中心とする傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、面の中心軸とそのXYZ直交座標系を、まずX軸の回りで反時計回りにα回転させ、次に、その回転した面の中心軸を新たな座標系のY軸の回りで反時計回りにβ回転させると共に1度回転した座標系もY軸の回りで反時計回りにβ回転させ、次いで、その2度回転した面の中心軸を新たな座標系の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the amount of decentering from the center of the origin of the optical system to the surface top position of the surface (X, Y, and Z directions are X, Y, and Z, respectively) and X of the center axis of the surface Tilt angles (α, β, γ (°), respectively) about the axis, the Y axis, and the Z axis are given. In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by first rotating the central axis of the surface and its XYZ orthogonal coordinate system by α counterclockwise around the X axis, and then rotating the rotation. The center axis of the surface is rotated β counterclockwise around the Y axis of the new coordinate system, and the coordinate system rotated once is also rotated β counterclockwise around the Y axis and then rotated twice. The center axis of the surface is rotated γ clockwise around the Z axis of the new coordinate system.

また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には、面間隔が与えられている。数値データ中、“FFS”は自由曲面、“REF”は反射面を示している。また、屈折率、アッベ数はd線のものである。   In addition, a surface interval is given when a specific surface and subsequent surfaces among the optical action surfaces constituting the optical system of each embodiment constitute a coaxial optical system. In the numerical data, “FFS” indicates a free-form surface, and “REF” indicates a reflective surface. The refractive index and Abbe number are those of the d line.

〔表1〕
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞ 偏心(1) 1.4950 65.0
2 ∞ 偏心(2)
3 FFS[1] 偏心(3) 1.6069 27.0
4 FFS[2] 偏心(4) 1.6069 27.0
5 FFS[3] 偏心(5)
6 ∞(絞り面) 偏心(6)
7 FFS[4] 偏心(7) 1.5256 56.4
8 FFS[5] 偏心(8) 1.5256 56.4
9 FFS[6] 偏心(9) 1.5256 56.4
10 FFS[7] 0.31 偏心(10)
11 ∞ 0.30 1.5163 64.1
12 ∞ 0.63
像 面 ∞
FFS[1]
4 = 4.1709 ×10-26 = 6.5908 ×10-28 =-1.0688 ×10-4
10=-1.1246 ×10-311= 6.6599 ×10-413= 1.6298 ×10-3
15= 7.4708 ×10-417=-2.9507 ×10-519= 9.7169 ×10-5
21=-1.7566 ×10-422=-2.5840 ×10-624= 5.7315 ×10-5
26=-3.4271 ×10-528= 3.0860 ×10-5
FFS[2]
4 =-3.9587 ×10-36 = 2.7654 ×10-28 =-1.0723 ×10-3
10= 1.9555 ×10-311= 7.7516 ×10-513=-1.7029 ×10-4
15= 3.4007 ×10-417=-3.4680 ×10-519= 1.0476 ×10-4
21= 4.8180 ×10-622=-6.2801 ×10-624=-4.7571 ×10-7
26= 1.6082 ×10-528=-8.1118 ×10-6
FFS[3]
3 =-3.3425 ×10-24 =-7.8403 ×10-26 =-4.0695 ×10-2
8 =-8.8984 ×10-310= 6.2496 ×10-311=-1.5720 ×10-3
13=-2.7166 ×10-215= 1.4357 ×10-317=-6.5515 ×10-4
19= 3.6911 ×10-421=-2.1928 ×10-422= 1.8341 ×10-3
24=-3.0393 ×10-326= 2.0951 ×10-328=-6.7649 ×10-4
FFS[4]
3 =-2.8391 ×10-24 = 1.2123 ×10-16 =-8.3113 ×10-2
8 = 7.8309 ×10-310= 2.1910 ×10-311= 6.5905 ×10-3
13=-1.7892 ×10-215= 1.5127 ×10-317=-6.7547 ×10-4
19= 4.3224 ×10-421=-8.3463 ×10-522=-2.3991 ×10-4
24=-8.1334 ×10-326= 7.9144 ×10-428=-4.9662 ×10-4
FFS[5]
4 = 3.8550 ×10-26 = 4.1924 ×10-28 = 1.7538 ×10-3
10=-3.9045 ×10-411= 8.7475 ×10-513= 6.4778 ×10-4
15= 1.7386 ×10-417=-1.0376 ×10-519=-1.6202 ×10-6
21=-1.7314 ×10-522=-2.3351 ×10-724= 1.1257 ×10-5
26=-9.6773 ×10-628=-9.8518 ×10-6
FFS[6]
4 =-2.4098 ×10-26 = 1.1095 ×10-28 = 2.5243 ×10-4
10= 8.0683 ×10-511=-1.0086 ×10-413= 8.3763 ×10-4
15= 3.5919 ×10-417=-6.6515 ×10-519= 5.2149 ×10-5
21= 6.6212 ×10-522= 4.1040 ×10-724= 4.0895 ×10-6
26=-6.4842 ×10-628=-9.8152 ×10-6
FFS[7]
3 = 4.8640 ×10-24 = 3.7051 ×10-26 = 6.3083 ×10-2
8 = 1.4429 ×10-310= 2.1610 ×10-411=-8.4235 ×10-3
13=-8.8574 ×10-315=-4.6112 ×10-317=-4.4861 ×10-4
19= 5.3081 ×10-421= 1.1103 ×10-322= 4.3529 ×10-4
24= 5.0879 ×10-426= 1.0880 ×10-328=-1.2467 ×10-4
偏心(1)
X= 0.00 Y= 0.00 Z= 0.00
α= 0.00 β 0.00 γ= 0.00
偏心(2)
X= 0.00 Y= 0.00 Z= 0.50
α= 0.00 β= 0.00 γ= 0.00
偏心(3)
X= 0.00 Y= -0.00 Z= 0.64
α= -0.95 β= 0.00 γ= 0.00
偏心(4)
X= 0.00 Y= -0.02 Z= 3.34
α=-41.75 β= 0.00 γ= 0.00
偏心(5)
X= 0.00 Y= 2.63 Z= 3.02
α=-83.86 β= 0.00 γ= 0.00
偏心(6)
X= 0.00 Y= 3.21 Z= 2.96
α=-83.86 β= 0.00 γ= 0.00
偏心(7)
X= 0.00 Y= 3.39 Z= 2.94
α=-83.86 β= 0.00 γ= 0.00
偏心(8)
X= 0.00 Y= 7.89 Z= 2.41
α=-101.29 β= 0.00 γ= 0.00
偏心(9)
X= 0.00 Y= 5.44 Z= 1.03
α=-150.09 β= 0.00 γ= 0.00
偏心(10)
X= 0.00 Y= 5.38 Z= 4.48
α=-180.00 β= 0.00 γ= 0.00
[Table 1]
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ Eccentricity (1) 1.4950 65.0
2 ∞ Eccentricity (2)
3 FFS [1] Eccentricity (3) 1.6069 27.0
4 FFS [2] Eccentricity (4) 1.6069 27.0
5 FFS [3] Eccentricity (5)
6 ∞ (diaphragm surface) Eccentricity (6)
7 FFS [4] Eccentricity (7) 1.5256 56.4
8 FFS [5] Eccentricity (8) 1.5256 56.4
9 FFS [6] Eccentricity (9) 1.5256 56.4
10 FFS [7] 0.31 Eccentricity (10)
11 ∞ 0.30 1.5163 64.1
12 ∞ 0.63
Image plane ∞
FFS [1]
C 4 = 4.1709 × 10 -2 C 6 = 6.5908 × 10 -2 C 8 = -1.0688 × 10 -4
C 10 = -1.1246 × 10 -3 C 11 = 6.6599 × 10 -4 C 13 = 1.6298 × 10 -3
C 15 = 7.4708 × 10 -4 C 17 = -2.9507 × 10 -5 C 19 = 9.7169 × 10 -5
C 21 = -1.7566 × 10 -4 C 22 = -2.5840 × 10 -6 C 24 = 5.7315 × 10 -5
C 26 = -3.4271 × 10 -5 C 28 = 3.0860 × 10 -5
FFS [2]
C 4 = -3.9587 × 10 -3 C 6 = 2.7654 × 10 -2 C 8 = -1.0723 × 10 -3
C 10 = 1.9555 × 10 -3 C 11 = 7.7516 × 10 -5 C 13 = -1.7029 × 10 -4
C 15 = 3.4007 × 10 -4 C 17 = -3.4680 × 10 -5 C 19 = 1.0476 × 10 -4
C 21 = 4.8180 × 10 -6 C 22 = -6.2801 × 10 -6 C 24 = -4.7571 × 10 -7
C 26 = 1.6082 × 10 -5 C 28 = -8.1118 × 10 -6
FFS [3]
C 3 = -3.3425 × 10 -2 C 4 = -7.8403 × 10 -2 C 6 = -4.0695 × 10 -2
C 8 = -8.8984 × 10 -3 C 10 = 6.2496 × 10 -3 C 11 = -1.5720 × 10 -3
C 13 = -2.7166 × 10 -2 C 15 = 1.4357 × 10 -3 C 17 = -6.5515 × 10 -4
C 19 = 3.6911 × 10 -4 C 21 = -2.1928 × 10 -4 C 22 = 1.8341 × 10 -3
C 24 = -3.0393 × 10 -3 C 26 = 2.0951 × 10 -3 C 28 = -6.7649 × 10 -4
FFS [4]
C 3 = -2.8391 × 10 -2 C 4 = 1.2123 × 10 -1 C 6 = -8.3113 × 10 -2
C 8 = 7.8309 × 10 -3 C 10 = 2.1910 × 10 -3 C 11 = 6.5905 × 10 -3
C 13 = -1.7892 × 10 -2 C 15 = 1.5127 × 10 -3 C 17 = -6.7547 × 10 -4
C 19 = 4.3224 × 10 -4 C 21 = -8.3463 × 10 -5 C 22 = -2.3991 × 10 -4
C 24 = -8.1334 × 10 -3 C 26 = 7.9144 × 10 -4 C 28 = -4.9662 × 10 -4
FFS [5]
C 4 = 3.8550 × 10 -2 C 6 = 4.1924 × 10 -2 C 8 = 1.7538 × 10 -3
C 10 = -3.9045 × 10 -4 C 11 = 8.7475 × 10 -5 C 13 = 6.4778 × 10 -4
C 15 = 1.7386 × 10 -4 C 17 = -1.0376 × 10 -5 C 19 = -1.6202 × 10 -6
C 21 = -1.7314 × 10 -5 C 22 = -2.3351 × 10 -7 C 24 = 1.1257 × 10 -5
C 26 = -9.6773 × 10 -6 C 28 = -9.8518 × 10 -6
FFS [6]
C 4 = -2.4098 × 10 -2 C 6 = 1.1095 × 10 -2 C 8 = 2.5243 × 10 -4
C 10 = 8.0683 × 10 -5 C 11 = -1.0086 × 10 -4 C 13 = 8.3763 × 10 -4
C 15 = 3.5919 × 10 -4 C 17 = -6.6515 × 10 -5 C 19 = 5.2149 × 10 -5
C 21 = 6.6212 × 10 -5 C 22 = 4.1040 × 10 -7 C 24 = 4.0895 × 10 -6
C 26 = -6.4842 × 10 -6 C 28 = -9.8152 × 10 -6
FFS [7]
C 3 = 4.8640 × 10 -2 C 4 = 3.7051 × 10 -2 C 6 = 6.3083 × 10 -2
C 8 = 1.4429 × 10 -3 C 10 = 2.1610 × 10 -4 C 11 = -8.4235 × 10 -3
C 13 = -8.8574 × 10 -3 C 15 = -4.6112 × 10 -3 C 17 = -4.4861 × 10 -4
C 19 = 5.3081 × 10 -4 C 21 = 1.1103 × 10 -3 C 22 = 4.3529 × 10 -4
C 24 = 5.0879 × 10 -4 C 26 = 1.0880 × 10 -3 C 28 = -1.2467 × 10 -4
Eccentricity (1)
X = 0.00 Y = 0.00 Z = 0.00
α = 0.00 β 0.00 γ = 0.00
Eccentricity (2)
X = 0.00 Y = 0.00 Z = 0.50
α = 0.00 β = 0.00 γ = 0.00
Eccentricity (3)
X = 0.00 Y = -0.00 Z = 0.64
α = -0.95 β = 0.00 γ = 0.00
Eccentricity (4)
X = 0.00 Y = -0.02 Z = 3.34
α = -41.75 β = 0.00 γ = 0.00
Eccentricity (5)
X = 0.00 Y = 2.63 Z = 3.02
α = -83.86 β = 0.00 γ = 0.00
Eccentricity (6)
X = 0.00 Y = 3.21 Z = 2.96
α = -83.86 β = 0.00 γ = 0.00
Eccentricity (7)
X = 0.00 Y = 3.39 Z = 2.94
α = -83.86 β = 0.00 γ = 0.00
Eccentricity (8)
X = 0.00 Y = 7.89 Z = 2.41
α = -101.29 β = 0.00 γ = 0.00
Eccentric (9)
X = 0.00 Y = 5.44 Z = 1.03
α = -150.09 β = 0.00 γ = 0.00
Eccentricity (10)
X = 0.00 Y = 5.38 Z = 4.48
α = -180.00 β = 0.00 γ = 0.00
.

上記撮像光学系48を構成する被検光学素子34は、図4に示すような実使用状態において、A面に入射した光束が屈折し、B面で光束が反射し、C面で光束が屈折し、そのC面より光束が被検光学素子34から出射する。このような光線の通過状態に近づけるために、図3に示した光学素子検査装置では、被検光束の偏向を被検光学素子34の反射面(B面)で行っている。   In the actual use state shown in FIG. 4, the test optical element 34 constituting the imaging optical system 48 refracts the light beam incident on the A surface, reflects the light beam on the B surface, and refracts the light beam on the C surface. Then, a light beam is emitted from the optical element 34 to be tested from the C plane. In order to approximate such a light beam passing state, the optical element inspection apparatus shown in FIG. 3 deflects the test light beam on the reflection surface (B surface) of the test optical element 34.

このような構成をとることにより、実際の使用状態に近い光束が被検光学素子34を通過するので、光学素子検査装置51で測定した被検光学素子34の透過波面と、撮像光学系48の光学性能を対応付けることが可能になり、実際の光学性能と相関関係が高い合否判定を行うことが可能となる。なお、本発明の実施例は全て、実際の使用状態に近い光束が被検光学素子を通過するため、全ての実施例において上記の効果が得られる。   By adopting such a configuration, since the light beam close to the actual use state passes through the test optical element 34, the transmitted wavefront of the test optical element 34 measured by the optical element inspection apparatus 51 and the imaging optical system 48 Optical performance can be associated with each other, and it is possible to make a pass / fail determination that is highly correlated with actual optical performance. In all of the embodiments of the present invention, since the light beam close to the actual use state passes through the test optical element, the above-described effects can be obtained in all the embodiments.

なお、図3に示した光学素子検査装置51では、被検光学素子34のC面に光束が入射し、B面で光束が反射し、A面から光束が出射している。この構成は、光学素子検査装置51における被検光学素子34の設置の容易性に由来しているが、もちろん、被検光学素子34のA面に光束が入射し、B面で光束が反射し、C面から光束が出射する構成にしてもよい。   In the optical element inspection apparatus 51 shown in FIG. 3, the light beam is incident on the C surface of the optical element 34 to be tested, the light beam is reflected on the B surface, and the light beam is emitted from the A surface. This configuration is derived from the ease of installation of the test optical element 34 in the optical element inspection apparatus 51. Of course, the light beam is incident on the A surface of the test optical element 34, and the light beam is reflected by the B surface. The light beam may be emitted from the C plane.

図5は、図3の光学素子検査装置51に組み込まれている補正光学系35の構成を示す図である。補正光学系35は、接合球面レンズ36と、円筒面レンズ37で構成されている。被検光学素子34からの出射波面が回転非対称な形状であるため、補正光学系35には回転非対称な光学面を有する光学素子37が含まれている。このような補正光学系35を被検光学素子34の後方に配置することで、被検光学素子34からの出射波面を略平面波に変換することができ、CCD30で観測される干渉縞の縞密度が低くなり、解析可能な干渉縞となる。   FIG. 5 is a diagram showing a configuration of the correction optical system 35 incorporated in the optical element inspection apparatus 51 of FIG. The correction optical system 35 includes a cemented spherical lens 36 and a cylindrical surface lens 37. Since the outgoing wavefront from the test optical element 34 has a rotationally asymmetric shape, the correction optical system 35 includes an optical element 37 having a rotationally asymmetric optical surface. By arranging such a correction optical system 35 behind the test optical element 34, the wavefront emitted from the test optical element 34 can be converted into a substantially plane wave, and the fringe density of interference fringes observed by the CCD 30 is obtained. Becomes low and becomes an interference fringe that can be analyzed.

図6は、被検光学素子34と補正光学系35を光学素子検査装置51に組み込んだ場合に生成される干渉縞のシミュレーション結果の1例を示す図である。このように、被検光学素子34からの出射波面を補正光学系35によって略平面波に変換することによって、縞密度の低い、解析可能な干渉縞が生成される。なお、被検光学素子34の合否判定の方法については、実施例1と同様である。   FIG. 6 is a diagram illustrating an example of a simulation result of interference fringes generated when the test optical element 34 and the correction optical system 35 are incorporated in the optical element inspection apparatus 51. Thus, by converting the outgoing wavefront from the test optical element 34 into a substantially plane wave by the correction optical system 35, an interference fringe having a low fringe density and analyzable is generated. Note that the pass / fail judgment method of the optical element 34 to be tested is the same as in the first embodiment.

被検光学素子34に全く製造誤差が存在しない場合でも、補正光学系35によって変換された波面は参照光束の波面と一致しない。つまり、合否判定の基準となる被検光学素子34の透過波面は平面波ではなく、ある歪みを含んだ波面形状となる。このように被検光学素子34の合否判定を行うことにより、補正光学系35からの出射波面を完全な平面波に変換する必要がなくなるために、補正光学系35の設計自由度が高くなり、構造を単純化することができ、補正光学系35の製作を容易に行うことが可能となる。また、形状が複雑な光学素子でも、容易に合否判定を行うことが可能となる。   Even when there is no manufacturing error in the test optical element 34, the wavefront converted by the correction optical system 35 does not coincide with the wavefront of the reference light beam. That is, the transmitted wavefront of the optical element 34 to be used as a criterion for pass / fail judgment is not a plane wave but a wavefront shape including a certain distortion. By performing the pass / fail determination of the test optical element 34 in this way, it is not necessary to convert the outgoing wavefront from the correction optical system 35 into a complete plane wave. Therefore, the design freedom of the correction optical system 35 is increased, and the structure Thus, the correction optical system 35 can be easily manufactured. Moreover, even if the optical element has a complicated shape, it is possible to easily perform pass / fail determination.

図7に、図5の被検光学素子34とその周辺を拡大した図を示す。以下、図7を用いて被検光学素子34の光学素子検査装置51での設置位置を説明する。被検光学素子34に入射する光束の光軸が、撮像光学系の絞り面に相当する面(図7のp面)の中心軸と一致するように、被検光学素子34を設置する。さらに、被検光学素子34から出射する光束の光軸が、撮像光学系48(図4)のカバーガラス45の物体側の面に相当する面(図7のq面)の中心軸と一致するように、被検光学素子34を設置する。このように被検光学素子34を設置することで、後述する数値データのように配置された補正光学系35の中心軸と、被検光学素子34から出射する光束の光軸とを一致させることができ、図6に示したような干渉縞を生成することができる。   FIG. 7 shows an enlarged view of the test optical element 34 in FIG. 5 and its periphery. Hereinafter, the installation position of the test optical element 34 in the optical element inspection apparatus 51 will be described with reference to FIG. The test optical element 34 is installed so that the optical axis of the light beam incident on the test optical element 34 coincides with the central axis of the surface corresponding to the diaphragm surface of the imaging optical system (the p surface in FIG. 7). Furthermore, the optical axis of the light beam emitted from the test optical element 34 coincides with the central axis of the surface (q surface in FIG. 7) corresponding to the object side surface of the cover glass 45 of the imaging optical system 48 (FIG. 4). Thus, the optical element 34 to be tested is installed. By installing the test optical element 34 in this way, the central axis of the correction optical system 35 arranged as numerical data described later is made to coincide with the optical axis of the light beam emitted from the test optical element 34. The interference fringes as shown in FIG. 6 can be generated.

以下の表2に、図5に示した補正光学系35を構成する光学部材の数値データを示す。図5の被検光学素子34は、図4の撮像光学系48に含まれる被検光学素子34と等価であるが、光束の向きが反対になっている。すなわち、図4の被検光学素子34では、光束がA面、B面、C面、絞り面の順に通過するが、図5の被検光学素子34では、絞り面、C面、B面、A面の順に通過する。   Table 2 below shows numerical data of optical members constituting the correction optical system 35 shown in FIG. The test optical element 34 in FIG. 5 is equivalent to the test optical element 34 included in the imaging optical system 48 in FIG. 4, but the direction of the light beam is opposite. That is, in the test optical element 34 in FIG. 4, the light beam passes in the order of the A plane, the B plane, the C plane, and the aperture plane, but in the test optical element 34 in FIG. 5, the aperture plane, the C plane, the B plane, Passes in order of A side.

表2の数値データにおいて、“CYL”はシリンドリカル光学面を示している。シリンドリカル光学面はY方向の曲率半径とX方向の曲率半径が異なる光学面である。それぞれの曲率半径を“RDY”、“RDX”として数値データを示す。また、以下の数値データでは、被検光学素子34の光学面を省略して記載している。被検光学素子34の光学面は、上述の表1の撮像光学系48の数値データに記載してある。なお、a面〜e面は図5に示した補正光学系35の光学面、q面は図7のカバーガラス45の物体側の面に対応する。   In the numerical data in Table 2, “CYL” indicates a cylindrical optical surface. The cylindrical optical surface is an optical surface having a different curvature radius in the Y direction and a curvature radius in the X direction. Numerical data is shown with the respective curvature radii being “RDY” and “RDX”. In the following numerical data, the optical surface of the optical element 34 to be tested is omitted. The optical surface of the test optical element 34 is described in the numerical data of the imaging optical system 48 in Table 1 above. The a-plane to e-plane correspond to the optical surface of the correction optical system 35 shown in FIG. 5, and the q-plane corresponds to the object-side surface of the cover glass 45 shown in FIG.

〔表2〕
面番号 曲率半径 面間隔 屈折率(d線) アッベ数(d線)
1 (q面) ∞ 17.80
2 (a面) 131.65 2.50 1.7283 28.5
3 (b面) 16.49 11.00 1.6667 48.3
4 (c面) -24.47 208.22
5 (d面) CYL[1] 8.00 1.5163 64.1
6 (e面) CYL[2]
RDY RDX
CYL[1] ∞ 519.00
CYL[2] ∞ -103.80 。
[Table 2]
Surface number Curvature radius Surface spacing Refractive index (d-line) Abbe number (d-line)
1 (q-plane) ∞ 17.80
2 (a side) 131.65 2.50 1.7283 28.5
3 (B side) 16.49 11.00 1.6667 48.3
4 (c surface) -24.47 208.22
5 (d surface) CYL [1] 8.00 1.5163 64.1
6 (e surface) CYL [2]
RDY RDX
CYL [1] ∞ 519.00
CYL [2] ∞ -103.80.

次に、本発明の実施例3の光学素子検査装置について説明する。図8は、本発明の実施例3の光学素子検査装置の構成を示す図である。基本的な構成は、図1に示した実施例1の光学素子検査装置と同様であるが、被検光学素子40が異なるために、被検光路の構成が異なっている。   Next, an optical element inspection apparatus according to Embodiment 3 of the present invention will be described. FIG. 8 is a diagram showing the configuration of the optical element inspection apparatus according to Embodiment 3 of the present invention. The basic configuration is the same as that of the optical element inspection apparatus according to the first embodiment shown in FIG. 1, but the configuration of the test optical path is different because the test optical element 40 is different.

すなわち、被検光学素子40は4面(D面、E面、F面、G面) の光学面を含んでおり、それぞれの光学面が自由曲面形状となっている。実施例2と同様に、この被検光学素子40から出射する波面は平面から大きく乖離した形状になるため、このままでは干渉縞密度が高くなり干渉縞解析を行うことができないが、実施例1の補正光学系23と同様の機能を有する補正光学系41によって波面変換、すなわち、略平面波への変換を行うことで、干渉縞解析が可能となる。   That is, the test optical element 40 includes four optical surfaces (D surface, E surface, F surface, and G surface), and each optical surface has a free-form surface shape. As in the second embodiment, the wavefront emitted from the test optical element 40 has a shape greatly deviating from the flat surface, so that the interference fringe density increases and interference fringe analysis cannot be performed. Interference fringe analysis can be performed by performing wavefront conversion, that is, conversion to a substantially plane wave, by the correction optical system 41 having the same function as the correction optical system 23.

撮像光学系48を構成する被検光学素子40は、図4に示すような実使用状態において、D面に発散光が入射して屈折し、E面とF面で光束が反射し、G面で光束が屈折し、そのG面より光束が被検光学素子40から出射する。このような光線の通過状態に近づけるために、図8に示した光学素子検査装置では、被検光束の偏向を被検光学素子40の反射面(E面とF面) で行っており、かつ、被検光学素子40の前方に集光レンズ39を配置することで、被検光学素子40のD面に発散光を入射させるようにしている。   In the actual use state as shown in FIG. 4, the test optical element 40 constituting the imaging optical system 48 is refracted by diverging light incident on the D surface, the light beam is reflected on the E surface and the F surface, and the G surface. Then, the light beam is refracted, and the light beam is emitted from the G optical element 40 through the G plane. In the optical element inspection apparatus shown in FIG. 8, in order to approximate such a light beam passage state, the test light beam is deflected on the reflection surface (E surface and F surface) of the test optical element 40, and The diverging light is incident on the D surface of the test optical element 40 by disposing the condenser lens 39 in front of the test optical element 40.

図9は、図8の光学素子検査装置51に組み込まれている補正光学系41の構成を示す図である。補正光学系41は、接合球面レンズ42と、円筒面レンズ43、44で構成されている。被検光学素子40からの出射波面が回転非対称な形状であるため、補正光学系41には回転非対称な光学面を有する光学素子43、44が含まれている。このような補正光学系41を被検光学素子40の後方に配置することで、被検光学素子40からの出射波面を略平面波に変換することができ、CCD30で観測される干渉縞の縞密度が低くなり、解析可能な干渉縞となる。   FIG. 9 is a diagram showing a configuration of the correction optical system 41 incorporated in the optical element inspection apparatus 51 of FIG. The correction optical system 41 includes a cemented spherical lens 42 and cylindrical surface lenses 43 and 44. Since the outgoing wavefront from the test optical element 40 has a rotationally asymmetric shape, the correction optical system 41 includes optical elements 43 and 44 having rotationally asymmetric optical surfaces. By arranging such a correction optical system 41 behind the test optical element 40, the wavefront emitted from the test optical element 40 can be converted into a substantially plane wave, and the fringe density of interference fringes observed by the CCD 30 Becomes low and becomes an interference fringe that can be analyzed.

図10は、被検光学素子40と補正光学系41を光学素子検査装置51に組み込んだ場合に生成される干渉縞のシミュレーション結果の1例を示す図である。このように、被検光学素子40からの出射波面を補正光学系41によって略平面波に変換することによって、縞密度の低い、解析可能な干渉縞が生成される。なお、被検光学素子の合否判定の方法については、実施例1と同様である。   FIG. 10 is a diagram illustrating an example of a simulation result of interference fringes generated when the test optical element 40 and the correction optical system 41 are incorporated in the optical element inspection apparatus 51. Thus, by converting the outgoing wavefront from the test optical element 40 into a substantially plane wave by the correction optical system 41, an interference fringe having a low fringe density and analyzable is generated. Note that the pass / fail judgment method for the optical element to be tested is the same as in the first embodiment.

図11に、図9の被検光学素子40とその周辺を拡大した図を示す。以下、図11を用いて被検光学素子40の光学素子検査装置51での設置位置を説明する。被検光学素子40に入射する光束の光軸が、撮像光学系の絞り面に相当する面(図11のr面)の中心軸と一致するように、被検光学素子40を設置する。さらに、被検光学素子40から出射する光束の光軸が、撮像光学系の撮像面に相当する面(図11のs面)の中心軸と一致するように、被検光学素子40を設置する。このように被検光学素子40を設置することで、後述する数値データのように配置された補正光学系41の中心軸と、被検光学素子40から出射する光束の光軸とを一致させることができ、図10に示したような干渉縞を生成することができる。   FIG. 11 shows an enlarged view of the test optical element 40 in FIG. 9 and its periphery. Hereinafter, the installation position of the optical element 40 to be tested in the optical element inspection apparatus 51 will be described with reference to FIG. The test optical element 40 is installed so that the optical axis of the light beam incident on the test optical element 40 coincides with the central axis of the surface (r-plane in FIG. 11) corresponding to the diaphragm surface of the imaging optical system. Further, the test optical element 40 is installed so that the optical axis of the light beam emitted from the test optical element 40 coincides with the central axis of the surface corresponding to the imaging surface of the imaging optical system (s-plane in FIG. 11). . By installing the test optical element 40 in this way, the central axis of the correction optical system 41 arranged as in numerical data described later and the optical axis of the light beam emitted from the test optical element 40 are matched. The interference fringes as shown in FIG. 10 can be generated.

以下の表3に、図9に示した集光レンズ39、被検光学素子40、補正光学系41を構成する光学部材の数値データを示す。図8の被検光学素子40は、図4の撮像光学系48に含まれる被検光学素子40と等価である。   Table 3 below shows numerical data of the optical members constituting the condenser lens 39, the test optical element 40, and the correction optical system 41 shown in FIG. The test optical element 40 in FIG. 8 is equivalent to the test optical element 40 included in the imaging optical system 48 in FIG.

表3の数値データにおいて、“CYL”はシリンドリカル光学面を示している。シリンドリカル光学面はY方向の曲率半径とX方向の曲率半径が異なる光学面である。それぞれの曲率半径を“RDY”、“RDX”として数値データを示す。また、以下の数値データでは、被検光学素子40の光学面を省略して記載している。被検光学素子40の光学面は、上述の表1の撮像光学系48の数値データに記載してある。なお、f面〜h面、i面〜o面は図9に示した集光レンズ39、補正光学系41の光学面に対応し、r面は図11の撮像光学系の絞り面、s面は図11の撮像光学系の撮像光学系の撮像面に対応する。   In the numerical data in Table 3, “CYL” indicates a cylindrical optical surface. The cylindrical optical surface is an optical surface having a different curvature radius in the Y direction and a curvature radius in the X direction. Numerical data is shown with the respective curvature radii being “RDY” and “RDX”. In the following numerical data, the optical surface of the optical element 40 to be tested is omitted. The optical surface of the test optical element 40 is described in the numerical data of the imaging optical system 48 in Table 1 above. The f-plane to h-plane and i-plane to o-plane correspond to the converging lens 39 and the optical surface of the correction optical system 41 shown in FIG. Corresponds to the imaging surface of the imaging optical system of the imaging optical system of FIG.

〔表3〕
面番号 曲率半径 面間隔 屈折率(d線) アッベ数(d線)
1 (f面) 27.97 9.50 1.6667 48.3
2 (g面) -18.85 2.50 1.7283 28.5
3 (h面) -152.94 40.00
4 (r面) ∞
(被検光学素子40:数値データは表1)
5 (s面) ∞ 22.90
6 (i面) 118.66 3.00 1.7283 28.3
7 (j面) 16.08 11.04 1.6700 47.2
8 (k面) -21.17 100.00
9 (l面) CYL[1] 3.30 1.5163 64.1
10 (m面) ∞ 92.00
11 (n面) ∞ 4.00 1.5163 64.1
12 (o面) CYL[2]
RDY RDX
CYL[1] -67.47 ∞
CYL[2] -129.75 ∞
[Table 3]
Surface number Curvature radius Surface spacing Refractive index (d-line) Abbe number (d-line)
1 (F side) 27.97 9.50 1.6667 48.3
2 (g-plane) -18.85 2.50 1.7283 28.5
3 (h surface) -152.94 40.00
4 (r-plane) ∞
(Test optical element 40: Table 1 shows numerical data)
5 (s-plane) ∞ 22.90
6 (i-plane) 118.66 3.00 1.7283 28.3
7 (j-plane) 16.08 11.04 1.6700 47.2
8 (k surface) -21.17 100.00
9 (1 side) CYL [1] 3.30 1.5163 64.1
10 (m-plane) ∞ 92.00
11 (n-plane) ∞ 4.00 1.5163 64.1
12 (o side) CYL [2]
RDY RDX
CYL [1] -67.47 ∞
CYL [2] -129.75 ∞
.

なお、上記の実施例においては、補正光学系23、35及び41を被検光学素子22、34及び40の透過波面側(出射光側)に配置したもので説明したが、被検光学素子22、34及び40の入射光側に配置しても同様の作用及び効果を得ることができる。   In the above-described embodiment, the correction optical systems 23, 35, and 41 are described as being disposed on the transmitted wavefront side (outgoing light side) of the test optical elements 22, 34, and 40, but the test optical element 22 is described. , 34 and 40 can be provided on the incident light side to obtain the same operation and effect.

本発明の実施例1の光学素子検査装置の構成を示す図である。It is a figure which shows the structure of the optical element inspection apparatus of Example 1 of this invention. 被検光学素子の合否判定手順を示すフローチャートである。It is a flowchart which shows the acceptance / rejection determination procedure of a test optical element. 本発明の実施例2の光学素子検査装置の構成を示す図である。It is a figure which shows the structure of the optical element inspection apparatus of Example 2 of this invention. 実施例2と実施例3の被検光学素子を用いた撮像光学系における光束の通過する様子を示す図である。It is a figure which shows a mode that the light beam passes in the imaging optical system using the test optical element of Example 2 and Example 3. FIG. 図3の光学素子検査装置に組み込まれている補正光学系の構成を示す図である。It is a figure which shows the structure of the correction | amendment optical system incorporated in the optical element inspection apparatus of FIG. 実施例2の光学素子検査装置で生成される干渉縞のシミュレーション結果の1例を示す図である。It is a figure which shows one example of the simulation result of the interference fringe produced | generated with the optical element inspection apparatus of Example 2. FIG. 図5の被検光学素子とその周辺を拡大した図である。It is the figure which expanded the to-be-tested optical element of FIG. 5, and its periphery. 本発明の実施例3の光学素子検査装置の構成を示す図である。It is a figure which shows the structure of the optical element inspection apparatus of Example 3 of this invention. 図8の光学素子検査装置に組み込まれている補正光学系の構成を示す図である。It is a figure which shows the structure of the correction | amendment optical system incorporated in the optical element inspection apparatus of FIG. 実施例3の光学素子検査装置で生成される干渉縞のシミュレーション結果の1例を示す図である。It is a figure which shows one example of the simulation result of the interference fringe produced | generated with the optical element inspection apparatus of Example 3. FIG. 図9の被検光学素子とその周辺を拡大した図である。It is the figure which expanded the to-be-tested optical element of FIG. 9, and its periphery.

符号の説明Explanation of symbols

R…参照光束
M…被検光束
11…レーザ光源
12…可変NDフィルタ
13…偏光板
14…対物レンズ
15…ピンホール
16…スペイシャルフィルタ
17…コリメートレンズ
18…光束分割手段
19…ビームエクスパンダ
20…参照光束反射部材
21…被検光束反射部材
22…被検光学素子
23…補正光学系
24、25…球面レンズ
26…光束合成手段
27…視野絞り
28…撮像手段
29…ズームレンズ
30…CCD
31…干渉縞解析装置
32…入力装置
33…出力装置
34…被検光学素子
35…補正光学系
36…接合球面レンズ
37…円筒面レンズ
39…集光レンズ
40…被検光学素子
41…補正光学系
42…接合球面レンズ
43、44…円筒面レンズ
45、46…カバーガラス
47…撮像面
48…撮像光学系
51…光学素子検査装置(本発明)
R ... Reference beam M ... Test beam 11 ... Laser light source 12 ... Variable ND filter 13 ... Polarizing plate 14 ... Objective lens 15 ... Pinhole 16 ... Spatial filter 17 ... Collimator lens 18 ... Beam splitting means 19 ... Beam expander 20 ... Reference beam reflecting member 21 ... Test beam reflecting member 22 ... Test optical element 23 ... Correction optical system 24, 25 ... Spherical lens 26 ... Flux combining means 27 ... Field stop 28 ... Imaging means 29 ... Zoom lens 30 ... CCD
DESCRIPTION OF SYMBOLS 31 ... Interference fringe analyzer 32 ... Input device 33 ... Output device 34 ... Test optical element 35 ... Correction optical system 36 ... Joint spherical lens 37 ... Cylindrical surface lens 39 ... Condensing lens 40 ... Test optical element 41 ... Correction optics System 42: Spherical spherical lens 43, 44 ... Cylindrical lens 45, 46 ... Cover glass 47 ... Imaging surface 48 ... Imaging optical system 51 ... Optical element inspection device (present invention)

Claims (4)

光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞に基づいて前記被検光学素子を透過した波面に係るパラメータを算出するパラメータ算出手段と、前記パラメータに基づいて前記被検光学素子の評価値を算出する評価値演算手段とを備えたことを特徴とする光学素子検査装置。 A light source, a light beam splitting means for splitting a light beam from the light source into a test light beam and a reference light beam, and a test light element arranged in a test light beam in which the test optical element is arranged, and transmitted through the test optical element based on a design value A correction optical system that converts a wavefront into a substantially flat surface, and a light beam combining unit that combines the test light beam that has passed through the correction optical system and the reference light beam that has been converted into a parallel light beam through an optical path different from the test light beam, Imaging means for imaging the light beam transmitted through the light beam combining means, parameter calculation means for calculating a parameter relating to a wavefront transmitted through the optical element to be measured based on interference fringes formed by the imaging means, and An optical element inspection apparatus comprising: an evaluation value calculation unit that calculates an evaluation value of the optical element to be tested based on the evaluation value. 光源と、前記光源からの光束を被検光束と参照光束に分割する光束分割手段と、被検光束を偏向させる少なくとも一つの反射手段と、被検光学素子が配置される被検光束中に配置され、設計値に基づく前記被検光学素子の透過波面を略平面に変換する補正光学系と、前記補正光学系を透過した被検光束と前記被検光束とは異なる光路を経て平行光束とされた前記参照光束とを合成する光束合成手段と、前記光束合成手段を透過した光束を撮像する撮像手段と、前記撮像手段によって形成された干渉縞から前記被検光学素子の合否を判定する演算手段とを備えた光学素子検査装置であって、被検光束を偏向させる前記反射手段の少なくとも一つが前記被検光学素子の反射面であることを特徴とする光学素子検査装置。 Arranged in the test light beam in which the light source, the light beam splitting means for splitting the light beam from the light source into the test light beam and the reference light beam, at least one reflecting means for deflecting the test light beam, and the test optical element are arranged A correction optical system that converts the transmitted wavefront of the test optical element based on a design value into a substantially flat surface, and the test light beam that has passed through the correction optical system and the test light beam are converted into parallel light beams through different optical paths. A light beam combining unit that combines the reference light beam, an imaging unit that images the light beam that has passed through the beam combining unit, and an arithmetic unit that determines whether the optical element to be tested is acceptable or not from the interference fringes formed by the imaging unit. An optical element inspection apparatus comprising: at least one of the reflecting means for deflecting a test light beam is a reflection surface of the test optical element. 前記補正光学系は、少なくとも一つの回転対称な光学面と、少なくとも一つの回転非対称な光学面を有していることを特徴とする請求項1又は2記載の光学素子検査装置。 The optical element inspection apparatus according to claim 1, wherein the correction optical system has at least one rotationally symmetric optical surface and at least one rotationally asymmetric optical surface. 前記評価値演算手段は、前記被検光学素子の設計値を用いて計算された前記被検光学素子の透過波面に係るパラメータと、前記パラメータ算出手段からのパラメータとを比較することで、前記被検光学素子の評価値を算出することを特徴とする請求項1記載の光学素子検査装置。 The evaluation value calculating means compares the parameter relating to the transmitted wavefront of the optical element to be measured calculated using the design value of the optical element to be measured with the parameter from the parameter calculating means, thereby The optical element inspection apparatus according to claim 1, wherein an evaluation value of the optical analysis element is calculated.
JP2005365865A 2005-12-20 2005-12-20 Optical element testing device Pending JP2007170888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365865A JP2007170888A (en) 2005-12-20 2005-12-20 Optical element testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365865A JP2007170888A (en) 2005-12-20 2005-12-20 Optical element testing device

Publications (1)

Publication Number Publication Date
JP2007170888A true JP2007170888A (en) 2007-07-05

Family

ID=38297654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365865A Pending JP2007170888A (en) 2005-12-20 2005-12-20 Optical element testing device

Country Status (1)

Country Link
JP (1) JP2007170888A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020881A (en) * 2012-07-17 2014-02-03 Olympus Corp Lens inspection device and lens inspection method
JP2014228425A (en) * 2013-05-23 2014-12-08 株式会社 清原光学 Three-dimensional interferometer
CN107110740A (en) * 2014-11-11 2017-08-29 华柏恩视觉研究中心 For determining to replicate(Manufacture)Optics quality system and method
CN108663192A (en) * 2017-03-31 2018-10-16 上海微电子装备(集团)股份有限公司 The detection device and method of Wavefront sensor
CN109115466A (en) * 2018-08-01 2019-01-01 苏州帕沃激光科技有限公司 A kind of measurement method and its measuring device of laser beam quality factor M 2
CN110793754A (en) * 2019-11-01 2020-02-14 中国科学院光电技术研究所 Spliced telescope system eccentricity error detection method based on phase shift modulation
CN114199522A (en) * 2021-11-30 2022-03-18 宁波法里奥光学科技发展有限公司 Optical lens parameter measuring device and method
CN114341593A (en) * 2019-09-11 2022-04-12 科磊股份有限公司 Imaging overlay targets using moire elements and rotationally symmetric arrangements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311141A (en) * 1987-06-15 1988-12-19 Asahi Optical Co Ltd Method for measuring deviation and fall-down of image of pentagonal prism
JPH0560652A (en) * 1991-01-29 1993-03-12 Asahi Optical Co Ltd Method for measuring roof prism surface
JPH0599613A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd Interferometer for measuring transmitted wave front
JP2002181517A (en) * 2000-12-11 2002-06-26 Ricoh Co Ltd Method and device for measuring shape of curved surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311141A (en) * 1987-06-15 1988-12-19 Asahi Optical Co Ltd Method for measuring deviation and fall-down of image of pentagonal prism
JPH0560652A (en) * 1991-01-29 1993-03-12 Asahi Optical Co Ltd Method for measuring roof prism surface
JPH0599613A (en) * 1991-10-08 1993-04-23 Olympus Optical Co Ltd Interferometer for measuring transmitted wave front
JP2002181517A (en) * 2000-12-11 2002-06-26 Ricoh Co Ltd Method and device for measuring shape of curved surface

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020881A (en) * 2012-07-17 2014-02-03 Olympus Corp Lens inspection device and lens inspection method
JP2014228425A (en) * 2013-05-23 2014-12-08 株式会社 清原光学 Three-dimensional interferometer
CN107110740A (en) * 2014-11-11 2017-08-29 华柏恩视觉研究中心 For determining to replicate(Manufacture)Optics quality system and method
JP2018503100A (en) * 2014-11-11 2018-02-01 ブリエン ホールデン ビジョン インスティチュート System and method for determining the quality of a replicated (manufacturing) optical device
CN108663192A (en) * 2017-03-31 2018-10-16 上海微电子装备(集团)股份有限公司 The detection device and method of Wavefront sensor
CN109115466A (en) * 2018-08-01 2019-01-01 苏州帕沃激光科技有限公司 A kind of measurement method and its measuring device of laser beam quality factor M 2
CN114341593A (en) * 2019-09-11 2022-04-12 科磊股份有限公司 Imaging overlay targets using moire elements and rotationally symmetric arrangements
CN110793754A (en) * 2019-11-01 2020-02-14 中国科学院光电技术研究所 Spliced telescope system eccentricity error detection method based on phase shift modulation
CN114199522A (en) * 2021-11-30 2022-03-18 宁波法里奥光学科技发展有限公司 Optical lens parameter measuring device and method
WO2023098349A1 (en) * 2021-11-30 2023-06-08 宁波法里奥光学科技发展有限公司 Optical lens parameter measurement device and method

Similar Documents

Publication Publication Date Title
JP2007170888A (en) Optical element testing device
US7511803B2 (en) Method for displaying result of measurement of eccentricity
EP2369319A2 (en) Aspheric object measuring method and apparatus
JP5896792B2 (en) Aspherical surface measuring method, aspherical surface measuring device, and optical element processing device
JP3206984B2 (en) Lens inspection machine
JPH0324431A (en) Optical instrument for phase detection inspection of optical system, particularly spectacle lens
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JPH0324432A (en) Optical instrument for phase detection inspection of optical system, particularly spectacle lens
WO2024094230A1 (en) Measurement device and measurement method for transmittance and numerical aperture of optical fiber
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP4768904B2 (en) Method for measuring physical quantity of optical element or optical system
JP3911074B2 (en) Surface shape measuring device
JP2005201703A (en) Interference measuring method and system
JP2016003900A (en) Measuring device, measuring method, optical element processing device, and optical element
JP6670476B2 (en) Detector
JP5904896B2 (en) Lens inspection apparatus and lens inspection method
Sure et al. Microscope objective production: on the way from the micrometer scale to the nanometer scale
Herffurth et al. Assessing surface imperfections of freeforms using a robotic light scattering sensor
JP5325481B2 (en) Measuring method of optical element and manufacturing method of optical element
US8294904B2 (en) Fizeau lens having aspheric compensation
JPH05223690A (en) Measuring device for lens transmissivity
JP2005315683A (en) Shearing interferometer and interference measuring device
JP3164444B2 (en) Interference measurement method
JP2003227775A (en) Striae inspection apparatus for optical part
WO2004057297A1 (en) Method and apparatus for automatic optical inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111102