JPH11304640A - Inspection apparatus for optical element - Google Patents

Inspection apparatus for optical element

Info

Publication number
JPH11304640A
JPH11304640A JP12952298A JP12952298A JPH11304640A JP H11304640 A JPH11304640 A JP H11304640A JP 12952298 A JP12952298 A JP 12952298A JP 12952298 A JP12952298 A JP 12952298A JP H11304640 A JPH11304640 A JP H11304640A
Authority
JP
Japan
Prior art keywords
lens
optical element
inspected
inspection apparatus
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12952298A
Other languages
Japanese (ja)
Inventor
Masayuki Nishiwaki
正行 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12952298A priority Critical patent/JPH11304640A/en
Publication of JPH11304640A publication Critical patent/JPH11304640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an inspection apparatus by which a lens to be inspected can be inspected wholly in a short time by a method wherein the lens to be inspected is inspected by transmitted light and only scattered light which is radiated from the lens to be inspected is detected selectively. SOLUTION: The parallel luminous flux of a laser 1 is expanded by a beam expansion system 3, it is incident on a convex lens 3 as a parallel luminous flux, and the radiant light of a lens 5 to be inspected is changed into a parallel luminous flux by a convex lens 4. The position of the convex lens 3 and that of the convex lens 4 are decided while their drive is controlled by a control device 13 on the basis of information on the lens 5 to be inspected. The radiant light of the lens 5 to be inspected is incident on a taking lens 6 and a beam splitter 7, its transmitted light is incident on a spatial filter 8 in the rear focus position of the taking lens 6, the parallel luminous is cut off, its pattern is selected, and scattered light in a specific direction is extracted. The reflected light of the beam splitter 7 is incident on an imaging element 10, an imaged signal is image-processed by a processor 12, and the deviation of the lens 5 to be inspected is measured. On the basis of the position of the lens 5 to be inspected is fine adjusted by the control device 13, the imaged signal is image-processed by the processor 12, and the quality of the lens 5 to be inspected is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種光学機器で使用
している光学系、または光学素子の検査装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection system for an optical system or an optical element used in various optical instruments.

【0002】[0002]

【従来の技術】光学系の製造においては、該光学系を構
成するレンズ等の光学素子の外観検査が必要とされる。
しかしながら、レンズは平板ガラス異なり様々な曲率を
持っているため、単一条件での検査は不可能で、形状に
応じて種々の構成で検査を行なわねばならない。
2. Description of the Related Art In the manufacture of an optical system, an appearance inspection of an optical element such as a lens constituting the optical system is required.
However, since lenses have various curvatures, unlike flat glass, inspection under a single condition is impossible, and inspection must be performed with various configurations according to the shape.

【0003】従来のレンズの検査では被検対象レンズに
白色光を照射し、該レンズからの散乱光を目視、あるい
は画像処理を行なって検査するのが一般的であった。
In the conventional inspection of a lens, it is common to irradiate white light to a lens to be inspected and visually inspect the scattered light from the lens or perform image processing to inspect the lens.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の白
色光による散乱光検出はレンズの種類が多いため、様々
な対象を網羅するための条件出しが難しいという問題が
あった。対象となるレンズの形状のバリエーションが大
きいことによる影響は、例えば検査エリアがレンズ全体
ではなく安定して検査できる範囲に限られ、一度に全体
検査ができず時間がかかるといった制約となる。また、
レンズの曲率によって検査光学系の配列が異なり、該検
査光学系を構成する照明系、撮像系の構成を大きく移動
させる必要を生じさせる原因ともなる。
However, in the conventional scattered light detection using white light, there are many types of lenses, and there is a problem that it is difficult to determine conditions for covering various objects. The effect of the large variation in the shape of the target lens is, for example, that the inspection area is not limited to the entire lens but is limited to a range in which the inspection can be performed stably, and it is not possible to perform the entire inspection at once and it takes time. Also,
The arrangement of the inspection optical system differs depending on the curvature of the lens, which may cause the illumination system and the imaging system constituting the inspection optical system to need to be largely moved.

【0005】[0005]

【課題を解決するための手段】本発明の光学素子検査装
置は上記の問題を鑑みてなされたもので、各種レンズ形
状に対し検査光学系の変更を最小限の移動で実現すると
ともに、短い検査時間でレンズ全体を検査することを目
的としている。このため本発明では被検対象物体である
レンズを透過光で検査し、被検レンズから出射される散
乱光のみを選択的に検出することを特徴としている。ま
た、本発明では被検レンズとしてのパラメータの変化、
例えば凸レンズ、凹レンズ、焦点距離等の変化を全て被
検レンズに対する検査光学系の入射側の系の移動で調節
し実現することを特徴としている。
SUMMARY OF THE INVENTION An optical element inspection apparatus according to the present invention has been made in view of the above problems, and realizes a change of an inspection optical system with a minimum movement for various lens shapes and a short inspection time. It aims to inspect the whole lens in time. For this reason, the present invention is characterized in that a lens as an object to be inspected is inspected with transmitted light, and only scattered light emitted from the lens to be inspected is selectively detected. In the present invention, the change of the parameter as the lens to be tested,
For example, it is characterized in that all changes in the convex lens, the concave lens, the focal length, and the like are adjusted and realized by moving the system on the entrance side of the inspection optical system with respect to the test lens.

【0006】[0006]

【発明の実施の形態】図1は本発明の実施形態1の光学
素子検査装置の検査光学系を示したものである。同図に
おいて1は光源のレーザ、2はビーム拡大系、3は凸レ
ンズ1、4は凸レンズ2、5は被検レンズ、6は撮影レ
ンズ、7はビームスプリッタ、8は空間フィルター、9
及び10は光電素子である撮像素子、11は処理装置、
12は制御装置である。
FIG. 1 shows an inspection optical system of an optical element inspection apparatus according to Embodiment 1 of the present invention. In the figure, 1 is a laser of a light source, 2 is a beam expanding system, 3 is a convex lens 1, 4 is a convex lens 2, 5 is a test lens, 6 is a photographing lens, 7 is a beam splitter, 8 is a spatial filter, 9
And 10 are imaging elements which are photoelectric elements, 11 is a processing device,
Reference numeral 12 denotes a control device.

【0007】レーザ1から出射された平行光束はビーム
拡大系2で被検レンズ5の検査範囲に対応して拡大さ
れ、3の凸レンズ1へ平行光束で入射する。3の凸レン
ズ1、4の凸レンズ2は被検レンズ5から出射される光
束が平行となるように、被検レンズ5に対応した波面を
発生させる役目を持つものである。3の凸レンズ1、4
の凸レンズ2は複数のレンズから構成されているレンズ
群でも、焦点距離を可変にできるズームレンズでも良
い。2つの凸レンズ3、4の配置は被検レンズ5が凸レ
ンズであるか、凹レンズであるかに対応して異なる。
The parallel light beam emitted from the laser 1 is expanded by the beam expansion system 2 in accordance with the inspection range of the lens 5 to be inspected, and is incident on the three convex lenses 1 as a parallel light beam. The 3 convex lenses 1 and 4 have a role of generating a wavefront corresponding to the test lens 5 so that the light beams emitted from the test lens 5 become parallel. 3 convex lenses 1, 4
The convex lens 2 may be a lens group composed of a plurality of lenses, or may be a zoom lens with a variable focal length. The arrangement of the two convex lenses 3 and 4 differs depending on whether the test lens 5 is a convex lens or a concave lens.

【0008】図2は実施形態1において被検レンズ5が
凹レンズの場合の配置を示すものである。4の凸レンズ
2を出射する光束は収束光で、被検レンズ5の後側焦点
位置に集光点が一致している。従って、平行光束の入射
する3の凸レンズ1の集光点は4の凸レンズ2の前側焦
点位置よりレーザ側に形成される。4の凸レンズ2は3
の凸レンズ1による集光点を前述の様に被検レンズ5の
後側焦点位置に一致するように実像を形成する。
FIG. 2 shows an arrangement in the case where the test lens 5 is a concave lens in the first embodiment. The light beam emitted from the fourth convex lens 2 is convergent light, and the focal point coincides with the rear focal position of the lens 5 to be measured. Therefore, the converging point of the three convex lenses 1 on which the parallel light beam enters is formed on the laser side from the front focal position of the fourth convex lens 2. The convex lens 2 of 4 is 3
A real image is formed such that the focal point of the convex lens 1 coincides with the rear focal position of the test lens 5 as described above.

【0009】図3は実施形態1において被検レンズ5が
凸レンズの場合の配置を示すものである。3の凸レンズ
1の集光点は4の凸レンズ2の前側焦点位置より被検レ
ンズ側に来るように設定される。従って4の凸レンズ2
を出射する光束は虚像の位置から出射される発散光であ
る。3の凸レンズ1、4の凸レンズ2の位置は被検レン
ズ5の焦点距離に対応して決定される。4の凸レンズ2
で生じた実像あるいは虚像の集光点を被検レンズ5の前
側焦点位置と一致させれば、被検レンズ5の出射側で平
行光束を発生させることができる。図3でも被検レンズ
5の前側焦点位置が4の凸レンズ2の虚像と一致してい
るため、被検レンズ5から出射する光束はほぼ平行とな
る。
FIG. 3 shows an arrangement in the case where the lens 5 to be inspected is a convex lens in the first embodiment. The focal point of the third convex lens 1 is set to be closer to the test lens than the front focal position of the fourth convex lens 2. Therefore, the convex lens 2 of 4
Is divergent light emitted from the position of the virtual image. The positions of the three convex lenses 1 and 4 are determined in accordance with the focal length of the lens 5 to be measured. 4 convex lens 2
If the converging point of the real image or virtual image generated in step (1) coincides with the front focal position of the test lens 5, a parallel light beam can be generated on the exit side of the test lens 5. Also in FIG. 3, since the front focal position of the test lens 5 coincides with the virtual image of the convex lens 2 of 4, the light beams emitted from the test lens 5 are almost parallel.

【0010】3の凸レンズ1、4の凸レンズ2の位置は
被検レンズ5の情報をもとに決定される。決定された位
置に従って制御装置13でコントロールされる駆動系を
動かし、所望の配置を実現する。
The positions of the three convex lenses 1 and 4 are determined based on information on the lens 5 to be measured. The drive system controlled by the control device 13 is moved according to the determined position to realize a desired arrangement.

【0011】本発明では被検レンズ5に入射する以前の
光学系の調節機能で被検レンズ5を出射する光束の状態
を全て制御できるため、被検レンズ5を動かす必要がな
い。被検レンズ5に対応した配置に検査光学系を導いて
光束を制御しているため、被検レンズ5から出射する光
束は常にほぼ平行光束となる。
In the present invention, since the state of all the light beams emitted from the test lens 5 can be controlled by the adjustment function of the optical system before entering the test lens 5, it is not necessary to move the test lens 5. Since the light beam is controlled by guiding the inspection optical system to an arrangement corresponding to the test lens 5, the light beam emitted from the test lens 5 is almost always a parallel light beam.

【0012】被検レンズ5を出射した平行光束は次いで
撮影レンズ6、ビームスプリッタ7へ入射する。ビーム
スプリッタ7は反射と透過の比率が1:1で光束を振幅
分割するものである。また、ビームスプリッタ7はその
表面にゴミ等が付着した場合、ノイズ源となるため必要
に応じて取りはずすことも可能である。
The collimated light beam emitted from the test lens 5 then enters the photographing lens 6 and the beam splitter 7. The beam splitter 7 divides a light beam with an amplitude ratio of 1: 1 between reflection and transmission. If dust or the like adheres to the surface of the beam splitter 7, it becomes a noise source and can be removed as necessary.

【0013】ビームスプリッタ7を透過した光束は撮影
レンズ6の後側焦点位置に配置された空間フィルター8
へ入射する。被検レンズ5を出射する光束は平行光束な
ので、撮影レンズ6を透過した後、撮影レンズ6の後側
焦点位置に集光する。空間フィルター8は被検レンズ5
を出射した前記平行光束をカットする役割を持つ。
The luminous flux transmitted through the beam splitter 7 is converted into a spatial filter 8 disposed at a rear focal position of the photographing lens 6.
Incident on. Since the light beam emitted from the test lens 5 is a parallel light beam, the light beam is transmitted through the photographing lens 6 and then condensed at the rear focal position of the photographing lens 6. The spatial filter 8 is the lens 5 to be inspected.
And has a role of cutting the parallel light beam that has exited.

【0014】しかしながら被検レンズ5を透過した光は
上記説明してきた平行光だけではない。平行光でない成
分の光はレンズの欠陥部分から生じる散乱光である。撮
影レンズ6の後側焦点位置に置かれた空間フィルター8
のパターンを選択すれば、被検レンズ5から出射される
光のうち、光軸に対し平行でない特定方向の光の成分を
選択的に抽出することができる。
However, the light transmitted through the test lens 5 is not limited to the parallel light described above. The light of the component which is not parallel light is scattered light generated from a defective portion of the lens. Spatial filter 8 placed at rear focal position of photographing lens 6
By selecting the pattern described above, it is possible to selectively extract a component of light in a specific direction that is not parallel to the optical axis from the light emitted from the test lens 5.

【0015】本実施形態では光軸を含む1〜2mm程度
の部分を配置し、平行光束以外を全て検出する構成にし
ている。空間フィルター8を通過した成分は撮像素子9
に到達する。撮像素子9の位置は撮影レンズ6によって
被検レンズ5と共役な位置となっている。該共役関係と
空間フィルター8の作用により、被検レンズ5から出射
される平行成分以外の光、即ち散乱光が撮像素子9の上
に結像され、被検レンズ5の欠陥部分の像が形成され
る。この場合、撮影レンズ6の内部で発生するゴース
ト、フレアは撮像素子9上でオフセット分として乗って
くるが、この成分は画像処理にて取りのぞくことにな
る。
In this embodiment, a portion of about 1 to 2 mm including the optical axis is arranged, and all components other than the parallel light beam are detected. The component that has passed through the spatial filter 8 is an image sensor 9
To reach. The position of the image sensor 9 is conjugate with the lens 5 to be inspected by the photographing lens 6. Due to the conjugate relationship and the action of the spatial filter 8, light other than the parallel component emitted from the test lens 5, that is, scattered light, forms an image on the image sensor 9, and an image of a defective portion of the test lens 5 is formed Is done. In this case, ghosts and flares generated inside the photographing lens 6 ride on the image sensor 9 as offsets, but this component is removed by image processing.

【0016】一方、ビームスプリッタ7の反射光は撮像
素子10へ入射する。撮像素子10は撮影レンズ6の後
側焦点位置近傍で、撮像素子10からの信号が飽和しな
い位置に調整する。被検レンズ5から出射される光束は
ほぼ平行光束となっているが、平行の程度は被検レンズ
5の種類が変わるのに応じて若干異なる。撮像素子10
は被検レンズ5から出射する光の平行状態をモニターす
るもので、撮像素子10の信号は処理装置12で画像処
理され、被検レンズ5のずれが測定される。測定された
ずれ情報に基づいて、制御装置13は3の凸レンズ1、
4の凸レンズ2の位置、または被検レンズ5の位置を光
軸に直交する面内で微調する。微調後、3、4の凸レン
ズ1、2の位置または被検レンズ5の位置が確定した段
階で、撮像素子9の信号を処理装置11で画像処理し、
被検レンズ5の良不良を判断する。
On the other hand, the reflected light from the beam splitter 7 enters the image pickup device 10. The image sensor 10 is adjusted to a position near the rear focal position of the photographing lens 6 where the signal from the image sensor 10 is not saturated. The light beam emitted from the lens 5 to be inspected is almost a parallel light beam, but the degree of parallelism is slightly different depending on the type of the lens 5 to be inspected. Image sensor 10
Monitors the parallel state of the light emitted from the lens 5 to be inspected. The signal of the image sensor 10 is image-processed by the processing device 12, and the displacement of the lens 5 is measured. On the basis of the measured shift information, the control device 13 controls the three convex lenses 1,
The position of the convex lens 2 or the position of the test lens 5 is finely adjusted in a plane orthogonal to the optical axis. After the fine adjustment, when the positions of the 3 and 4 convex lenses 1 and 2 or the position of the test lens 5 are determined, the signal of the imaging element 9 is subjected to image processing by the processing device 11,
The quality of the test lens 5 is determined.

【0017】図1の系は本発明の基本的な配置である
が、カットする空間成分に応じて空間フィルター8の遮
断部分を配置すれば、所望の空間成分を選択的に撮像す
ることができる。空間成分選択の自由度を増すため、液
晶などのデバイスを空間フィルター8として採用し、遮
断部分の大きさを可変にすることも可能である。入射光
学系を構成する3の凸レンズ1、4の凸レンズ2は複数
のレンズから構成されるレンズ群でも、焦点距離可変の
ズームレンズでもよい。
The system shown in FIG. 1 is a basic arrangement of the present invention. If a cut-off portion of the spatial filter 8 is arranged according to a spatial component to be cut, a desired spatial component can be selectively imaged. . In order to increase the degree of freedom in selecting a spatial component, it is possible to employ a device such as a liquid crystal as the spatial filter 8 and make the size of the cutoff portion variable. The three convex lenses 1 and 4 constituting the incident optical system may be a lens group composed of a plurality of lenses or a zoom lens with a variable focal length.

【0018】また検出系に配置される被検レンズからの
平行状態を検出する撮像素子10の代わりに、撮影レン
ズ6の後側焦点位置近傍に分割センサーを配置し、被検
レンズ5の光軸に垂直な面内での位置ずれを検出しても
よい。
Instead of the image pickup device 10 for detecting the parallel state from the test lens disposed in the detection system, a split sensor is disposed near the rear focal position of the photographing lens 6 and the optical axis of the test lens 5 May be detected in a plane perpendicular to.

【0019】[0019]

【発明の効果】以上述べてきたように、本発明の光学素
子検査装置は被検レンズの種類に応じ、該被検レンズに
入射する検査用の光の状態を少なくとも2つの正のパワ
ーを有するレンズ群の相対位置を変えてコントロールす
ることで、様々な形状を持つ被検レンズに対応できるフ
レキシビリティを持った光学素子測定装置の実現を可能
とした。入射光の状態のコントロールを少なくとも2群
のレンズ群の間隔で簡単に行なえるため、検査時間も短
縮される。
As described above, the optical element inspection apparatus of the present invention has at least two positive powers for the state of the inspection light incident on the lens to be inspected according to the type of the lens to be inspected. By controlling the relative positions of the lens groups by changing the relative positions, it has become possible to realize an optical element measuring apparatus having flexibility that can be used for test lenses having various shapes. Since the control of the state of the incident light can be easily performed at intervals between at least two lens groups, the inspection time is also reduced.

【0020】また本発明では光学的な空フィルターを使
用して散乱光を抽出できるので、複雑な電気処理を必要
とせず、安価で且つ短い検査時間で測定を行なうことが
可能である。
Further, in the present invention, scattered light can be extracted using an optical sky filter, so that measurement can be performed at low cost and with a short inspection time without requiring complicated electric processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1の光学素子検査装置を示
す図、
FIG. 1 is a diagram showing an optical element inspection apparatus according to a first embodiment of the present invention;

【図2】 実施形態1において被検レンズが凹レンズの
場合の検査光学系の構成を示す図、
FIG. 2 is a diagram illustrating a configuration of an inspection optical system when a test lens is a concave lens in the first embodiment.

【図3】 実施形態1において被検レンズが凸レンズの
場合の検査光学系の構成を示す図
FIG. 3 is a diagram illustrating a configuration of an inspection optical system when a lens to be inspected is a convex lens in the first embodiment.

【符号の説明】[Explanation of symbols]

1 光源(レーザ)、 2 ビーム拡大系、 3 凸レンズ1、 4 凸レンズ2、 5 被検レンズ、 6 撮影レンズ、 7 ビームスプリッタ、 8 空間フィルター、 9 撮像素子、 10 撮像素子、 11 処理装置、 12 制御装置、 13 制御装置 Reference Signs List 1 light source (laser), 2 beam expansion system, 3 convex lens 1, 4 convex lens 2, 5 test lens, 6 photographing lens, 7 beam splitter, 8 spatial filter, 9 image sensor, 10 image sensor, 11 processing device, 12 control Device, 13 control device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】光学素子の欠陥を検査する光学素子検査装
置において、該検査装置は被検光学素子から出射する光
束をほぼ平行光束にする調節機能を持つ入射光学系と、
該平行光束に続いて配置される撮影レンズ、該撮影レン
ズの焦点位置に配置された空間フィルター、及び光電検
出素子より構成されることを特徴とする光学素子検査装
置。
1. An optical element inspection apparatus for inspecting a defect of an optical element, wherein the inspection apparatus has an adjustment optical system having an adjusting function of converting a light beam emitted from the optical element to be examined into a substantially parallel light beam;
An optical element inspection apparatus, comprising: a photographing lens disposed following the parallel light beam; a spatial filter disposed at a focal position of the photographing lens; and a photoelectric detection element.
【請求項2】前記空間フィルターが被検光学素子を出射
する平行光束成分をカットし、被検光学素子の表面内部
で発生する散乱光のみを検出することを特徴とする請求
項1記載の光学素子検査装置。
2. The optical system according to claim 1, wherein the spatial filter cuts a parallel light beam component emitted from the optical element to be detected, and detects only scattered light generated inside the surface of the optical element to be inspected. Device inspection device.
【請求項3】前記入射光学系が少なくとも2つの凸レン
ズ系で構成され、該2つの凸レンズ系の間隔が可変であ
ることを特徴とする請求項2記載の光学素子検査装置。
3. An optical element inspection apparatus according to claim 2, wherein said incident optical system comprises at least two convex lens systems, and a distance between said two convex lens systems is variable.
【請求項4】前記入射光学系を出射する光束の集光位置
が前記被検光学素子の前側または後側焦点位置近傍であ
ることを特徴とする請求項3記載の光学素子検査装置。
4. The optical element inspection apparatus according to claim 3, wherein the light beam exiting from the incident optical system is condensed at a position near the front or rear focal point of the test optical element.
【請求項5】前記入射光学系を構成する凸レンズ系がズ
ームレンズであることを特徴とする請求項4記載の光学
素子検査装置。
5. An optical element inspection apparatus according to claim 4, wherein said convex lens system constituting said incident optical system is a zoom lens.
【請求項6】前記撮影レンズと前記空間フィルターの間
にビームスプリッタを配置し、前記被検光学素子を出射
する光束の状態をモニターする光電素子を配置したこと
を特徴とする請求項4記載の光学素子検査装置。
6. The apparatus according to claim 4, wherein a beam splitter is arranged between said taking lens and said spatial filter, and a photoelectric element for monitoring a state of a light beam emitted from said optical element to be inspected is arranged. Optical element inspection device.
【請求項7】前記モニター用の光電素子が前記撮影レン
ズの焦点位置近傍に配置されていることを特徴とする請
求項6記載の光学素子検査装置。
7. An optical element inspection apparatus according to claim 6, wherein said monitor photoelectric element is arranged near a focal position of said taking lens.
【請求項8】前記モニター用の光電素子の出力に基づい
て、前記入射光学系または前記被検光学素子の位置を調
整することを特徴とする請求項7記載の光学素子検査装
置。
8. The optical element inspection apparatus according to claim 7, wherein the position of the incident optical system or the position of the test optical element is adjusted based on the output of the monitor photoelectric element.
【請求項9】前記空間フィルターの形状が可変であるこ
とを特徴とする請求項2記載の光学素子検査装置。
9. An optical element inspection apparatus according to claim 2, wherein the shape of said spatial filter is variable.
JP12952298A 1998-04-23 1998-04-23 Inspection apparatus for optical element Pending JPH11304640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12952298A JPH11304640A (en) 1998-04-23 1998-04-23 Inspection apparatus for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12952298A JPH11304640A (en) 1998-04-23 1998-04-23 Inspection apparatus for optical element

Publications (1)

Publication Number Publication Date
JPH11304640A true JPH11304640A (en) 1999-11-05

Family

ID=15011594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12952298A Pending JPH11304640A (en) 1998-04-23 1998-04-23 Inspection apparatus for optical element

Country Status (1)

Country Link
JP (1) JPH11304640A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057983A (en) * 2006-08-29 2008-03-13 Ulvac Japan Ltd Device and method for evaluating lens polishing precision
CN100445718C (en) * 2005-05-18 2008-12-24 中国科学院长春光学精密机械与物理研究所 Measuring method of optical transmission function and its device
JP2015055561A (en) * 2013-09-12 2015-03-23 株式会社クラレ Defect inspection method and defect inspection device of microlens array
CN109141829A (en) * 2018-07-23 2019-01-04 北京大恒图像视觉有限公司 A kind of detection method of target line sharpness computation and industrial camera rear cut-off distance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445718C (en) * 2005-05-18 2008-12-24 中国科学院长春光学精密机械与物理研究所 Measuring method of optical transmission function and its device
JP2008057983A (en) * 2006-08-29 2008-03-13 Ulvac Japan Ltd Device and method for evaluating lens polishing precision
JP2015055561A (en) * 2013-09-12 2015-03-23 株式会社クラレ Defect inspection method and defect inspection device of microlens array
CN109141829A (en) * 2018-07-23 2019-01-04 北京大恒图像视觉有限公司 A kind of detection method of target line sharpness computation and industrial camera rear cut-off distance
CN109141829B (en) * 2018-07-23 2020-10-09 北京大恒图像视觉有限公司 Target line definition calculation and industrial camera rear intercept detection method

Similar Documents

Publication Publication Date Title
KR100190312B1 (en) Foreign substance inspection apparatus
US6124924A (en) Focus error correction method and apparatus
US6366352B1 (en) Optical inspection method and apparatus utilizing a variable angle design
EP0856728B1 (en) Optical method and apparatus for detecting defects
US20040129858A1 (en) Automatic focussing device for an optical appliance
JP3385432B2 (en) Inspection device
WO2015151557A1 (en) Defect inspection device and inspection method
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
JP3105702B2 (en) Optical defect inspection equipment
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
KR101652355B1 (en) optical apparatus for examining pattern image of semiconductor wafer
JP2015108582A (en) Three-dimensional measurement method and device
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
KR100878425B1 (en) Surface measurement apparatus
JPH11304640A (en) Inspection apparatus for optical element
JP2008026049A (en) Flange focal distance measuring instrument
KR101447857B1 (en) Particle inspectiing apparatus for lens module
TWI699510B (en) Increasing dynamic range of a height sensor for inspection and metrology
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JP2000509825A (en) Optical scanning device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPH0471453B2 (en)
JPH04297810A (en) Optical tester
JPH09281401A (en) Object inspecting instrument
JPH11260689A (en) Uniform optical system, pattern tester and pattern testing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105