JP2672771B2 - Through hole inner diameter measuring device - Google Patents

Through hole inner diameter measuring device

Info

Publication number
JP2672771B2
JP2672771B2 JP5161201A JP16120193A JP2672771B2 JP 2672771 B2 JP2672771 B2 JP 2672771B2 JP 5161201 A JP5161201 A JP 5161201A JP 16120193 A JP16120193 A JP 16120193A JP 2672771 B2 JP2672771 B2 JP 2672771B2
Authority
JP
Japan
Prior art keywords
hole
light
optical axis
optical system
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5161201A
Other languages
Japanese (ja)
Other versions
JPH0735518A (en
Inventor
六男 丸山
一 尾坂
道彦 小野
克廣 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGANO PREFECTURAL GOVERNMENT
Original Assignee
NAGANO PREFECTURAL GOVERNMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGANO PREFECTURAL GOVERNMENT filed Critical NAGANO PREFECTURAL GOVERNMENT
Priority to JP5161201A priority Critical patent/JP2672771B2/en
Publication of JPH0735518A publication Critical patent/JPH0735518A/en
Application granted granted Critical
Publication of JP2672771B2 publication Critical patent/JP2672771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は小径の貫通の内径寸法
を高精度に測定することができる貫通の内径測定装置
に関する。
The present invention relates to a internal diameter measurement device of the through hole capable of measuring the inner diameter dimension of the small diameter of the through-hole with high accuracy.

【0002】[0002]

【従来の技術および解決しようとする課題】工作部品な
どでは非常に小さな貫通を設けた製品があるが、製品
によっては1mm程度の径の穴を1μm程度の分解能で
測定するといったきわめて高精度の測定が必要となる場
合がある。このような内径を測定する場合、光学的に
測定する方法として被検査体に光を照射し、の影を測
定することによって行う方法がある。
2. Description of the Related Art There are some products such as machined parts having very small through- holes. However, depending on the product, it is possible to measure a hole with a diameter of about 1 mm with a resolution of about 1 μm. Measurement may be required. When measuring the inside diameter of such a hole , there is a method of performing an optical measurement by irradiating the object to be inspected with light and measuring the shadow of the hole .

【0003】しかし、の影を用いる方法はの端面も
しくは偶然に影となった部分を測定することになり、正
確な径の測定は不可能である。また、貫通が長い場
合にはさらに測定が困難になるという問題点がある。本
発明者は径サイズが1mm以下といったきわめて微小な
貫通の内径を精度良く測定する装置として本装置を発
明したものであり、とくに内径にくらべての長さが長
い貫通の内径を正確に測定する場合に有効に利用する
ことができる貫通の内径測定装置を提供することを目
的とする。
However, a method using a shadow of the holes will be measuring the end face or portion of a shadow accidentally hole, the measurement of the exact pore size impossible. In addition, there is a problem that the measurement becomes more difficult when the through hole is long. The present inventors are those diameters invented the device the inner diameter of very small holes like 1mm or less as accurately measuring device, in particular the inner diameter of the long holes length of the hole than the inner diameter precisely It is an object of the present invention to provide a through- hole inner diameter measuring device which can be effectively used in the case of measuring.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、被検査対象であ
る貫通孔を有する被検査体を前記貫通孔の中心軸を光軸
に合わせて正確にセットするためのセット機構と、前記
被検査体から離間して前記貫通孔の前方に配置され、前
記光軸に対し対称な配置で複数のピンホールを設けたチ
ャートおよび、前記各々のピンホールからの光束を前記
貫通孔の外部から貫通孔に向けて一度に直接的に入射さ
せる光源およびレンズ系を有する投光光学系と、前記被
検査体から離間して前記貫通孔の後方に配置され、前記
貫通孔の内壁面で反射されて前記貫通孔から出射した
を受光し、前記各々のピンホールの結像位置を観測する
受光光学系とを具備することを特徴とする。また、被検
査対象である貫通孔を有する被検査体を前記貫通孔の中
心軸を光軸に合わせて正確にセットするためのセット機
構と、前記被検査体から離間して前記貫通孔の前方に配
置され、前記光軸に対し対称な配置で複数のピンホール
を設けたチャート、および前記各々のピンホールからの
光束を前記貫通孔の外部から貫通孔に向けて一度に直接
的に入射させる光源、および入射光束の径を制限するた
めの絞り、およびレンズ系を有する投光光学系と、前記
被検査体の後方の光軸上で前記貫通孔の内壁面で反射さ
れた各光束が一致して光軸を横切る位置を検知する受光
光学系とを具備することを特徴とする。また、受光光学
系に前記貫通孔の内壁面からの反射光を受光するCCD
カメラを設け、該CCDカメラを光軸方向に移動ガイド
するリニアエンコーダ付きのリニアガイドを設けたこと
を特徴とする。また、被検査体の貫通孔の状態を観察す
る観察光学系を設けたことを特徴とする。
The present invention has the following constitution in order to achieve the above object. In other words, the object to be inspected Der
And Se Tsu bets mechanism to accurately set to match the optical axis of the central axis of the through hole of the object to be inspected having a through-hole that the
It is placed in front of the through-hole apart from the object to be inspected,
A chip with multiple pinholes arranged symmetrically with respect to the optical axis.
And the light flux from each of the pinholes
Direct injection from the outside of the through-hole to the through-hole at one time
A light projecting optical system having a light source and lens system to the object
Located rearwardly of the through-holes spaced apart from the test body, the light-receiving optical wherein is reflected by the inner wall surface of the through-hole by receiving light emitted from said through hole, to observe the imaging position of the pinhole of the respective And a system. Also, the subject
Among the inspection object having a through-hole which is査subject of the through hole
And Se Tsu bets mechanism to accurately set the combined mandrel to the optical axis, distribution in front of the through-holes spaced apart from the test subject
And pinholes arranged symmetrically with respect to the optical axis.
With the chart, and from each of the pinholes
Direct light flux from outside the through-hole to the through-hole at once
To limit the diameter of the incident light beam and the incident light source
Iris of the eye, and a light projecting optical system having a lens system, the
And a light receiving optical system for detecting a position where the light beams reflected by the inner wall surface of the through hole coincide with each other on the optical axis behind the object to be inspected and cross the optical axis. Further, the light receiving optical system receives the reflected light from the inner wall surface of the through hole.
A camera is provided, and a linear guide with a linear encoder for moving and guiding the CCD camera in the optical axis direction is provided. Further, it is characterized in that an observation optical system for observing the state of the through hole of the inspection object is provided.

【0005】[0005]

【作用】被検査体のセット機構によって被検査体の貫通
孔を光軸に正確に合わせてセットし、投光光学系を介し
てチャートに設けた各々のピンホールから貫通孔の内壁
面に光束を入射させる。貫通孔の内壁面で反射された反
射光は受光光学系によって受光され、各々のピンホール
の結像位置が観測される。このピンホールの観測位置か
ら貫通孔の内径寸法が測定される。ピンホールの結像位
置は光学系によって所定の感度で得られるから、これに
よって高精度の測定が可能になる。また、各ピンホール
から貫通孔の内壁面に入射され、貫通孔の内壁面で反射
された各光束が一致して光軸を横切る範囲を受光光学系
で検知する。各光束が一致して光軸を横切る範囲の端点
位置あるいは両端点の中点位置等を比較することにより
貫通孔の内径寸法を測定することができる。貫通孔の内
壁面による反射光が光軸を横切る範囲はリニアガイドに
よってガイド移動するCCDカメラによって正確に測定
できる。また、観測光学系によって被検査体の貫通孔の
状態を観察することにより被検査体を光軸上で正確にセ
ットすることができる。
[Function] The through-hole of the object to be inspected is accurately aligned with the optical axis by the inspecting object setting mechanism and is set through the projection optical system .
A light beam is made to enter the inner wall surface of the through hole from each pinhole provided in the chart . The reflected light reflected by the inner wall surface of the through hole is received by the light receiving optical system, and the image forming position of each pinhole is observed. The inner diameter of the through hole is measured from the observation position of the pinhole. Since the imaging position of the pinhole can be obtained with a predetermined sensitivity by the optical system, this enables highly accurate measurement. Also, each pinhole
The light receiving optical system covers the range where the light beams that are incident on the inner wall surface of the through hole from and are reflected by the inner wall surface of the through hole match and cross the optical axis.
Detect with. End point of the range in which each light beam coincides and crosses the optical axis
The inner diameter of the through hole can be measured by comparing the positions or the midpoints of both end points . The range in which the light reflected by the inner wall surface of the through hole crosses the optical axis can be accurately measured by a CCD camera that guides and moves with a linear guide. Further, by observing the state of the through hole of the inspection object with the observation optical system, the inspection object can be set accurately on the optical axis.

【0006】[0006]

【実施例】以下、本発明の好適な実施例を添付図面に基
づいて詳細に説明する。図1は貫通の内径測定装置の
一実施例の全体構成を示す。実施例の装置は貫通を有
する被検査体に対して光を照射するための投光光学系A
と、被検査体からの反射光を受光するための受光光学系
Bと、被検査体を姿勢制御してセットするためのセット
機構Cと、被検査体の貫通の状態を観察するための観
察光学系Dとを有する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows the overall construction of an embodiment of the inner diameter measuring device for a through hole . The apparatus of the embodiment is a light projecting optical system A for irradiating an object having a through hole with light.
A light receiving optical system B for receiving the reflected light from the object to be inspected, a setting mechanism C for setting the object to be inspected by controlling its posture, and a state for observing the state of the through hole of the object to be inspected. an observation optical system and a D.

【0007】図2は実施例装置の要部の配置をわかりや
すく示した構成図である。前記投光光学系Aは光源10
と、光源10の投光側に配置するレンズ51、レンズ5
2および絞り16からなる。実施例ではレンズ51とし
て可変焦点レンズを使用し、レンズ52として固定焦点
のものを使用した。
FIG. 2 is a block diagram showing the arrangement of the essential parts of the embodiment apparatus in an easy-to-understand manner. The projection optical system A is a light source 10
And the lens 51 and the lens 5 arranged on the light projecting side of the light source 10.
2 and diaphragm 16. In the embodiment, a variable focus lens is used as the lens 51 and a fixed focus lens is used as the lens 52.

【0008】観察光学系Dは被検査体を照明するための
照明用光源18とプリズム20と観察用のCCDカメラ
22を有する。なお、CCDカメラ22の前段には拡大
用としてレンズ系を設けている。プリズム20にはハー
フミラーを形成しており、光軸上に配置して照明用光源
18からの光を被検査体に照射し、被検査体からの反射
光をCCDカメラ22に導いて被検査体の貫通の状態
を観察できるようにしている。
The observation optical system D has an illumination light source 18 for illuminating an object to be inspected, a prism 20, and a CCD camera 22 for observation. A lens system is provided in front of the CCD camera 22 for enlargement. A half mirror is formed on the prism 20 and is arranged on the optical axis to irradiate the light to be inspected with the light from the illumination light source 18 and guide the reflected light from the object to be inspected to the CCD camera 22. The state of the through- hole of the body can be observed.

【0009】被検査体のセット機構Cは被検査体30の
貫通を正確に光軸上に配置するためのもので、被検査
体30をX、Y軸方向に移動させる移動制御機構と、貫
の軸線方向の姿勢を制御する姿勢制御機構とを有す
る。こうして、セット機構Cは4軸で被検査体30の位
置と姿勢を制御してセットできる。前記回転制御機構は
セット機構上に配置され、被検査体30を光軸回りに回
転させることができる。また、セット機構Cは光軸方向
への移動機構上にあり、被検査体30の光軸方向への移
動ができる。
The inspection object setting mechanism C is for accurately arranging the through holes of the inspection object 30 on the optical axis, and includes a movement control mechanism for moving the inspection object 30 in the X and Y axis directions. An attitude control mechanism for controlling the attitude of the through hole in the axial direction. In this way, the setting mechanism C can set the position and orientation of the device under test 30 by controlling the four axes. The rotation control mechanism is arranged on the setting mechanism and can rotate the device under test 30 around the optical axis. Further, the setting mechanism C is provided on the moving mechanism in the optical axis direction, and the device under test 30 can be moved in the optical axis direction.

【0010】受光光学系Bは被検査体の後方に配置する
もので、被検査体に近い側にレンズ53を配置しその後
方にレンズ54を配置する。24はレンズ53の前方に
配置した絞りである。また、レンズ54の後方にはレン
ズ54からの出射光を受けるCCDカメラ26を配置す
る。このCCDカメラ26は光軸に対して直交する方向
に移動して位置調整可能であるとともに光軸方向に移動
可能に支持される。図1で28及び29はリニアエンコ
ーダによってCCDカメラ26を光軸方向及び光軸と直
交方向に移動制御するリニアガイドである。
The light receiving optical system B is arranged behind the object to be inspected, and the lens 53 is arranged on the side close to the object to be inspected and the lens 54 is arranged behind it. Reference numeral 24 denotes a diaphragm arranged in front of the lens 53. A CCD camera 26 that receives light emitted from the lens 54 is arranged behind the lens 54. The CCD camera 26 can be moved in a direction orthogonal to the optical axis to adjust its position, and is supported so as to be movable in the optical axis direction. In FIG. 1, reference numerals 28 and 29 are linear guides for controlling the movement of the CCD camera 26 in the optical axis direction and the direction orthogonal to the optical axis by a linear encoder.

【0011】実施例の貫通の内径測定装置は上述した
ように、被検査体の前後に投光光学系Aおよび受光光学
系Bを配置したものであるが、その光学配置を図3に示
す。図ではレンズ51、52、53、54の各位置とC
CDカメラ26の受光面を直線で示す。光源10は図の
左端にあるが、その前方にピンホールを設けたチャート
60を配置する。図4にチャート60の正面図を示す。
実施例の光学系はチャート60に設けたピンホールをC
CDカメラ26の受光面上に結像させ、その結像位置か
ら貫通の内径を測定するものである。そのため、チャ
ート60には図のように十字位置に4つのピンホール6
2を設けたものを使用した。実施例ではピンホール62
の径が0.1mm、互いに向かい合うピンホール62間
の距離が0.9mmである。なお、チャート60の形式
は測定内容に応じて適宜変更することができる。
As described above, the through hole inner diameter measuring device of the embodiment has the light projecting optical system A and the light receiving optical system B arranged in front of and behind the object to be inspected. The optical arrangement is shown in FIG. . In the figure, each position of the lenses 51, 52, 53, 54 and C
The light receiving surface of the CD camera 26 is shown by a straight line. Although the light source 10 is at the left end of the figure, a chart 60 having a pinhole is arranged in front of it. FIG. 4 shows a front view of the chart 60.
In the optical system of the embodiment, the pinhole provided on the chart 60 is C
An image is formed on the light receiving surface of the CD camera 26, and the inner diameter of the through hole is measured from the image forming position. Therefore, the chart 60 has four pinholes 6 at the cross position as shown in the figure.
The one provided with 2 was used. In the embodiment, the pinhole 62
Has a diameter of 0.1 mm, and the distance between the pinholes 62 facing each other is 0.9 mm. The format of the chart 60 can be appropriately changed according to the measurement content.

【0012】チャート60はレンズ51に対しその焦点
距離f1 の位置に配置する。これによってピンホール6
2から出射した光は平行光束としてレンズ52に入射す
る。実施例ではレンズ51には可変焦点レンズを使用し
た。なお、レンズ51とレンズ52との間隔は適宜設定
してよい。図3で30a、30bは被検査体で、異なる
内径の被検査体をセットした様子を示している。
The chart 60 is arranged at the focal length f 1 of the lens 51. This makes pinhole 6
The light emitted from 2 enters the lens 52 as a parallel light flux. In the embodiment, a variable focus lens is used as the lens 51. The distance between the lens 51 and the lens 52 may be set appropriately. In FIG. 3, reference numerals 30a and 30b denote inspected objects, in which inspected objects having different inner diameters are set.

【0013】レンズ52、53、54、CCDカメラ2
6はレンズ52、53、54の焦点距離f2 、f3 、f
4 を基準にして図3の位置関係に従って配置する。すな
わち、レンズ52とレンズ53はf2 +f3 の間隔で配
置し、レンズ53とCCDカメラ26はともにレンズ5
4の焦点距離の位置にそれぞれ配置する。なお、レンズ
53、レンズ54の間隔はf4 を基準とするが任意の間
隔W4 で配置することができる。実施例の測定装置は被
検査体30a、30bの貫通孔の内壁面に光ビームを照
射し、内壁面からの反射光をCCDカメラ26の受光面
で受けることを特徴とする。このため、レンズ52の前
方には光ビームを絞って貫通孔の内壁面に入射させるた
めの絞り16を設けている。貫通孔は内径寸法にくらべ
て長さが長いから光ビームは非常に浅い角度で貫通孔内
に入射するようにしている。
Lenses 52, 53, 54, CCD camera 2
6 is the focal lengths f 2 , f 3 , f of the lenses 52, 53, 54
4 with respect to the placing in accordance with the position relation of FIG. That is, the lens 52 and the lens 53 are arranged at an interval of f 2 + f 3 , and both the lens 53 and the CCD camera 26 have the lens 5
The focal lengths of 4 are respectively set. Although the distance between the lens 53 and the lens 54 is based on f 4 , the distance can be set to any distance W 4 . The measuring device of the embodiment is characterized in that the inner wall surfaces of the through holes of the inspection objects 30a and 30b are irradiated with a light beam, and the reflected light from the inner wall surfaces is received by the light receiving surface of the CCD camera 26. Therefore, in front of the lens 52, there is provided a diaphragm 16 for narrowing the light beam and making it enter the inner wall surface of the through hole. Since the through hole is longer than the inner diameter, the light beam is made to enter the through hole at a very shallow angle.

【0014】本実施例の光学系配置によると、レンズ5
2とレンズ53とはf2 +f3 の間隔で配置しているか
ら、レンズ53からの出射光は平行光束となり、レンズ
54によってCCDカメラ26の受光面上にチャート6
0のピンホール62が結像する。図3に示すように被検
査体30a、30bの内径の相違はCCDカメラ26の
受光面上でのピンホールの結像位置の相違として一定の
倍率で拡大されて表れる。このCCDカメラ26の受光
面上でのピンホール位置は受光面での中心からの距離を
Rとすると、チャート60上での中心からピンホール6
2までの距離をh、被検査体の貫通孔の半径をrとして
次式で与えられる。 R=(f4 /f3){2r−(f2 h/f1)}
According to the optical system arrangement of this embodiment, the lens 5
Since the lens 2 and the lens 53 are arranged at an interval of f 2 + f 3 , the light emitted from the lens 53 becomes a parallel light beam, and the chart 54 is formed on the light receiving surface of the CCD camera 26 by the lens 54.
The 0 pinhole 62 is imaged. As shown in FIG. 3, the difference in the inner diameters of the inspection objects 30a and 30b is magnified at a certain magnification as the difference in the image forming position of the pinhole on the light receiving surface of the CCD camera 26. Assuming that the distance from the center on the light receiving surface is R, the pinhole position on the light receiving surface of this CCD camera 26 is pinhole 6 from the center on the chart 60.
The distance to 2 is h, and the radius of the through hole of the inspection object is r, which is given by the following equation. R = (f 4 / f 3 ) {2r- (f 2 h / f 1)}

【0015】被検査体の貫通孔の内径をr1 、r2 とし
た場合、CCDカメラ26の受光面で観測されるピンホ
ール位置R1 、R2 の差ΔRは次式で与えられる。 ΔR=R2 −R1 =(2f4 /f3)(r2 −r1 ) したがって、被検査体の貫通孔の半径の差はCCDカメ
ラ26の受光面上で K=2f4 /f3 の倍率で検出されることになる。この感度係数Kはレン
ズ53とレンズ54との焦点距離によって決まるから、
4 /f3 を大きな値になるように選択することによっ
て高精度で測定することが可能である。実施例ではレン
ズ51として64mm〜640mmのズームレンズを使
用し、レンズ52、53、54にはそれぞれ焦点距離7
0mm、70mm、135mmのレンズを使用した。
When the inner diameters of the through holes of the object to be inspected are r 1 and r 2 , the difference ΔR between the pinhole positions R 1 and R 2 observed on the light receiving surface of the CCD camera 26 is given by the following equation. ΔR = R 2 −R 1 = (2f 4 / f 3 ) (r 2 −r 1 ) Therefore, the difference in the radius of the through hole of the inspection object is K = 2f 4 / f 3 on the light receiving surface of the CCD camera 26. Will be detected at a magnification of. Since this sensitivity coefficient K is determined by the focal lengths of the lenses 53 and 54,
It is possible to measure with high accuracy by selecting f 4 / f 3 so as to have a large value. In the embodiment, a zoom lens of 64 mm to 640 mm is used as the lens 51, and the lenses 52, 53 and 54 each have a focal length of 7 mm.
Lenses of 0 mm, 70 mm and 135 mm were used.

【0016】CCDカメラ26の受光面上でのピンホー
ル位置は適宜方法で計測すればよいが、CCDカメラ2
6の受光面での1素子をスケール単位として測定する方
法、あるいは、CCDカメラ26を光軸に対し直交する
方向に移動させるリニアガイドを設け、このリニアガイ
ドのリニアエンコーダを読み取って計測する等が利用で
きる。
The pinhole position on the light receiving surface of the CCD camera 26 may be measured by an appropriate method.
A method of measuring one element on the light receiving surface of 6 as a scale unit, or a linear guide that moves the CCD camera 26 in a direction orthogonal to the optical axis is provided, and a linear encoder of this linear guide is read for measurement. Available.

【0017】なお、光学系のセッティング誤差やレンズ
の製作誤差は標準資料を用いて校正する。被検査体の貫
通孔の内径を測定する場合は、観察光学系Dによって貫
通孔位置を観察しつつセット機構Cによって貫通孔を正
確に光軸に位置合わせした後、CCDカメラ26でピン
ホール位置を検出することによって貫通孔の内径を測定
する。実施例の装置によれば1mm径の貫通孔に対して
数μmの精度で内径寸法を測定することができ、きわめ
て精度の良い測定が可能になった。また、この実施例の
装置によれば内径が0.1mm程度の貫通孔程度まで測
定可能であり、とくに貫通孔の長さが数十mmといった
長い貫通孔を対象として測定できるという特徴がある。
Incidentally, the setting error of the optical system and the lens
Calibration error shall be calibrated using standard materials . When measuring the inner diameter of the through hole of the object to be inspected, after observing the position of the through hole with the observation optical system D, the through hole is accurately aligned with the optical axis by the setting mechanism C, and then the pinhole position is measured with the CCD camera 26. The inner diameter of the through hole is measured by detecting. According to the apparatus of the embodiment, the inner diameter can be measured with an accuracy of several μm with respect to the through hole having a diameter of 1 mm, and the measurement can be performed with extremely high accuracy. Further, the apparatus of this embodiment has a feature that it can measure up to about a through hole having an inner diameter of about 0.1 mm, and particularly can measure a long through hole having a length of several tens mm.

【0018】図5および図6は貫通孔の内径測定装置の
他の実施例についての構成を示す。この実施例では前記
実施例で被検査体30の後方に配置したレンズ53、5
4を使用せず、CCDカメラ26を光軸上で前後動させ
被検査体30の貫通孔の内壁面で反射した光が光軸と交
差する位置を検出することによって測定する。レンズ5
3、54を除く他の構成は前記実施例と共通である。
5 and 6 show the construction of another embodiment of the inner diameter measuring device of the through hole. In this embodiment, the lenses 53, 5 arranged behind the device under test 30 in the above embodiment
4 is not used, the CCD camera 26 is moved back and forth on the optical axis to detect the position where the light reflected by the inner wall surface of the through hole of the device under test 30 intersects the optical axis. Lens 5
The other configurations except 3, 54 are common to the above-mentioned embodiment.

【0019】この実施例でチャート60、レンズ51、
52のセット位置については図6に示すように前記実施
例と同様である。レンズ52から出射する光は絞り16
で細く絞られ被検査体30a、30bの内壁面内に投射
される。貫通孔内に投射された光は貫通孔の内壁面で反
射され後方に出射するが、その出射光のビーム幅は被検
査体30a、30bの内径寸法によって変動する。CC
Dカメラ26は貫通孔で反射された光が光軸を横切る境
界位置を検出することによって貫通孔の内径を測定す
る。
In this embodiment, the chart 60, the lens 51,
The set position of 52 is the same as that of the above-mentioned embodiment as shown in FIG. The light emitted from the lens 52 is the diaphragm 16
Then, it is narrowed down and projected onto the inner wall surfaces of the inspection objects 30a and 30b. The light projected into the through hole is reflected by the inner wall surface of the through hole and is emitted rearward, but the beam width of the emitted light varies depending on the inner diameter dimensions of the inspection objects 30a and 30b. CC
The D camera 26 measures the inner diameter of the through hole by detecting the boundary position where the light reflected by the through hole crosses the optical axis.

【0020】図6で被検査体30aについてはP1 およ
びQ1 点が貫通孔で反射された光が光軸と交差する境界
位置、被検査体30bについてはP2 およびQ2 点が光
軸と交差する境界位置である。これら境界位置P1 、Q
1 、P2 、Q2 はCCDカメラ26を光軸上で前後動さ
せることによって検知することができる。すなわち、境
界位置PではCCDカメラ26の受光面上のスポットが
複数から一つになり境界位置Qではスポットが一つから
複数に分離するからCCDカメラ26を前後動させて境
界位置を検知することができる。CCDカメラ26はリ
ニアガイド28によって前後動されリニアエンコーダに
よってその前後位置を正確に検知することができる。
In FIG. 6, the points P 1 and Q 1 of the inspection object 30a are the boundary positions where the light reflected by the through hole intersects the optical axis, and the points P 2 and Q 2 of the inspection object 30b are the optical axes. It is the boundary position that intersects with. These boundary positions P 1 , Q
1 , P 2 and Q 2 can be detected by moving the CCD camera 26 back and forth on the optical axis. That is, at the boundary position P, the number of spots on the light receiving surface of the CCD camera 26 becomes one from a plurality, and at the boundary position Q, the spots separate from one to a plurality. Therefore, the CCD camera 26 is moved back and forth to detect the boundary position. You can The CCD camera 26 is moved back and forth by the linear guide 28, and the front and rear position thereof can be accurately detected by the linear encoder.

【0021】本実施例の光学系配置によれば、P1 とQ
1 の中点位置をa、P2 とQ2 の中点位置をbとする
と、感度係数Kとしてa、bと被検査体の貫通孔の内径
をr1、r2 とは次の関係式で与えられる。 b−a=K(r2 −r1 ) K=(2f1 2 2h)/(f2h+f1s)(f2h- f1s) なお、s はレンズ52においた光束を絞るためのピンホ
ールの半径である。したがって、本実施例の装置の場合
も、上式にしたがって貫通孔の内径寸法を高感度で測定
することができる。
According to the optical system arrangement of this embodiment, P 1 and Q
Assuming that the midpoint position of 1 is a and the midpoint position of P 2 and Q 2 is b, a and b and the inner diameters of the through holes of the DUT are r 1 and r 2 as the sensitivity coefficient K Given in. b−a = K (r 2 −r 1 ) K = (2f 1 f 2 2 h) / (f 2 h + f 1 s) (f 2 h−f 1 s) where s is the light flux in the lens 52. Is the radius of the pinhole for. Therefore, also in the case of the apparatus of this embodiment, the inner diameter of the through hole can be measured with high sensitivity according to the above formula.

【0022】図7は貫通孔の内径測定装置のさらに他の
実施例を示す。この実施例では図5、6に示す実施例で
さらにレンズ52を除いた光学系によって構成したもの
である。すなわち、図7に示すように光源10からの光
はレンズ51で平行光束になって出射され、被検査体3
0a、30bの前方に置いたピンホール板17に設けた
ピンホールによって絞られて貫通孔内に入射する。貫通
孔内に入射した光束は貫通孔の内壁面で反射されるが、
上記実施例と同様にCCDカメラ26を前後動させ光軸
上でビームが交差する境界位置を検出する。
FIG. 7 shows still another embodiment of the through hole inner diameter measuring device. In this embodiment, the optical system is formed by removing the lens 52 from the embodiment shown in FIGS. That is, as shown in FIG. 7, the light from the light source 10 is collimated and emitted by the lens 51, and the inspection object 3
The light is focused by the pinholes provided in the pinhole plate 17 placed in front of 0a and 30b and enters the through holes. The light beam that has entered the through hole is reflected by the inner wall surface of the through hole,
Similar to the above embodiment, the CCD camera 26 is moved back and forth to detect the boundary position where the beams intersect on the optical axis.

【0023】本実施例の場合は貫通孔内に平行光束で入
射するから反射光も平行光束になる。被検査体30a、
30bによる反射光と光軸との交差位置P1 、Q1 とP
2 、Q2 の中点位置を各々a、b、感度係数Kとする
と、 b−a=K(r2 −r1 ) K=2f1 /h となる。感度係数Kはf1 とhによって決まるから、f
1 の値をhにくらべて大きく設定することによって上記
各実施例と同様な精密測定が可能になる。
In the case of the present embodiment, since the parallel light flux enters the through hole, the reflected light is also a parallel light flux. 30A to be inspected,
Crossing positions P 1 , Q 1 and P of the light reflected by 30 b and the optical axis
2 , where the midpoint positions of Q 2 and Q 2 are a and b, respectively, and the sensitivity coefficient is K, then b−a = K (r 2 −r 1 ) K = 2f 1 / h. Since the sensitivity coefficient K is determined by f 1 and h, f
By setting the value of 1 to be larger than that of h, it is possible to perform the same precise measurement as in each of the above embodiments.

【0024】上記各実施例の貫通孔の内径測定装置は被
検査体の貫通孔の内壁面に光束を入射させ、貫通孔の内
壁面の反射光を検知して測定するものであり、光束をし
ぼって貫通孔内に入射させ貫通孔に対してきわめて浅い
角度で入射させることによって貫通孔の内径が0.1m
mといった従来方法では正確に計測することが非常に困
難な微小径の貫通孔についても正確に測定することが可
能になる。とくに、上記のような光学的配置を採用する
ことによって内径寸法にくらべて非常に長い貫通孔を測
定する場合でも容易に測定ができるという特徴がある。
また、測定の際の感度係数Kを大きくとることによって
1mmの内径の貫通孔で1μm程度の分解能での測定が
可能になった。
The through-hole inner diameter measuring device of each of the above-mentioned embodiments makes a light beam incident on the inner wall surface of the through-hole of the object to be inspected and detects the reflected light on the inner wall surface of the through-hole to measure it. By squeezing the light into the through hole and making the light incident at an extremely shallow angle with respect to the through hole, the inner diameter of the through hole becomes 0.1 m.
It is possible to accurately measure even a small-diameter through hole that is very difficult to measure accurately by the conventional method such as m. In particular, by adopting the optical arrangement as described above, there is a feature that the measurement can be easily performed even when measuring a through hole that is very long as compared with the inner diameter.
Further, by making the sensitivity coefficient K large at the time of measurement, it becomes possible to measure with a resolution of about 1 μm using a through hole having an inner diameter of 1 mm.

【0025】[0025]

【発明の効果】本発明に係る貫通孔の内径測定装置によ
れば、上述したように、非接触方法により貫通孔の内径
を高精度で測定することが可能になり、従来方法では測
定が非常に困難であった微小径の貫通孔についても正確
な測定を行うことができる。また、ピンホールの結像位
置を観測して測定する場合には精度のよい測定が可能で
あり、反射光が光軸を横切る範囲から測定する場合には
光学系配置が簡易な構成で精度の良い測定が可能になる
等の著効を奏する。
According to the through-hole inner diameter measuring apparatus of the present invention, as described above, it is possible to measure the inner diameter of the through-hole with high accuracy by the non-contact method, and the conventional method can measure the inner diameter extremely. Accurate measurement can be performed even for a small-diameter through hole that was difficult to achieve. Further, when observing and measuring the image formation position of the pinhole, accurate measurement is possible, and when measuring from the range where the reflected light crosses the optical axis, the optical system arrangement is simple and accurate. It produces a remarkable effect such as good measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】貫通孔の内径測定装置の一実施例の外観図であ
る。
FIG. 1 is an external view of an example of an inner diameter measuring device for a through hole.

【図2】貫通孔の内径測定装置の要部構成を示す説明図
である。
FIG. 2 is an explanatory diagram showing a main part configuration of an inner diameter measuring device for a through hole.

【図3】貫通孔の内径測定装置の一実施例の光学配置を
示す説明図である。
FIG. 3 is an explanatory diagram showing an optical arrangement of an example of an inner diameter measuring device for a through hole.

【図4】チャートの正面図である。FIG. 4 is a front view of a chart.

【図5】貫通孔の内径測定装置の他の実施例の要部構成
を示す説明図である。
FIG. 5 is an explanatory diagram showing a main part configuration of another embodiment of the inner diameter measuring device for a through hole.

【図6】他の実施例の光学配置を示す説明図である。FIG. 6 is an explanatory diagram showing an optical arrangement of another embodiment.

【図7】貫通孔の内径測定装置のさらに他の実施例の光
学配置を示す説明図である。
FIG. 7 is an explanatory view showing an optical arrangement of still another embodiment of the inner diameter measuring device for a through hole.

【符号の説明】[Explanation of symbols]

10 光源 16、24 絞り 17 ピンホール板 18 照明用光源 20 プリズム 22、26 CCDカメラ 30、30a、30b 被検査体 51、52、53、54 レンズ 60 チャート 62 ピンホール 10 Light source 16, 24 Aperture 17 Pinhole plate 18 Illumination light source 20 Prism 22, 26 CCD camera 30, 30a, 30b Inspected object 51, 52, 53, 54 Lens 60 Chart 62 Pinhole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 道彦 長野県松本市野溝西1丁目7番7号 長 野県情報技術試験場内 (72)発明者 五味 克廣 長野県諏訪郡下諏訪町中央通り245番地 株式会社五味工業内 (56)参考文献 特開 昭49−60994(JP,A) 特開 昭63−58134(JP,A) 特開 昭60−76605(JP,A) 特開 平7−4919(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michihiko Ono 1-7-7 Nomizo Nishi, Matsumoto City, Nagano Nagano Prefectural Information Technology Laboratory (72) Inventor Katsuhiro Gomi 245 Chuo-dori, Shimosuwa Town, Suwa-gun, Nagano Prefecture Gomi Kogyo Co., Ltd. (56) Reference JP-A-49-60994 (JP, A) JP-A-63-58134 (JP, A) JP-A-60-76605 (JP, A) JP-A-7-4919 ( JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検査対象である貫通孔を有する被検査
体を前記貫通孔の中心軸を光軸に合わせて正確にセット
するためのセット機構と、前記被検査体から離間して前記貫通孔の前方に配置さ
れ、前記光軸に対し対称な配置で複数のピンホールを設
けたチャートおよび、前記各々のピンホールからの光束
を前記貫通孔の外部から貫通孔に向けて一度に直接的に
入射させる光源およびレンズ系を有する 投光光学系と、前記被検査体から離間して前記貫通孔の後方に配置さ
れ、 前記貫通孔の内壁面で反射されて前記貫通孔から出
射した光を受光し、前記各々のピンホールの結像位置を
観測する受光光学系とを具備することを特徴とする貫通
孔の内径測定装置。
1. An inspection object having a through hole which is an inspection object.
Is disposed on the central axis of the body the through hole and the cell Tsu bets mechanism to accurately set in accordance with the optical axis, in front of the through-holes spaced apart from the test subject
Multiple pinholes are arranged symmetrically with respect to the optical axis.
Beam chart and luminous flux from each pinhole
Directly from the outside of the through hole toward the through hole at once
A light projecting optical system having a light source and a lens system to be incident, and a rear surface of the through hole, which is spaced apart from the object to be inspected.
Is, exits from the through-hole is reflected by the inner wall surface of the through hole
Shines the received light, the inside diameter measuring apparatus of the through hole, characterized by comprising a light-receiving optical system for observing an image forming position of the pinhole of the respective.
【請求項2】 被検査対象である貫通孔を有する被検査
体を前記貫通孔の中心軸を光軸に合わせて正確にセット
するためのセット機構と、前記被検査体から離間して前記貫通孔の前方に配置さ
れ、前記光軸に対し対称な配置で複数のピンホールを設
けたチャート、および前記各々のピンホールからの光束
を前記貫通孔の外部から貫通孔に向けて一度に直接的に
入射させる光源、および入射光束の径を制限するための
絞り、およびレンズ系を有する 投光光学系と、前記被検査体の後方の光軸上で 前記貫通孔の内壁面で反
射された各光束が一致して光軸を横切る位置を検知する
受光光学系とを具備することを特徴とする貫通孔の内径
測定装置。
2. An inspection object having a through hole which is an inspection object.
Is disposed on the central axis of the body the through hole and the cell Tsu bets mechanism to accurately set in accordance with the optical axis, in front of the through-holes spaced apart from the test subject
Multiple pinholes are arranged symmetrically with respect to the optical axis.
Beam chart, and luminous flux from each pinhole
Directly from the outside of the through hole toward the through hole at once
In order to limit the incident light source and the diameter of the incident light flux
A light projecting optical system having a diaphragm and a lens system, and a light receiving optical system for detecting a position where each light flux reflected by the inner wall surface of the through hole on the optical axis behind the object to be inspected coincides and crosses the optical axis. An inner diameter measuring device for a through hole, comprising:
【請求項3】 受光光学系に前記貫通孔の内壁面からの
反射光を受光するCCDカメラを設け、該CCDカメラ
を光軸方向に移動ガイドするリニアエンコーダ付きのリ
ニアガイドを設けたことを特徴とする請求項2記載の貫
通孔の内径測定装置。
3. A light receiving optical system is provided with a CCD camera for receiving reflected light from the inner wall surface of the through hole, and a linear guide with a linear encoder for moving and guiding the CCD camera in the optical axis direction is provided. The inner diameter measuring device for a through hole according to claim 2.
【請求項4】 被検査体の貫通孔の状態を観察する観察
光学系を設けたことを特徴とする請求項1、2または3
記載の貫通孔の内径測定装置。
4. An observation optical system for observing a state of a through hole of an object to be inspected is provided.
The through-hole inner diameter measuring device described.
JP5161201A 1993-06-30 1993-06-30 Through hole inner diameter measuring device Expired - Lifetime JP2672771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161201A JP2672771B2 (en) 1993-06-30 1993-06-30 Through hole inner diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161201A JP2672771B2 (en) 1993-06-30 1993-06-30 Through hole inner diameter measuring device

Publications (2)

Publication Number Publication Date
JPH0735518A JPH0735518A (en) 1995-02-07
JP2672771B2 true JP2672771B2 (en) 1997-11-05

Family

ID=15730520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161201A Expired - Lifetime JP2672771B2 (en) 1993-06-30 1993-06-30 Through hole inner diameter measuring device

Country Status (1)

Country Link
JP (1) JP2672771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227106B2 (en) * 1997-04-23 2001-11-12 株式会社ミツトヨ Inner diameter measuring method and inner diameter measuring device
JP4768422B2 (en) * 2005-12-07 2011-09-07 株式会社トプコン Inner diameter measuring device and inner wall observation device for through hole

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313132B2 (en) * 1972-10-14 1978-05-08
JPS6076605A (en) * 1983-10-03 1985-05-01 Mitsutoyo Mfg Co Ltd Measuring machine of cubic body
JPS6358134A (en) * 1986-08-28 1988-03-12 Mitsubishi Electric Corp Pipe inner surface shape measuring apparatus
JP2544288B2 (en) * 1993-01-07 1996-10-16 株式会社第一測範製作所 Optical length measuring device

Also Published As

Publication number Publication date
JPH0735518A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
US5608530A (en) Inspection device for measuring a geometric dimension of a part
US5889593A (en) Optical system and method for angle-dependent reflection or transmission measurement
US4204772A (en) Optical measuring system
JPH10300438A (en) Bore measuring method and device
JPH10311779A (en) Equipment for measuring characteristics of lens
JPH02161332A (en) Device and method for measuring radius of curvature
US5289254A (en) Process and apparatus for testing optical components or systems
JP2771546B2 (en) Hole inner surface measuring device
JP2672771B2 (en) Through hole inner diameter measuring device
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JPH06508218A (en) Deflection type optical device with wide measurement range
WO2006050978A2 (en) Optical device for determining the in-focus position of a fourier optics set-up
JP2007240168A (en) Inspection apparatus
JPH04212120A (en) Scanner for optically scanning face along line
JPH07311117A (en) Apparatus for measuring position of multiple lens
JP4135133B2 (en) Optical axis correction apparatus and optical instrument system
JPH0471453B2 (en)
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
JP2001027580A (en) Method and apparatus for measurement of transmission decentration of lens
JP3213642B2 (en) Lens performance evaluation method and apparatus
JPH08233545A (en) Method and apparatus for measuring hole shape
RU2078305C1 (en) Interference method of test of geometric positioning of lenses and interference device for its implementation
JPS63182547A (en) Particle analyzer
RU2025692C1 (en) Method of measurement of characteristics of optical systems: focal distances and decentering
JP2565496B2 (en) Imaging device for the object to be inspected

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 16

EXPY Cancellation because of completion of term