JPH07311117A - Apparatus for measuring position of multiple lens - Google Patents

Apparatus for measuring position of multiple lens

Info

Publication number
JPH07311117A
JPH07311117A JP13101594A JP13101594A JPH07311117A JP H07311117 A JPH07311117 A JP H07311117A JP 13101594 A JP13101594 A JP 13101594A JP 13101594 A JP13101594 A JP 13101594A JP H07311117 A JPH07311117 A JP H07311117A
Authority
JP
Japan
Prior art keywords
lens
stage
light
detection head
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13101594A
Other languages
Japanese (ja)
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13101594A priority Critical patent/JPH07311117A/en
Publication of JPH07311117A publication Critical patent/JPH07311117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To measure the relative position among respective small lenses constituting a multiple lens in high precision by providing a detection head, a highly accurate stage and a length measuring means and calculating the stage position and the output values of the detection head. CONSTITUTION:The title apparatus consists of a highly accurate stage in which a head including an interference meter or a light spot position sensor, etc., and a multiple lens to be measured are relatively moved on a plane perpendicular to the optical axis of a detection head at a right angle, and a length measuring means 13 for measuring the mover of the stage 12. Then, the stage position and the output values of the detection head are calculated so as to perform the relative position measurement in high precision. That is, individual small lenses constituting a multiple lens to be tested are successively fed to a highly accurate x-y stage 12. Then the detected quantity of positional deviation of the individual lens is added with the movement quantity of the stage 12 that is obtained by a laser length measuring machine 13. Thus the relative positions among individual lenses constituting an objective multiple lens can be measured precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオートフォーカスカメラ
のオートフォーカス(以下AF)センサ部等に用いられ
る多眼レンズを構成する多数の微小レンズ間の相対位置
を、高精度に測定する検査装置に好適な多眼レンズの位
置測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for highly accurately measuring the relative position between a large number of minute lenses constituting a multi-lens used in an auto focus (hereinafter referred to as AF) sensor section of an auto focus camera. The present invention relates to a suitable multi-lens position measuring device.

【0002】[0002]

【従来の技術】AFセンサの構成で現在最も多用されて
いる手法の一つに、イメージセンサ上に多重結像された
像の位置関係を測定する方法がある。図4はAFセンサ
のピント検出原理を示したものである。同図において
(A)は合焦状態、(B)は前方にピントずれを起こし
た状態、(C)は後方にピントずれを起こした状態を示
す。図4(A)で撮影物体の像は、撮影レンズによって
フィルム面近傍に1次結像される。続いてこの像を形成
する光線は、本発明で検査する対象の多眼レンズによ
り、該多眼レンズを構成するそれぞれのレンズに対応し
て配置されたイメージセンサ上のほぼ中央に2次結像さ
れる。合焦状態でのこれら2次像の位置がAF計測の基
準位置となる。
2. Description of the Related Art One of the most frequently used methods for constructing an AF sensor is a method of measuring the positional relationship between images formed on an image sensor. FIG. 4 shows the focus detection principle of the AF sensor. In the figure, (A) shows a focused state, (B) shows a state where the focus is shifted forward, and (C) shows a state where the focus is shifted backward. In FIG. 4A, the image of the photographed object is primarily formed near the film surface by the photographing lens. Subsequently, the light rays forming this image are secondarily imaged by the multi-lens to be inspected in the present invention at substantially the center on the image sensor arranged corresponding to each lens constituting the multi-lens. To be done. The positions of these secondary images in the focused state are the reference positions for AF measurement.

【0003】図4(B)のように前ピン状態となり撮影
対象物がフィルム面より前に1次結像されると、多眼レ
ンズで結像される2次像は、センサ上で光軸方向に移動
する。逆に図4(C)のように後ピン状態になると、多
眼レンズによる2次像はセンサ上で光軸から離れる方向
に移動する。フォーカス状態に応じて生じる基準位置か
らのずれは合焦状態からのずれとして検知され、不図示
の演算系により実際の装置上での駆動値が算出され、該
算出値に基づいてピント合わせ動作が行われる。
As shown in FIG. 4 (B), when the subject is in the front focus state and a primary image is formed on the object to be photographed before the film surface, the secondary image formed by the multi-lens lens is an optical axis on the sensor. Move in the direction. On the contrary, in the rear focus state as shown in FIG. 4C, the secondary image formed by the multi-lens moves on the sensor in a direction away from the optical axis. A deviation from the reference position that occurs according to the focus state is detected as a deviation from the in-focus state, a drive value on an actual device is calculated by a calculation system (not shown), and the focusing operation is performed based on the calculated value. Done.

【0004】従ってAFでは多眼レンズが重要な役割を
果す。実際のカメラでは図5に示すように多数の物体位
置を測定すべく、1枚のプレート上に多数のレンズ(多
眼レンズ)が配置したものが用いられる。AF精度向上
の重要なポイントは多眼レンズを構成する多数のレンズ
(以下多数のレンズの1つ1つを個別レンズと称する)
間の相対精度で、近年の小型、高密度なカメラでは1μ
mより高い精度が要求されている。従来このような多眼
レンズ製作における個別レンズ間の相対位置精度は、射
出成型の型を加工する精密工作機械の加工精度に依存し
ている。
Therefore, in AF, the multi-lens plays an important role. In an actual camera, as shown in FIG. 5, in order to measure a large number of object positions, a large number of lenses (multi-lens) are arranged on one plate. The important point of AF accuracy improvement is a large number of lenses that make up a multi-lens (hereinafter, each of the many lenses is referred to as an individual lens).
Relative accuracy between 1 μm in recent compact and high-density cameras
Accuracy higher than m is required. Conventionally, the relative positional accuracy between the individual lenses in such multi-lens manufacturing depends on the processing accuracy of a precision machine tool that processes an injection molding die.

【0005】[0005]

【発明が解決しようとしている課題】しかしながらレン
ズのような球面の頂点位置の高精度測定は一般には難し
く、型あるいは該型による成型品の精度の評価を行うこ
とが困難であった。例えば触針式の形状測定器による測
定でレンズの頂点を針で捕らえることは難しく、また、
工具顕微鏡で多眼レンズを観察し、各個別レンズの平面
との交線を検出してレンズ頂点の位置を推定する方法
も、観察光学系の空間分解能から1μmより高い精度で
の検出は困難であった。
However, it is generally difficult to measure the apex position of a spherical surface such as a lens with high accuracy, and it is difficult to evaluate the accuracy of a mold or a molded product by the mold. For example, it is difficult to catch the apex of the lens with a needle by measurement with a stylus type shape measuring instrument, and
The method of observing the multi-lens with a tool microscope and detecting the line of intersection with the plane of each individual lens to estimate the position of the lens apex is also difficult to detect with an accuracy higher than 1 μm due to the spatial resolution of the observation optical system. there were.

【0006】本発明は多眼レンズを構成する各々の微小
レンズ間の相対位置を高精度に測定することのできる多
眼レンズの位置測定装置の提供を目的とする。
It is an object of the present invention to provide a position measuring device for a multi-eye lens, which is capable of highly accurately measuring the relative position between the respective minute lenses forming the multi-eye lens.

【0007】[0007]

【課題を解決するための手段】本発明によれば1つの部
材上に複数個の凸面又は凹面形状が作り込まれた被検物
である多眼レンズ、あるいは該多眼レンズを成型する型
の精度を測定する装置を、(1ー1)被検物の個別レン
ズまたは個別レンズの型の曲率と一致する光波を被検物
に照射し、反射して戻ってきた光の波面の傾斜量を干渉
計もしくは光点位置センサにより検出する光プローブ手
段(光検出ヘッド)と、(1ー2)被検物と前記プロー
ブ手段の光軸との相対的な位置を変えるために、該光軸
に直交する平面内で精密に移動させるステージ手段と、
(1ー3)前記ステージ手段の移動量を正確に測定する
測長手段、より構成し、前記多眼レンズを構成する各個
別レンズを前記ステージ手段により、次々と前記プロー
ブ手段の測定位置へ送り、前記測長手段により測定され
たステージ位置データに、前記プローブ手段により測定
された波面傾斜量を光軸に直交する方向の変位量に換算
したデータを加えることにより、前記多眼レンズを構成
する各個別微小レンズ間の相対位置を高精度に測定する
ものである。
According to the present invention, there is provided a multi-lens lens which is a test object in which a plurality of convex or concave shapes are formed on one member, or a mold for molding the multi-lens. A device for measuring the accuracy measures (1-1) irradiating the test object with a light wave that matches the curvature of the individual lens of the test object or the mold of the individual lens, and measuring the tilt amount of the wavefront of the light that is reflected and returned. Optical probe means (light detection head) for detection by an interferometer or a light spot position sensor, and (1-2) in order to change the relative position between the object to be inspected and the optical axis of the probe means, Stage means for precisely moving in a plane orthogonal to each other,
(1-3) Constituting length measuring means for accurately measuring the movement amount of the stage means, and feeding each individual lens forming the multi-lens to the measuring position of the probe means one after another by the stage means. The multi-lens is configured by adding the data obtained by converting the wavefront tilt amount measured by the probe means into the displacement amount in the direction orthogonal to the optical axis, to the stage position data measured by the length measuring means. The relative position between the individual microlenses is measured with high accuracy.

【0008】[0008]

【実施例】図1は本発明の実施例1の要部概略図であ
る。同図において1は光源であるレーザー、2はレーザ
ービーム径を拡大するビームエキスパンダ、3は光の偏
光方位により透過と反射を選択する偏光ビームスプリッ
タ、4は直線偏光を円偏光に変換するλ/4板、5は光学
素子を光軸方向に微小移動させるピエゾ素子、6は片面
が無コートで高精度に研磨された参照平面板、7は光束
を集光するコリメータレンズ、8は多眼レンズまたは型
などの被検物、9はCCDカメラ11への入射光量を調
整する偏光板、10は被検物をCCDカメラ11の撮像
面上に所定の大きさで結像させる結像レンズ、11は干
渉像を撮影するCCDカメラ、12は被検物を光軸に直
交する平面内で自由に移動可能とさせるステージ装置、
13はステージ装置の移動量を測定するレーザー測長装
置、14はシステム全体を制御し、測定データを処理す
るコンピュータである。
Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention. In the figure, 1 is a laser as a light source, 2 is a beam expander that expands the laser beam diameter, 3 is a polarization beam splitter that selects transmission or reflection depending on the polarization direction of light, and 4 is a λ that converts linearly polarized light into circularly polarized light. / 4 plate, 5 is a piezo element for slightly moving the optical element in the optical axis direction, 6 is a reference flat plate whose one surface is uncoated and is highly accurately polished, 7 is a collimator lens that collects a light beam, and 8 is a multi-lens An object to be inspected such as a lens or a mold, 9 is a polarizing plate for adjusting the amount of light incident on the CCD camera 11, and 10 is an imaging lens for forming an image of the object to be inspected on the image pickup surface of the CCD camera 11 in a predetermined size. Reference numeral 11 is a CCD camera for taking an interference image, 12 is a stage device for freely moving a test object in a plane orthogonal to the optical axis,
Reference numeral 13 is a laser length measuring device for measuring the amount of movement of the stage device, and 14 is a computer for controlling the entire system and processing the measurement data.

【0009】上記構成において、光源1から射出した紙
面に垂直な偏光方向のレーザービームは、ビームエキス
パンダ2により光束径を拡大されて平行光となり、偏光
ビームスプリッタ3に入射後、下方へ反射される。反射
された光はλ/4板4の作用により円偏光の状態となり、
参照平面板6に到達する。参照平面板6は片面が反射防
止コート、もう一方の面が無コートで、高精度に平面研
磨された透明なガラス板である。
In the above structure, the laser beam emitted from the light source 1 and having a polarization direction perpendicular to the plane of the paper is expanded in beam diameter by the beam expander 2 to become parallel light, which is incident on the polarization beam splitter 3 and then reflected downward. It The reflected light becomes a circularly polarized state by the action of the λ / 4 plate 4,
The reference plane plate 6 is reached. The reference flat plate 6 is a transparent glass plate having one surface antireflection coated and the other surface uncoated and highly flat polished.

【0010】参照平面板6の無コートの面は参照面とし
て作用する。該参照面は通常3〜5%程度の反射率を有
するため、入射した光の一部はこの面で反射し、参照光
としてλ/4板4に戻る。
The uncoated surface of the reference flat plate 6 acts as a reference surface. Since the reference surface usually has a reflectance of about 3 to 5%, part of the incident light is reflected by this surface and returns to the λ / 4 plate 4 as reference light.

【0011】参照平面板6を透過した残りの光はコリメ
ータレンズ7により集光されて被検物8を照射する。コ
リメータンズ7によって作られる光の波面形状が被検物
8の形状がほぼ一致するように配置すれば、入射した光
は被検物8の表面で正反射されて測定光となり、同じ経
路を戻ってλ/4板4へ戻る。
The remaining light transmitted through the reference plane plate 6 is condensed by the collimator lens 7 and illuminates the object 8 to be inspected. If the wavefront shape of the light produced by the collimators 7 is arranged so that the shape of the test object 8 is substantially the same, the incident light is specularly reflected by the surface of the test object 8 and becomes measurement light, and returns through the same path. Then go back to λ / 4 plate 4.

【0012】測定光と参照光はこのようにして重なり合
いフィゾー型の干渉計を構成する。被検物8が図1の凸
の多眼レンズの時は収束光束中に被検物を配置すれば良
いが、型のような凹面被検物の場合には、コリメータレ
ンズ7と被検物8の光軸方向のセッティングを変更し、
コリメータレンズにより一旦焦点を結ばせた後、発散す
る光を被検物に与えれば良い。
The measuring light and the reference light thus overlap to form a Fizeau interferometer. When the test object 8 is the convex multi-lens of FIG. 1, the test object may be placed in the convergent light beam, but in the case of a concave test object such as a mold, the collimator lens 7 and the test object Change the setting of 8 optical axis direction,
It is sufficient that the collimator lens is focused once and then the diverging light is applied to the test object.

【0013】上述した参照光と測定光は再びλ/4板4を
通過することにより、今度は紙面に水平方向の直線偏光
となって偏光ビームスプリッタ3を透過し、偏光板9に
入射する。偏光板9は定まった方位の光の成分しか通さ
ないため、光軸回りに回転させると、偏光ビームスプリ
ッタ3を透過してきた直線偏光光の強度を任意に調整す
ることができる。
The above-mentioned reference light and measurement light again pass through the λ / 4 plate 4 to become linearly polarized light in the horizontal direction on the paper surface, and then pass through the polarizing beam splitter 3 and enter the polarizing plate 9. Since the polarizing plate 9 passes only the light component of the fixed azimuth, when it is rotated around the optical axis, the intensity of the linearly polarized light transmitted through the polarization beam splitter 3 can be arbitrarily adjusted.

【0014】強度を調整された光は結像レンズ10を介
してCCDカメラ11上に結像する。CCDカメラ11
上で観察される像は参照光と測定光が干渉した所謂干渉
縞パターンで、参照光と測定光の波面形状の差が光源波
長の1/2 をピッチとする等高線として現われる。測定光
の強度は成型レンズの凸面では3〜5%の反射率、凹面
の型では反射率が50%と大きく変化する。
The light whose intensity has been adjusted forms an image on the CCD camera 11 via the imaging lens 10. CCD camera 11
The image observed above is a so-called interference fringe pattern in which the reference light and the measurement light interfere with each other, and the difference in the wavefront shapes of the reference light and the measurement light appears as contour lines having a pitch of 1/2 of the light source wavelength. The intensity of the measurement light greatly changes with a reflectance of 3 to 5% on the convex surface of the molded lens and 50% on the concave surface type.

【0015】型のように反射率が高い被検物では、参照
面との反射率の差が大きく干渉縞のコントラストが低下
するため、参照面6から被検物8までの光路中に、透過
波面の良好なNDフィルターなどを挿入すればよい。こ
のように簡単なセッティングの変更で、測定対象が変わ
っても容易に高精度な測定を行うことができる。
An object having a high reflectance such as a mold has a large difference in reflectance from the reference surface, and the contrast of the interference fringes decreases, so that the light is transmitted through the optical path from the reference surface 6 to the object 8. An ND filter or the like having a good wavefront may be inserted. As described above, by simply changing the setting, highly accurate measurement can be easily performed even if the measurement target changes.

【0016】この状態で参照平面板6をピエゾ素子で光
軸に平行に動かしながら、一定間隔で干渉縞像を画像メ
モリに蓄えて行き、後でピクセル毎に演算を行い、初期
位相分布を高精度に算出する。この方法はフリンジスキ
ャン法として J.H.Brunninget al: Applied Optics,13,
(1974),p.2693などの文献で広く知られている。
In this state, the reference plane plate 6 is moved in parallel with the optical axis by the piezo element, and the interference fringe images are stored in the image memory at a constant interval. Then, the calculation is performed for each pixel to increase the initial phase distribution. Calculate to accuracy. This method is a fringe scan method by JH Bruning et al: Applied Optics, 13 ,
(1974), p.2693.

【0017】本発明も同様の手法でコンピュータ14を
用いて干渉縞データを解析し、初期位相の分布を得るこ
とができる。干渉計の縞の位相検出法としてはフリンジ
スキャン法だけでなく、ヘテロダイン法、フーリエ変換
法、空間キャリア法、画像処理による縞解析法など他の
サブフリンジ法も適用可能である。また、スキャンを行
う参照面は6のような参照平面を用いる代わりに、コリ
メータレンズ7の最終面を参照面として波面の曲率に合
わせた、いわゆるTS( Transmission Sphere) レンズ
を用いても良い。
According to the present invention, the interference fringe data can be analyzed by using the computer 14 in the same manner to obtain the initial phase distribution. As the phase detection method for the fringes of the interferometer, not only the fringe scan method but also other sub-fringe methods such as the heterodyne method, the Fourier transform method, the spatial carrier method, and the fringe analysis method by image processing can be applied. Instead of using a reference plane such as 6 as a reference plane for scanning, a so-called TS (Transmission Sphere) lens in which the final surface of the collimator lens 7 is used as a reference plane and matched with the curvature of the wavefront may be used.

【0018】上記の方法により得られた位相分布Φ(x,
y) は次のような低次の式の一次結合に最小自乗フィッ
トされる。
The phase distribution Φ (x,
y) is a least squares fit to a linear combination of the following lower order equations:

【0019】 Φ(x,y) = a0 +a1x +a2y +a3( x2+y2) (1) 求まった係数はそれぞれ a0 が全体のオフセット( pist
on )、a1が x方向の傾斜( tilt-x )、 a2 が y方向の傾
斜( tilt-y )、a3が光軸方向のミスアライメント( defo
cus ) と機械的な量に独立に対応づけることができる。
Φ (x, y) = a 0 + a 1 x + a 2 y + a 3 (x 2 + y 2 ) (1) In the obtained coefficients, a 0 is the total offset (pist
on), a 1 is the tilt in the x direction (tilt-x), a 2 is the tilt in the y direction (tilt-y), and a 3 is the misalignment in the optical axis direction (defo
cus) and mechanical quantities can be independently associated.

【0020】ここで図2のようにコリメータレンズ7の
光軸7aと被検物8上の個別レンズ8aの光軸が水平方
向にΔx だけずれている状態を考える。被検物体上にx、
y 軸を取り、コリメータレンズ7の光軸をz 軸として、
簡単のためx-z 断面内を考える。被検物上の個別レンズ
の曲率半径をR とすると、レンズ形状は x2+y2=R2 (2) と表される。
Let us now consider a state in which the optical axis 7a of the collimator lens 7 and the optical axis of the individual lens 8a on the object 8 are horizontally displaced by Δx as shown in FIG. X on the object to be inspected,
Taking the y-axis and the optical axis of the collimator lens 7 as the z-axis,
For simplicity, consider the xz cross section. Letting R be the radius of curvature of the individual lens on the test object, the lens shape is expressed as x 2 + y 2 = R 2 (2).

【0021】x ずれたところの面傾斜量は、 dz/dx = x/( R2 −x2)1/2≒ x/R (3) となり、曲率半径R に対してΔx が微小とみなされる範
囲においてはあたかも面が θ/2=Δx/R (4) だけ傾斜したことと等価となる。光は面傾斜量の2倍の
角度で反射されるため、図2に示すように、入射光線に
対しθの角度で反射される。
The amount of surface inclination at the position displaced by x is dz / dx = x / (R 2 −x 2 ) 1 / 2≈x / R (3), and Δx is considered to be minute with respect to the radius of curvature R. In the range, it is equivalent to tilting the surface by θ / 2 = Δx / R (4). Since light is reflected at an angle twice the amount of surface inclination, it is reflected at an angle of θ with respect to the incident light beam, as shown in FIG.

【0022】レンズ上での測定有効径をD とすると、観
察されるx 方向の傾斜による干渉縞の本数N は、λを光
源の波長として N = D・(θ/2)/ (λ/2) (5) 従って観察される干渉縞の位相分布の傾斜成分がx、y 方
向の位置ずれのみに起因すると仮定すると、(4)、(5) 式
より、 Δx = (N/D)・(λ/2)・R (6) として、被検物を構成する個別レンズ8aとコリメータ
レンズ7の光軸との位置ずれ量が逆算できる。代表的な
例として R=2mm 、 D=0.5mm 、λ=0.6 μmとする
と、干渉縞1本はΔx =1.3 μmの位置ずれ量に相当す
る。
Assuming that the effective measurement diameter on the lens is D, the number N of interference fringes observed due to the inclination in the x direction is N = D. (θ / 2) / (λ / 2 (5) Therefore, assuming that the tilt component of the observed phase distribution of the interference fringes is caused only by the positional deviation in the x and y directions, from equations (4) and (5), Δx = (N / D) ・ ( As λ / 2) · R (6), the amount of positional deviation between the individual lens 8a constituting the test object and the optical axis of the collimator lens 7 can be calculated backward. As a typical example, if R = 2 mm, D = 0.5 mm, and λ = 0.6 μm, one interference fringe corresponds to a displacement amount of Δx = 1.3 μm.

【0023】先述のフリンジスキャン法などの位相計測
法を干渉縞 0.01 本程度の検出感度とすると、0.01μm
オーダーで個別レンズの位置ずれ量が検出できる。
When the phase measurement method such as the fringe scan method described above has a detection sensitivity of about 0.01 interference fringes, 0.01 μm
The amount of displacement of the individual lens can be detected by order.

【0024】このような検出ヘッドを設けると同時に、
被検対象である多眼レンズの各個別微小レンズを高精度
xyステージ12で次々と測定光軸へと送り込み、個別
レンズの位置ずれ検出量とレーザー測長機13によるス
テージの移動量を加え合わせると、目的とする多眼レン
ズを構成する個別レンズ間相互の相対位置が精密に測定
できる。xyステージを自動ステージとし、予め入力し
ておいた多眼レンズの設計データに基づいて、初期位置
から自動で次の目標個別レンズに送って行くという動作
を繰り返して測定を行えば、個別レンズ間の相対位置精
度は全自動で測定できる。
At the same time when such a detection head is provided,
Each individual microlens of the multi-lens to be inspected is sent to the measurement optical axis one after another by the high precision xy stage 12, and the positional deviation detection amount of the individual lens and the stage movement amount by the laser length measuring machine 13 are added together. By doing so, the relative positions of the individual lenses forming the objective multi-lens can be precisely measured. If the xy stage is used as an automatic stage and the measurement is repeated by repeating the operation of automatically sending to the next target individual lens from the initial position based on the design data of the multi-lens input in advance, The relative position accuracy of can be measured fully automatically.

【0025】上記の測定における誤差要因に、xyステ
ージ12の移動に伴う姿勢誤差がある。先に述べたよう
に本検出法では干渉縞のチルト成分が被検物のxy方向
の位置ずれのみに起因して発生することを仮定している
ため、ピッチングあるいはローリングといったステージ
の姿勢誤差が大きいと、その誤差が測定誤差につながる
からである。
An error factor in the above measurement is a posture error associated with the movement of the xy stage 12. As described above, in the present detection method, it is assumed that the tilt component of the interference fringes is caused only by the positional deviation of the test object in the xy directions, so that the attitude error of the stage such as pitching or rolling is large. And that error leads to a measurement error.

【0026】xyステージ12に要求される姿勢誤差に
対する要求精度を検討すると、(4)式よりΔx = 0.01
μmに相当する面の傾斜量は R= 2 mm の場合 5X 10-6
rad、即ち約1秒である。1秒程度の値は近年のステー
ジ技術で十分達成可能である。ステージ12の位置測定
にはレーザー測長機以外に、リニアスケール、差動変圧
器など他の移動量測定手段を用いることができる。
Considering the required accuracy for the attitude error required for the xy stage 12, Δx = 0.01 from the equation (4).
The amount of inclination of the surface equivalent to μm is 5X 10 -6 when R = 2 mm
rad, ie about 1 second. A value of about 1 second can be sufficiently achieved by recent stage technology. In addition to the laser length measuring machine, other moving amount measuring means such as a linear scale and a differential transformer can be used for measuring the position of the stage 12.

【0027】しかしながらこれらの代替手段はアッベ誤
差、ヨーイング誤差が測定誤差として加わるため、レー
ザー測長機の域まで到達せず精度的に不利であり、採用
する場合は測定精度の要求も考慮する必要がある。
However, since these alternative means add Abbe error and yawing error as measurement errors, they do not reach the range of the laser length measuring machine, which is disadvantageous in terms of accuracy, and when adopted, it is necessary to consider measurement accuracy requirements. There is.

【0028】以上が本発明の基本的な構成である。本実
施例は測定プローブ手段として干渉計を用いているた
め、干渉計を応用できる項目も測定が可能である。即
ち、個別レンズの面精度は勿論であるが、zステージと
zステージの移動量読み取り手段を付加すれば、正反射
位置からキャッツアイ反射位置までの移動距離測定で個
別レンズの曲率Rも測定可能である。干渉計もフィゾー
型だけでなく、トワイマングリーン、シアリング、ゾー
ンプレート、CGH干渉計等、物体形状を検出可能なも
のを適用できる。
The above is the basic configuration of the present invention. Since this embodiment uses the interferometer as the measurement probe means, it is possible to measure items to which the interferometer can be applied. That is, not only the surface accuracy of the individual lens but also the curvature R of the individual lens can be measured by measuring the moving distance from the specular reflection position to the cat's eye reflection position by adding a z stage and a z stage movement amount reading means. Is. The interferometer is not limited to the Fizeau type, but Twyman Green, shearing, zone plate, CGH interferometer, and the like capable of detecting the object shape can be applied.

【0029】またレーザ測長機は参照点を任意移動する
ことができるが、本実施例でコリメータレンズ7の側面
などに参照ミラーを貼り付けて参照点とすれば、デッド
パスエラー、プローブヘッドの振動といった問題に対し
有利である。
Further, the laser length measuring device can freely move the reference point, but if a reference mirror is attached to the side surface of the collimator lens 7 or the like as the reference point in this embodiment, a dead path error, a probe head It is advantageous for problems such as vibration.

【0030】図3は本発明の実施例2の要部概略図であ
る。本実施例はレンズの位置ずれ検出プローブとして光
点位置センサ(PSD)を応用した例である。図中、実
施例1と同じ部材については同じ符号が付けられてい
る。
FIG. 3 is a schematic view of the essential portions of Embodiment 2 of the present invention. The present embodiment is an example in which a light spot position sensor (PSD) is applied as a lens position shift detection probe. In the figure, the same members as those in the first embodiment are designated by the same reference numerals.

【0031】図3において1は光源であるレーザー、2
はレーザービーム径を拡大するビームエキスパンダ、3
は光の偏光方位により透過と反射を選択する偏光ビーム
スプリッタ、4は直線偏光を円偏光に変換する機能を持
つλ/4板、7は光束を集光するコリメータレンズ、8は
多眼レンズまたは型などの被検物、12は被検物を光軸
に直交する平面内で自由に移動させるステージ装置、1
3はステージ装置の移動量を測定するレーザー測長装
置、14はシステム全体を制御し、測定データを処理す
るコンピュータ、15は広がったレーザービーム径を縮
小するビームリデューサ、16は光点の重心位置を2次
元面内で検出する2次元PSDである。
In FIG. 3, reference numeral 1 denotes a laser which is a light source, and 2
Is a beam expander that expands the laser beam diameter, 3
Is a polarization beam splitter that selects transmission or reflection depending on the polarization direction of light, 4 is a λ / 4 plate having a function of converting linearly polarized light into circularly polarized light, 7 is a collimator lens that collects a light beam, 8 is a multi-lens lens or An object to be inspected such as a mold, 12 is a stage device for freely moving the object to be inspected in a plane orthogonal to the optical axis, 1
3 is a laser length measuring device that measures the amount of movement of the stage device, 14 is a computer that controls the entire system and processes measurement data, 15 is a beam reducer that reduces the expanded laser beam diameter, and 16 is the position of the center of gravity of the light spot. It is a two-dimensional PSD for detecting in a two-dimensional plane.

【0032】上記構成において、光源1から射出した紙
面に垂直な偏光方向のレーザービームは、ビームエキス
パンダ2により光束径を拡大されて平行光となり、偏光
ビームスプリッタ3に入射後、下方へ反射される。
In the above structure, the laser beam emitted from the light source 1 and having a polarization direction perpendicular to the plane of the paper is expanded in beam diameter by the beam expander 2 to become parallel light, which is incident on the polarization beam splitter 3 and then reflected downward. It

【0033】反射された光はλ/4板4の作用により円偏
光状態となり、コリメータレンズ7により集光されて被
検物8を照射する。コリメータンズ7によって作られる
光の波面形状を被検物の形状とほぼ一致するように配置
すれば、入射した光は被検物表面で正反射されて測定光
となり、同じ経路を戻ってλ/4板4へ戻る。
The reflected light becomes a circularly polarized state by the action of the λ / 4 plate 4, is condensed by the collimator lens 7, and illuminates the object 8 to be inspected. If the wavefront shape of the light produced by the collimators 7 is arranged so as to substantially match the shape of the object to be inspected, the incident light is specularly reflected on the surface of the object to be measured and returns to the same path to return to λ / 4 Return to plate 4.

【0034】被検物が図3の凸の多眼レンズの時は収束
光束中に被検物を配置すれば良いが、型のような凹面被
検物ではコリメータレンズ7と被検物8の光軸方向のセ
ッティングを変更し、コリメータレンズにより一旦焦点
を結ばせた後、発散する光を被検物に与えれば良い。
When the object to be inspected is the convex multi-lens shown in FIG. 3, the object to be inspected may be placed in the convergent light beam, but in the case of a concave object such as a mold, the collimator lens 7 and the object to be inspected 8 may be arranged. It is sufficient to change the setting in the optical axis direction, focus once with the collimator lens, and then give the divergent light to the test object.

【0035】上述した測定光は再びλ/4板4を通過し
て、今度は紙面に水平方向の直線偏光となり偏光ビーム
スプリッタ3を透過する。光は次いでビームリデューサ
15に入射してビーム径を縮小され、距離L離れて配置
された2次元PSD16に入射して、2次元PSD16
上での入射位置が計測される。光点位置検出センサとし
ては2次元PSDのほかに4分割フォトセンサ、CCD
などでもよい。
The above-mentioned measuring light passes through the λ / 4 plate 4 again, and this time becomes a linearly polarized light in the horizontal direction on the paper surface and passes through the polarization beam splitter 3. The light then enters the beam reducer 15 to have its beam diameter reduced, and then enters the two-dimensional PSD 16 arranged at a distance L to the two-dimensional PSD 16.
The incident position above is measured. As a light spot position detection sensor, in addition to a two-dimensional PSD, a 4-division photo sensor, CCD
And so on.

【0036】ここで図2のようにコリメータレンズ7の
光軸と被検物8上の個別レンズの光軸が水平方向にΔx
だけずれている状態を考える。被検物体上にx、y 軸を取
り、コリメータレンズ7の光軸をz 軸として、x-z 断面
を考える。被検物上のレンズの曲率半径をR とすると、
実施例1で説明したとうり、垂直に入射した光線は光軸
に対しθ= 2・ Δx/R の角度で反射されてコリメータレ
ンズ7に戻り、再び平行ビームとなる。
Here, as shown in FIG. 2, the optical axis of the collimator lens 7 and the optical axis of the individual lens on the test object 8 are Δx in the horizontal direction.
Consider a state where they are just off. Consider the x and y axes on the object to be inspected, and consider the xz cross section with the optical axis of the collimator lens 7 as the z axis. If the radius of curvature of the lens on the object is R,
As described in the first embodiment, the vertically incident light beam is reflected at an angle of θ = 2 · Δx / R with respect to the optical axis, returns to the collimator lens 7, and becomes a parallel beam again.

【0037】コリメータレンズ7の焦点距離を fとする
と、近軸理論よりビームの進行方向の変化θ’は θ’=θ−( f−R )・θ/f = 2・ Δx/f (7) である。
Assuming that the focal length of the collimator lens 7 is f, the change θ ′ in the traveling direction of the beam from the paraxial theory is θ ′ = θ− (f−R) · θ / f = 2 · Δx / f (7) Is.

【0038】このビームはビームリデューサ15に入射
すると、アフォーカル光学系の角倍率公式により射出角
が光束径の縮小率の逆数倍の角度に変換される。ビーム
リデューサ15の縮小率を 1/kとすると、ビームは θ”= kθ' (8) なる角度で射出し、距離Lだけ離れた2次元PSD上で
の光点移動量Δp は、 Δp =Lθ”= 2・ Δx・k・L/f (9) と表される。
When this beam enters the beam reducer 15, the exit angle is converted into an angle that is the reciprocal of the reduction rate of the light beam diameter according to the angular magnification formula of the afocal optical system. Assuming that the reduction ratio of the beam reducer 15 is 1 / k, the beam is emitted at an angle θ ″ = kθ ′ (8), and the light spot movement amount Δp on the two-dimensional PSD at a distance L is Δp = Lθ “= 2 · Δx · k · L / f (9)

【0039】(9) 式よりずれ量Δx は、 Δx =Δp・f/( 2・k・L ) (10) と計算され、個別レンズのコリメータレンズ7の光軸に
対する位置ずれ量が検出される。
From the equation (9), the displacement amount Δx is calculated as Δx = Δp · f / (2 · k · L) (10), and the positional displacement amount of the individual lens with respect to the optical axis of the collimator lens 7 is detected. .

【0040】代表的な数値例として f= 50mm 、 k=1
0、L=500mm とすると、Δp = 1mmに対してΔx = 5
μm というずれ量が計算される。Δp の最小分解能には
2次元PSDの一般的分解能である 10 μm が対応する
ことから、上記数値例の構成では個別レンズの位置ずれ
量が 0.05 μm の分解能で検出されている。
As a typical numerical example, f = 50 mm, k = 1
If 0 and L = 500mm, then Δx = 5 for Δp = 1mm
A deviation of μm is calculated. Since the minimum resolution of Δp corresponds to 10 μm, which is a general resolution of a two-dimensional PSD, the positional deviation amount of the individual lens is detected with a resolution of 0.05 μm in the configuration of the above numerical example.

【0041】このような検出ヘッドを設けると同時に、
被検物を高精度xyステージ12で次々と測定光軸へと
送り込み、個別レンズの位置ずれ検出量とレーザー測長
機13によるステージの移動量を加え合わせると、目的
とする個別レンズ間相互の相対位置が精密に測定でき
る。xyステージを自動ステージとし、予め入力してお
いた多眼レンズの設計データに基づいて、初期位置から
自動で次の目標となる個別レンズに送って行くという動
作を繰り返して測定を行えば、個別レンズ間の相対位置
精度は全自動で測定できる。
At the same time as providing such a detection head,
When the object to be inspected is sent to the measurement optical axis one after another by the high-precision xy stage 12, and the positional deviation detection amount of the individual lenses and the stage movement amount by the laser length measuring machine 13 are added together, the target individual lenses are mutually reciprocated. The relative position can be measured accurately. If the xy stage is used as an automatic stage, and the measurement is repeated by repeating the operation of automatically sending to the next target individual lens from the initial position based on the pre-input design data of the multi-lens, The relative positional accuracy between lenses can be measured fully automatically.

【0042】ステージ12の位置測定に関してはレーザ
ー測長機以外にも、リニアスケール、差動変圧器など他
の移動量測定手段を用いることができる。しかしながら
これらの代替手段はアッベ誤差、ヨーイング誤差が測定
誤差に加わるためレーザー測長機の域までは到達せず、
精度的に不利であり、採用は測定精度との兼ね合いで決
定される。レーザ測長機は参照点を任意移動することが
できるが、本実施例ではコリメータレンズ7の側面など
に参照ミラーを貼り付けて参照点とすれば、デッドパス
エラー、プローブヘッドの振動といった問題に対し有利
である。
For measuring the position of the stage 12, other moving amount measuring means such as a linear scale and a differential transformer can be used in addition to the laser length measuring machine. However, these alternative means do not reach the range of the laser length measuring machine because Abbe error and yawing error are added to the measurement error.
It is disadvantageous in terms of accuracy, and its adoption is decided in consideration of the measurement accuracy. Although the laser length measuring device can freely move the reference point, in the present embodiment, if a reference mirror is attached to the side surface of the collimator lens 7 and used as the reference point, there are problems such as dead path error and probe head vibration. It is advantageous to

【0043】また実施例2の構成は干渉測定ではないた
め、光源は可干渉性の高いレーザーである必要はなく、
ハロゲンランプ等に置き換えることができる。この場合
には光源に続いてビームエキスパンダの代わりにコリメ
ータレンズを配置し、直線偏光にするために偏光板が挿
入される。
Since the structure of the second embodiment is not an interferometric measurement, the light source does not need to be a highly coherent laser,
It can be replaced with a halogen lamp or the like. In this case, a collimator lens is arranged instead of the beam expander after the light source, and a polarizing plate is inserted to make linearly polarized light.

【0044】[0044]

【発明の効果】以上説明したように、本発明では1つの
部材上に複数個の凸面又は凹面形状が作り込まれた多眼
レンズ、あるいは該多眼レンズの型を構成する個別のレ
ンズの相対位置の測定装置を、干渉計または光点位置セ
ンサ等の検出ヘッドと、被測定物である多眼レンズを該
検出ヘッドの光軸に直交する平面内で相対的に移動させ
る高精度ステージと、該ステージの移動量を測定する測
長手段から構成し、該ステージの位置と該検出ヘッドの
出力の値を演算することにより、前記相対位置測定を高
精度で行うことを可能とした。
As described above, according to the present invention, a multi-lens having a plurality of convex or concave shapes formed on one member, or a relative of individual lenses constituting the mold of the multi-lens. A position measuring device, a detection head such as an interferometer or a light spot position sensor, and a high-precision stage that relatively moves a multi-eye lens that is an object to be measured in a plane orthogonal to the optical axis of the detection head, The relative position measurement can be performed with high accuracy by comprising a length measuring unit that measures the amount of movement of the stage, and by calculating the position of the stage and the value of the output of the detection head.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1を示す図FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】 測定ヘッドと被測定物の位置関係から生じる
光路関係を示す図
FIG. 2 is a diagram showing an optical path relationship resulting from a positional relationship between a measuring head and an object to be measured.

【図3】 本発明の実施例2を示す図FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】 本発明で測定対象とするAF多眼レンズの作
用を示す図
FIG. 4 is a diagram showing an operation of an AF multi-lens to be measured in the present invention.

【図5】 本発明で測定対象とするAF多眼レンズの形
状を示す図
FIG. 5 is a diagram showing the shape of an AF multi-lens to be measured in the present invention.

【符号の説明】[Explanation of symbols]

1 レーザー発振器 2 ビームエキスパンダ 3 偏光ビームスプリッタ 4 λ/4板 5 ピエゾ素子 6 参照平面板 7 コリメータレンズ 8 被検物 9 偏光板 10 結像レンズ 11 CCDカメラ 12 xyステージ 13 レーザー測長器 14 コンピュータ 15 ビームリデューサ 16 2次元PSD 1 Laser Oscillator 2 Beam Expander 3 Polarizing Beam Splitter 4 λ / 4 Plate 5 Piezo Element 6 Reference Plane Plate 7 Collimator Lens 8 Test Object 9 Polarizing Plate 10 Imaging Lens 11 CCD Camera 12 xy Stage 13 Laser Length Measuring Machine 14 Computer 15 Beam reducer 16 Two-dimensional PSD

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1つの部材上に複数個の凸面又は凹面形
状が作り込まれた多眼レンズ、あるいは該多眼レンズの
型を構成する個別レンズの相対位置の測定を行う装置に
おいて、該装置は該装置の基準に対する前記個別レンズ
のずれを検出する検出ヘッドと、前記被測定物を該検出
ヘッドの光軸に直交する平面内で相対的に移動させるス
テージと、該ステージの移動量を測定する測長手段を有
し、該ステージの位置と該検出ヘッドの出力の値を演算
することにより、前記個別レンズの相対位置測定を行う
ことを特徴とする多眼レンズの位置測定装置。
1. An apparatus for measuring the relative position of a multi-lens having a plurality of convex or concave shapes formed on one member, or an individual lens constituting a mold of the multi-lens, the apparatus. Is a detection head that detects the deviation of the individual lens with respect to the reference of the apparatus, a stage that relatively moves the object to be measured in a plane orthogonal to the optical axis of the detection head, and the amount of movement of the stage is measured. A position measuring device for a multi-lens, characterized in that the relative position of the individual lens is measured by calculating the position of the stage and the output value of the detection head.
【請求項2】 該検出ヘッドが干渉計であることを特徴
とする請求項1の多眼レンズの位置測定装置。
2. The position measuring apparatus for a multi-lens according to claim 1, wherein the detection head is an interferometer.
【請求項3】 該検出ヘッドが光点位置検出センサを有
することを特徴とする請求項1の多眼レンズの位置測定
装置。
3. The position measuring device for a multi-lens according to claim 1, wherein the detection head has a light spot position detection sensor.
JP13101594A 1994-05-20 1994-05-20 Apparatus for measuring position of multiple lens Pending JPH07311117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13101594A JPH07311117A (en) 1994-05-20 1994-05-20 Apparatus for measuring position of multiple lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13101594A JPH07311117A (en) 1994-05-20 1994-05-20 Apparatus for measuring position of multiple lens

Publications (1)

Publication Number Publication Date
JPH07311117A true JPH07311117A (en) 1995-11-28

Family

ID=15048000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13101594A Pending JPH07311117A (en) 1994-05-20 1994-05-20 Apparatus for measuring position of multiple lens

Country Status (1)

Country Link
JP (1) JPH07311117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074604A (en) * 1999-08-04 2001-03-23 Jds Uniphase Inc Method for measuring lens characteristics and its optical system
JP2005043353A (en) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag Polarization proper investigation method, optical imaging system, and calibration method
JP2007279255A (en) * 2006-04-04 2007-10-25 Olympus Corp Optical element and measurement method of optical element
JP2014508321A (en) * 2011-02-08 2014-04-03 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Microscope having autofocus device and autofocus method in microscope
KR101449500B1 (en) * 2013-03-07 2014-10-13 자화전자(주) Camera lens module driving device for mobile phone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074604A (en) * 1999-08-04 2001-03-23 Jds Uniphase Inc Method for measuring lens characteristics and its optical system
JP2005043353A (en) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag Polarization proper investigation method, optical imaging system, and calibration method
JP2007279255A (en) * 2006-04-04 2007-10-25 Olympus Corp Optical element and measurement method of optical element
JP2014508321A (en) * 2011-02-08 2014-04-03 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Microscope having autofocus device and autofocus method in microscope
KR101449500B1 (en) * 2013-03-07 2014-10-13 자화전자(주) Camera lens module driving device for mobile phone

Similar Documents

Publication Publication Date Title
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
KR100951221B1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
US6771375B2 (en) Apparatus and method for measuring aspherical optical surfaces and wavefronts
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US4758089A (en) Holographic interferometer
US6909509B2 (en) Optical surface profiling systems
US5991034A (en) Interferometer which varies a position to be detected based on inclination of surface to be measured
JP2008513751A (en) Optical measuring device for measuring multiple surfaces of a measuring object
CN102506748A (en) Laser-probe-array-based three-dimensional measurement method and device
WO2013084557A1 (en) Shape-measuring device
US20080137061A1 (en) Displacement Measurement Sensor Using the Confocal Principle
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
JP6580141B2 (en) Line scan knife edge height sensor for semiconductor inspection and metrology
JP2002250622A (en) Shape-measuring method and device for optical element, and its type
JP2016148569A (en) Image measuring method and image measuring device
US6924897B2 (en) Point source module and methods of aligning and using the same
JPH07311117A (en) Apparatus for measuring position of multiple lens
US20230123150A1 (en) Alignment of a measurement optical system and a sample under test
CN101881607A (en) Planar error detection system
JP2005201703A (en) Interference measuring method and system
CN110702036B (en) Complex beam angle sensor and small-sized aspheric surface morphology detection method
JPH0755638A (en) Device and method for measuring focal length of optical system
JP3061653B2 (en) Aspherical surface measuring method and measuring device
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JP2672771B2 (en) Through hole inner diameter measuring device