JP2771546B2 - Hole inner surface measuring device - Google Patents

Hole inner surface measuring device

Info

Publication number
JP2771546B2
JP2771546B2 JP63214532A JP21453288A JP2771546B2 JP 2771546 B2 JP2771546 B2 JP 2771546B2 JP 63214532 A JP63214532 A JP 63214532A JP 21453288 A JP21453288 A JP 21453288A JP 2771546 B2 JP2771546 B2 JP 2771546B2
Authority
JP
Japan
Prior art keywords
optical system
hole
focusing
optical axis
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63214532A
Other languages
Japanese (ja)
Other versions
JPH0262903A (en
Inventor
満男 江口
昌二 松苗
憲司 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAMYA OO PII KK
RAITORON KK
Original Assignee
MAMYA OO PII KK
RAITORON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAMYA OO PII KK, RAITORON KK filed Critical MAMYA OO PII KK
Priority to JP63214532A priority Critical patent/JP2771546B2/en
Publication of JPH0262903A publication Critical patent/JPH0262903A/en
Application granted granted Critical
Publication of JP2771546B2 publication Critical patent/JP2771546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、非破壊非接触で孔内面の同心環状凹凸部
の径や位置を測定する孔内面測定装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hole inner surface measuring device for measuring the diameter and position of a concentric annular uneven portion on a hole inner surface in a non-destructive and non-contact manner.

〔従来の技術〕[Conventional technology]

従来、比較的小径の孔内面に設けた溝部や絞り部等の
同心環状凹凸部の径や基準面からの距離等を測定するに
は、各種の機械的な測長器を孔内部に挿入し孔内面に接
触させて測定する方法がとられていた。
Conventionally, in order to measure the diameter of concentric annular concave and convex portions such as grooves and throttles provided on the inner surface of a hole with a relatively small diameter and the distance from the reference surface, various mechanical length measuring instruments are inserted into the hole. A method of measuring by contacting the inner surface of the hole has been adopted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような従来の孔内面測定装置で
は、測長器を孔内面に接触させなければならないので、
ワークが柔軟な材質の場合には孔内面を変形させたり損
傷させたりするおそれがあつた。
However, in such a conventional hole inner surface measuring device, since the length measuring device must be brought into contact with the hole inner surface,
If the workpiece is made of a flexible material, the inner surface of the hole may be deformed or damaged.

また、孔内面と測長器との接触面を完全な線又は点に
することは不可能であるので、測定精度を上げることが
できず、さらに測長器を挿入することができない小径の
孔内面を測定することはできなかつた。
In addition, since it is impossible to make the contact surface between the inner surface of the hole and the length measuring device a complete line or point, it is not possible to increase the measurement accuracy and to insert a small-diameter hole into which the length measuring device cannot be inserted. The inner surface could not be measured.

この発明は、このような従来の問題点を解決し、非破
壊,非接触で測定可能な孔内面測定装置を提供すること
を目的とする。
An object of the present invention is to solve such a conventional problem and to provide a non-destructive, non-contact measuring apparatus for measuring the inner surface of a hole.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は上記の目的を達成するため、基準位置から
光軸方向に変位可能な合焦光学系と、この合焦光学系を
常時合焦状態に保つように変位させる制御手段と、被測
定物の測定すべき孔内を上記光軸方向に挿通可能であ
り、上記基準位置から所定の間隔を置いて45度の角度で
斜交する反射光学系と、被測定物又は反射光学系を光軸
方向に移動させる移動手段とを設けた孔内測定装置であ
って、合焦光学系が、被測定面にパターン像を投影する
投影光学系と、投影されたパターン像を結像させる撮像
光学系と、この撮像光学系通過光を互いに異なる光路長
を有する2光束に分割する2分割プリズムと、上記撮像
光学系の焦点面近傍に配設され上記2光束を受光し得る
一対のイメージセンサと、これらのイメージセンサから
の出力信号を演算処理する演算部と、この演算部による
演算結果を表示する表示部とからなる孔内面測定装置を
提供するものである。
In order to achieve the above object, the present invention provides a focusing optical system capable of being displaced in a direction of an optical axis from a reference position, a control means for displacing the focusing optical system so as to always keep a focused state, and an object to be measured. A reflective optical system that can be inserted through the hole to be measured in the direction of the optical axis and obliquely oblique at an angle of 45 degrees at a predetermined interval from the reference position, and the optical axis of the object to be measured or the reflective optical system. An intra-hole measuring device provided with a moving means for moving in a direction, wherein a focusing optical system projects a pattern image onto a surface to be measured, and an imaging optical system which forms the projected pattern image A two-segment prism for dividing the light passing through the imaging optical system into two light beams having different optical path lengths, and a pair of image sensors arranged near the focal plane of the imaging optical system and capable of receiving the two light beams; Calculation processing of output signals from these image sensors That the calculating unit is intended to provide a display unit and the hole inner surface measuring device comprising a displaying a calculation result by the calculation unit.

〔作 用〕(Operation)

上記のように構成した孔内面測定装置の反射光学系を
被測定物の孔内部に挿入し、基準位置にセツトした合焦
光学系の光軸を孔の中心線に一致させた状態で合焦光学
系を作動状態にすると、制御手段が働いて合焦光学系の
光軸を通り反射光学系により直角に向きを変えて孔内面
に達するまでの距離に応じて合焦光学系が基準位置から
光軸方向に合焦位置まで変位する。
The reflective optical system of the hole inner surface measuring device constructed as above is inserted into the hole of the DUT, and the focusing is performed with the optical axis of the focusing optical system set at the reference position aligned with the center line of the hole. When the optical system is activated, the control means operates to change the direction at a right angle by the reflecting optical system through the optical axis of the focusing optical system, and the focusing optical system moves from the reference position according to the distance until reaching the inner surface of the hole. It is displaced in the optical axis direction to a focus position.

この変位量により、合焦光学系から被測定物の基準面
の孔内面までの距離を知つて孔の半径を求めることがで
きる。
From this displacement amount, the radius of the hole can be obtained by knowing the distance from the focusing optical system to the inner surface of the hole of the reference surface of the measured object.

この状態で、測定装置と被測定物とを光軸方向に相対
移動させると、孔径が基準面の孔径と等しい場合には、
合焦光学系はその位置で合焦状態に保たれているので、
合焦光学系と反射光学系との間隔は当初のままである。
In this state, when the measuring device and the object to be measured are relatively moved in the optical axis direction, when the hole diameter is equal to the hole diameter of the reference plane,
Since the focusing optical system is kept in focus at that position,
The distance between the focusing optical system and the reflecting optical system remains unchanged.

次に、孔内面の同心環状凹凸部が反射光学系によつて
反射された反射光軸に対向すると、合焦光学系から孔内
面までの距離が変化するので、合焦光学系は合焦位置ま
で光軸方向に前後に変位し、その変位方向から凹凸の別
を、変位量から凹凸部の深さや高さをそれぞれ知ること
ができ、また測定装置と被測定物の相対変位量から凹凸
部の基準面からの距離を知ることができる。
Next, when the concentric annular concavo-convex portion on the inner surface of the hole faces the reflected optical axis reflected by the reflecting optical system, the distance from the focusing optical system to the inner surface of the hole changes. Up and down in the direction of the optical axis, the direction of the unevenness can be determined from the direction of the displacement, the depth and height of the unevenness can be determined from the amount of displacement, and The distance from the reference plane can be known.

また、この測定装置を用いて合焦光学系の光軸と被測
定物の孔中心線とを平行させた状態で反射光学系を例え
ば120度ずつ回転させて3回孔内面までの距離を測定す
れば、3種の異なつた距離を得ることができ、これらの
値から孔径を求めることもできる。
Also, with this measuring device, the reflecting optical system is rotated, for example, by 120 degrees, with the optical axis of the focusing optical system and the center line of the hole of the object to be measured in parallel, and the distance to the inner surface of the hole is measured three times. Then, three different distances can be obtained, and the hole diameter can be obtained from these values.

そして、合焦光学系として、被測定面にパターン像を
投影し、その投影像を光軸方向に位置をずらせて配設し
た一対のイメージセンサ上に結像させ、これらのイメー
ジセンサからの出力信号を演算処理して被測定面までの
距離を測定する装置を用いるようにすれば、極めて高精
度の測定が可能になる。
Then, as a focusing optical system, a pattern image is projected on the surface to be measured, and the projected image is formed on a pair of image sensors arranged so as to be shifted in the optical axis direction, and the output from these image sensors is output. If a device that performs arithmetic processing on a signal and measures the distance to the surface to be measured is used, extremely accurate measurement can be performed.

〔実施例〕〔Example〕

以下、添付図面を参照してこの発明の実施例を説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図はこの発明の一実施例を示すものである。コの
字状の移動台1の下腕1aに微動台2を例えばアリとアリ
溝等により上下に摺動自在に装着し、この微動台2にラ
ツク歯2aを形成し、このラツク歯2aを下腕1aに回動自在
に装着したピニオン3に歯合させ、ピニオン3をステツ
プモータ4によつて回動させることにより微動台2を上
下に微動させるようにし、この微動台2に合焦光学系5
を光軸lを垂直にして固設している。
FIG. 1 shows an embodiment of the present invention. A fine moving table 2 is slidably mounted on the lower arm 1a of the U-shaped moving table 1 by, for example, an ant and a dovetail groove so as to be vertically slidable. The pinion 3 is rotatably mounted on the lower arm 1a. The pinion 3 is rotated by a stepping motor 4 to finely move the fine moving table 2 up and down. System 5
Are fixed with the optical axis l vertical.

移動台1の上腕1bにはプローブ6を移動台1の内部に
設けたステツプモータ(図示しない)により回動自在に
装着し、その回転軸を合焦光学系5の光軸lに一致さ
せ、プローブ6の下面に反射光学系7を固設してその反
射面7aを光軸lに対して45度傾斜させ、この反射面7aに
より垂直な光軸lを水平な反射光軸l′に90度折曲げて
いる。
A probe 6 is rotatably mounted on the upper arm 1b of the movable base 1 by a step motor (not shown) provided inside the movable base 1, and its rotation axis is made coincident with the optical axis l of the focusing optical system 5. A reflection optical system 7 is fixed to the lower surface of the probe 6 and its reflection surface 7a is inclined by 45 degrees with respect to the optical axis l, and the vertical optical axis l is moved 90 degrees to the horizontal reflection optical axis l 'by the reflection surface 7a. Bends many times.

そして、このように構成した移動台1をL字状の固定
台8に上下に摺動自在に装着し、移動台1の側面に形成
したラツク歯1cを固定台8に回動自在に装着したピニオ
ン9に歯合させ、ピニオン9をステツプモータ10によつ
て回動させることにより移動台1を上下に移動させるよ
うにしている。
The movable base 1 thus configured is vertically slidably mounted on the L-shaped stationary base 8, and the rack teeth 1c formed on the side surfaces of the movable base 1 are rotatably mounted on the stationary base 8. The movable table 1 is moved up and down by meshing with the pinion 9 and rotating the pinion 9 by a step motor 10.

なお、図中11は合焦光学系5の出力信号を演算する演
算部、12は演算部11の演算結果を表示する表示部、13は
演算部11の出力信号に応じてステツプモータ4の回動を
制御する制御部である。
In the figure, reference numeral 11 denotes a calculation unit for calculating the output signal of the focusing optical system 5, 12 a display unit for displaying the calculation result of the calculation unit 11, and 13 a rotation of the step motor 4 according to the output signal of the calculation unit 11. It is a control unit for controlling the movement.

ここで用いる合焦光学系5はいかなる形式のものでも
差し支えないが、測定しようとする孔内面が滑らかな曲
面である点を考慮すると、パターン投影形のものが望ま
しい。
The focusing optical system 5 used here may be of any type, but in view of the fact that the inner surface of the hole to be measured is a smooth curved surface, a pattern projection type is desirable.

第2図(a)はこのような合焦光学系の光路を示すも
のであり、51は高原,52はコンデンサレンズ,53はパター
ン板,54は投影レンズ,55はハーフミラー,56は投影兼撮
像レンズ,57は撮像レンズ,58は2分割プリズム,59は撮
像光学系の焦点面近傍に配設されたラインセンサ等のイ
メージセンサである。
FIG. 2 (a) shows the optical path of such a focusing optical system, where 51 is a plateau, 52 is a condenser lens, 53 is a pattern plate, 54 is a projection lens, 55 is a half mirror, and 56 is a projection mirror. An imaging lens, 57 is an imaging lens, 58 is a two-segment prism, 59 is an image sensor such as a line sensor disposed near the focal plane of the imaging optical system.

光源51から発する光線はコンデンサレンズ52で平行光
となつてパターン板53を照射する。パターン板53に形成
されているパターンは投影レンズ54を通り、ハーフミラ
ー55で90度光路を変え投影兼撮像レンズ56を通つて被測
定面Sに拡大投影される。
The light beam emitted from the light source 51 becomes parallel light by the condenser lens 52 and irradiates the pattern plate 53. The pattern formed on the pattern plate 53 passes through the projection lens 54, changes the optical path by 90 degrees by the half mirror 55, passes through the projection / imaging lens 56, and is enlarged and projected on the surface S to be measured.

被測定面Sの撮影像は、投影兼撮像レンズ56,ハーフ
ミラー55,撮像レンズ57を通つて2分割プリズム58のハ
ーフミラー面58aで2分割され、一部はそのまま直進し
てイメージセンサ59の図で左半部59aに達し、残部はハ
ーフミラー面58a及びプリズム面58bで90度ずつ折曲げら
れた後イメージセンサ59の図で右半部59bに達する。
The photographed image of the surface to be measured S passes through a projection / imaging lens 56, a half mirror 55, and an imaging lens 57, and is split into two by a half mirror surface 58a of a two-piece prism 58. The figure reaches the left half 59a, and the remaining part is bent 90 degrees by the half mirror surface 58a and the prism surface 58b, and then reaches the right half 59b in the figure of the image sensor 59.

したがつて、イメージセンサ59の左半部59a,右半部59
bの像を比較することにより前ピン,後ピン及び合焦の
各状態を知ることができる。
Accordingly, the left half 59a and the right half 59 of the image sensor 59 are provided.
By comparing the images of b, the respective states of the front focus, the rear focus, and the focus can be known.

再び第1図に戻つて、このような合焦光学系5を有す
る測定装置のプローブ6を台板14上に固定した被測定物
20の測定しようとする孔21の内部に挿入し得る位置と
し、ステツプモータ10により移動台1を垂直方向に移動
して、反射光学系7の反射面7aによつて90度折曲げられ
た反射光軸l′が被測定物20の基準面20aと同一高さに
なるようにする(第3図(a)参照)。
Returning to FIG. 1 again, an object to be measured in which the probe 6 of the measuring apparatus having such a focusing optical system 5 is fixed on the base plate 14
The movable table 1 is moved vertically by the stepping motor 10 by the stepping motor 10 so that it can be inserted into the hole 21 to be measured, and the reflection is bent 90 degrees by the reflection surface 7a of the reflection optical system 7. The optical axis l 'is set to be at the same height as the reference surface 20a of the DUT 20 (see FIG. 3A).

この状態における移動台1の固定台8に対する関係位
置を移動台1の起動位置とし、反射光軸l′が孔中径部
21aの点S1で交わるようにして合焦光学系5を作動状態
にする。
The relative position of the movable base 1 with respect to the fixed base 8 in this state is defined as the starting position of the movable base 1, and the reflected optical axis l 'is set at the center of the hole.
The optical system 5 focusing as intersect at S 1 point 21a is in operation.

これにより孔中径部21aに第2図に示すパターン板53
のパターンが投影光学系により投影され、その投影像が
撮像光学系及び2分割プリズム58によりイメージセンサ
59の左半部59a及び右半部59bに撮像される。
Thereby, the pattern plate 53 shown in FIG.
Is projected by a projection optical system, and the projected image is imaged by an imaging optical system and a two-piece prism 58.
An image is taken on the left half 59a and the right half 59b of 59.

ここで、イメージセンサ59の左半部59a及び右半部59b
を一対のラインセンサとすると、左半部59aと右半部59b
に達する撮像光線は2分割プリズム58の基線長dだけ光
路長が異なつているので、パターン板53のパターンが例
えばピンホールであると仮定すると、第2図(b)に示
すようにその結像点A,Bは一般にイメージセンサ59の面5
9cの前後に位置する。
Here, a left half 59a and a right half 59b of the image sensor 59 are provided.
Are a pair of line sensors, the left half 59a and the right half 59b
Since the imaging light beam reaching the optical path has a different optical path length by the base line length d of the two-segment prism 58, assuming that the pattern of the pattern plate 53 is, for example, a pinhole, its image is formed as shown in FIG. Points A and B are generally on surface 5 of image sensor 59.
It is located before and after 9c.

この時、それぞれのイメージセンサ59a,59bの各モジ
ュールAi,Biの受光量は例えば第4図に示すようにな
り、その合計光量は同じである。
At this time, the amount of light received by each module Ai, Bi of each image sensor 59a, 59b is as shown in FIG. 4, for example, and the total amount of light is the same.

いま、隣接する各モジユールAi,Ai+1;Bi,Bi+の出
力をそれぞれPai,Pai1;Pbi,Pbi+とし、これらの総和
をPA,PBとすると、 PA=Σ|Pai−Pai+1| PB=Σ|Pbi−Pbi+1| となり、PA−PBが合焦度を示す値となる。
Now, each adjacent modules Ai, Ai + 1; Bi, Bi + 1 of the outputs Pai, Pai 1; Pbi, and Pbi + 1, the total of those P A, when a P B, P A = Σ | Pai-Pai + 1 | P B = Σ | Pbi−Pbi + 1 | and P A −P B is a value indicating the degree of focus.

ここで、 PA−PB=0 合 焦 PA−PB>0 前ピン PA−PB<0 後ピン の状態をそれぞれ示しているので、この値(PA−PB)を
演算部11で演算し、その結果に応じて非合焦時には制御
部13を通じてステツプモータ4を所要方向に所要角度回
動させてPA−PB=0になるまで合焦光学系5を変位させ
る。
Here, P A -P B = 0 Focus P A -P B > 0 Front pin P A -P B <0 Since the back pin state is shown, this value (P A -P B ) is calculated. In step 11, the step motor 4 is rotated by a required angle in a required direction through the control unit 13 to displace the focusing optical system 5 until P A -P B = 0. .

合焦光学系5の基準位置からの変位量により、合焦光
学系5の所定位置から反射光学系7を経て孔21の第3図
(a)に示す点S1までの距離が演算部11で演算され、こ
の値から光値lから孔中径部21aの点S1までの距離D1
求められる。
The amount of displacement from the reference position of the focusing optical system 5, FIG. 3 distance to S 1 point shown in (a) is the arithmetic unit 11 of via the reflection optical system 7 from a predetermined position of the focusing optical system 5 hole 21 in the calculation, the distance D 1 of the from the light value l to the point S 1 of the pores diameter 21a is determined from this value.

ここで、例えばプローブ6の外径を孔21の内径にほぼ
等しくしてプローブ6を孔21内に嵌入可能として孔21の
中心線を合焦光学系5の光軸lに一致させるようにすれ
ば、この距離D1が孔中径部21aの半径r1となり、その値
が表示部12に表示される。
Here, for example, the outer diameter of the probe 6 is made substantially equal to the inner diameter of the hole 21 so that the probe 6 can be fitted into the hole 21 so that the center line of the hole 21 coincides with the optical axis l of the focusing optical system 5. if this distance D 1 is the radius r 1 next to the hole in the diameter 21a, and the value is displayed on the display unit 12.

しかしながら、プローブ6を孔径に合わせて交換する
のは実際的でないので、被測定物20の孔21の中心線を合
焦光学径5の光軸lに平行にし、反射光学系7を備えた
プローブ6を光軸lの周りに120度ずつ回転させてその
停止位置でそれぞれ光軸lから孔内面までの距離を求め
るようにすれば、公知の演算方法により孔中径部21aの
半径r1を求めることができ、このようにして求められた
半径r1が表示部12に表示される。
However, since it is not practical to replace the probe 6 according to the hole diameter, the center line of the hole 21 of the DUT 20 is made parallel to the optical axis 1 of the focusing optical diameter 5, and the probe having the reflection optical system 7 is provided. 6 is rotated around the optical axis l by 120 degrees, and the distance from the optical axis l to the inner surface of the hole is obtained at the stop position, whereby the radius r 1 of the hole middle diameter portion 21a can be calculated by a known calculation method. The radius r 1 thus obtained is displayed on the display unit 12.

次に、ステツプモータ10により移動台1を下方に移動
させても反射光軸l′が孔中径部21a内にあるときはPA
−PB=0であつて合焦光学系5と反射光学系7との相対
移動は生じない。
Then, P A when be moved moving base 1 downward by step motor 10 which reflected optical axis l 'is in the pores diameter portion 21a
Since −P B = 0, the relative movement between the focusing optical system 5 and the reflecting optical system 7 does not occur.

移動台1が第3図(b)に示す位置になると、反射光
軸lが円周溝21bの内面S2に達するので、PA−PBの値が
正又は負の方向に変化し、これに対応してステツプモー
タ4が所要方向に所要角度回動し、合総位置にまで変位
させる。
When the moving table 1 is in the position shown in FIG. 3 (b), the reflection optical axis l reaches the inner surface S 2 of the circumferential groove 21b, the value of P A -P B is changed in the positive or negative direction, In response to this, the step motor 4 rotates by a required angle in a required direction and is displaced to the total position.

この変位量から同様にして光軸lから点S2までの距離
D2を求めることができ、この場合もプローブ6を120度
ずつ回転させて円周溝21bまでの距離を3回測定するこ
とによりその半径r2を求めることができる。
From this displacement amount, the distance from the optical axis l to the point S 2 in the same manner
It is possible to obtain the D 2, the probe 6 In this case, it is possible to obtain the radius r 2 by being rotated by 120 degrees to measure 3 times the distance to the circumferential groove 21b with.

そして、PA−PBの値が0から変化する点における移動
台1の起動位置からの移動量から円周溝21bの軸方向の
深さZ1を求めることができ、その深さZ1が円周溝21bの
半径r2と共に表示部12に表示される。
Then, it is possible to obtain the P A -P axial depth Z 1 of the circumferential groove 21b from the moving amount from the value starting position of the moving base 1 at a point which varies from 0 to B, a depth Z 1 There is displayed on the display section 12 with the radius r 2 of the circumferential groove 21b.

また、ステツプモータ10により移動台1を下方に移動
させて第3図(c)に示す位置になると円周溝21bの他
の壁面までの深さZ2を求めることができる。
Further, it is possible to obtain the moving base 1 to move downward becomes the position shown in FIG. 3 (c) and the depth Z 2 to the other wall surface of the circumferential groove 21b by stepper motor 10.

さらに、移動台1を第3図(d),(e)に示す位置
にすると、絞り部21cの半径r3及び基準面からの深さZ3,
Z4をそれぞれ求めることができる。
Further, when the movable table 1 is at the position shown in FIGS. 3 (d) and 3 (e), the radius r 3 of the throttle 21c and the depth Z 3 from the reference plane,
Z 4 can be determined respectively.

このように反射光学系7は合焦光学系5の光軸を90度
折曲げるだけでよく、その大きさは極めて小さくてすむ
ので、例えば孔径5〜20mm,深さ50mmのように測長器を
挿入し得ない孔内面の測定も可能である。
As described above, the reflection optical system 7 need only bend the optical axis of the focusing optical system 5 by 90 degrees, and its size is extremely small. Therefore, for example, the length measuring device has a hole diameter of 5 to 20 mm and a depth of 50 mm. It is also possible to measure the inner surface of the hole in which the hole cannot be inserted.

実施例では合焦光学系5の投影拡大率β=20とすると
測定精度ε=±2μm、β=50とするとε<±1μmを
得ることができる。
In the embodiment, when the projection magnification ratio β of the focusing optical system 5 is 20, the measurement accuracy ε = ± 2 μm, and when β = 50, ε <± 1 μm.

なお、上記実施例においては、移動台1の移動方向を
垂直方向としたが、これを水平方向にすることも可能で
ある。
In the above-described embodiment, the moving direction of the moving table 1 is set to the vertical direction, but the moving direction may be set to the horizontal direction.

また、反射光学系7を移動させる代りに、第5図に模
型的に示すように反射光学系7を固定台30に固定して被
測定物20を光軸方向に移動させるようにしてもよく、こ
のようにすれば移動装置を簡略化することができる。
Instead of moving the reflection optical system 7, the reflection optical system 7 may be fixed to a fixed base 30, and the object 20 may be moved in the optical axis direction, as schematically shown in FIG. In this way, the moving device can be simplified.

なおまた、この発明により測定し得る孔の径や長さは
上記の範囲に限るものでないことはいうまでもない。
In addition, it goes without saying that the diameter and length of the hole that can be measured by the present invention are not limited to the above ranges.

〔発明の効果〕〔The invention's effect〕

以上述べたように、この発明による孔内面測定装置に
よれば、非破壊,非接触で機械的な測定装置では達し得
ない高精度の測定が可能になる。
As described above, according to the hole inner surface measuring device of the present invention, it is possible to perform high-precision measurement that cannot be achieved by a non-destructive, non-contact, mechanical measuring device.

また、その反射光学系は極めて小さくてよいので、機
械的な測長器が挿入しない小径の孔内面の測定が可能に
なる。
Further, since the reflection optical system may be extremely small, it is possible to measure a small-diameter hole inner surface into which a mechanical length measuring device is not inserted.

さらに、合焦光学系に被測定面にパターン像を投影し
得る投影光学系を設けることにより、滑らかな曲線から
なる孔内面の測定を正確且つ容易にすることができる。
Further, by providing the focusing optical system with a projection optical system capable of projecting a pattern image on the surface to be measured, it is possible to accurately and easily measure the inner surface of the hole formed by a smooth curve.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示す説明図、 第2図(a),(b)はその合焦光学系の一例を示す光
路図及びその一部拡大図、 第3図(a),(b),(c),(d),(e)はその
測定過程を示す説明図、 第4図はイメージセンサの受光状態を例示する説明図、 第5図はこの発明の他の実施例を示す概略図である。 1……移動台、2……微動台 5……合焦光学系、6……プローブ 7……反射光学系、8……固定台 11……演算部、12……表示部 13……制御部、20……被測定物 21……孔、53……パターン板 58……2分割プリズム 59……イメージセンサ
FIG. 1 is an explanatory view showing an embodiment of the present invention. FIGS. 2 (a) and 2 (b) are optical path diagrams and an enlarged view of a part of an example of the focusing optical system, and FIG. 3 (a). , (B), (c), (d), and (e) are explanatory views showing the measurement process, FIG. 4 is an explanatory view exemplifying a light receiving state of the image sensor, and FIG. 5 is another embodiment of the present invention. It is a schematic diagram showing an example. 1 ... moving table 2 ... fine movement table 5 ... focusing optical system, 6 ... probe 7 ... reflective optical system, 8 ... fixed table 11 ... arithmetic unit, 12 ... display unit 13 ... control , 20… DUT 21… Hole, 53… Pattern plate 58… Two-prism 59… Image sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 憲司 東京都文京区大塚3丁目3番1号 マミ ヤ光機株式会社内 (56)参考文献 特開 昭50−159355(JP,A) 特開 昭52−107855(JP,A) 特開 昭51−113754(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G01C 3/00 - 3/32──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kenji Sakai 3-1-1, Otsuka, Bunkyo-ku, Tokyo Mamiya Koki Co., Ltd. (56) References JP 50-159355 (JP, A) JP JP-A-52-107855 (JP, A) JP-A-51-113754 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 G01C 3/00-3 / 32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基準位置から光軸方向に変位可能な合焦光
学系と、該合焦光学系を常時合焦状態に保つように変位
させる制御手段と、被測定物の測定すべき孔内を上記光
軸方向に挿通可能であり、上記基準位置から所定の間隔
を置いて45度の角度で斜交する反射光学系と、上記被測
定物又は上記反射光学系を光軸方向に移動させる移動手
段とを設けた孔内面測定装置であって、 上記合焦光学系が被測定面にパターン像を投影する投影
光学系と、投影されたパターン像を結像させる撮像光学
系と、該撮像光学系通過光を互いに異なる光路長を有す
る2光束に分割する2分割プリズムと、上記撮像光学系
の焦点面近傍に配設され上記2光束を受光し得る一対の
イメージセンサと、これらのイメージセンサからの出力
信号を演算処理する演算部と、該演算部による演算結果
を表示する表示部とからなることを特徴とする孔内面測
定装置。
A focusing optical system capable of being displaced in a direction of an optical axis from a reference position; a control means for displacing the focusing optical system so as to always keep the focusing state; Can be inserted in the optical axis direction, and the reflection optical system obliquely oblique at an angle of 45 degrees at a predetermined interval from the reference position, and moving the object to be measured or the reflection optical system in the optical axis direction A hole inner surface measuring device provided with a moving means, wherein the focusing optical system projects a pattern image on a surface to be measured, an imaging optical system for forming a projected pattern image, and the imaging A two-segment prism for splitting light passing through the optical system into two light beams having different optical path lengths, a pair of image sensors arranged near the focal plane of the imaging optical system and capable of receiving the two light beams, and these image sensors An arithmetic unit for arithmetically processing the output signal from Hole inner surface measuring apparatus characterized by comprising a display unit for displaying the calculation result of calculation section.
JP63214532A 1988-08-29 1988-08-29 Hole inner surface measuring device Expired - Fee Related JP2771546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214532A JP2771546B2 (en) 1988-08-29 1988-08-29 Hole inner surface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214532A JP2771546B2 (en) 1988-08-29 1988-08-29 Hole inner surface measuring device

Publications (2)

Publication Number Publication Date
JPH0262903A JPH0262903A (en) 1990-03-02
JP2771546B2 true JP2771546B2 (en) 1998-07-02

Family

ID=16657290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214532A Expired - Fee Related JP2771546B2 (en) 1988-08-29 1988-08-29 Hole inner surface measuring device

Country Status (1)

Country Link
JP (1) JP2771546B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574831B2 (en) * 2000-10-26 2010-11-04 オリンパス株式会社 Lens frame centering machine
JP5242940B2 (en) * 2007-04-24 2013-07-24 三鷹光器株式会社 Non-contact shape measuring device
KR101107302B1 (en) * 2007-08-21 2012-01-20 대진하이텍(주) System and method for measuring the inner diameter of ring gear
KR100956788B1 (en) * 2008-02-21 2010-05-07 (주)레이나 Measurement method for cylinder oil groove automatism measurement system And oil groove automatism measurement system to car engine cylinder
JP2012002573A (en) * 2010-06-15 2012-01-05 Mitaka Koki Co Ltd Non-contact shape measuring apparatus
CN102809874B (en) * 2012-08-08 2015-10-07 吴江市博众精工科技有限公司 A kind of reflecting piece light compensating apparatus
CN106918319B (en) * 2017-03-21 2019-07-09 华侨大学 A kind of roadbed pore size measuring device and method
WO2021256593A1 (en) * 2020-06-19 2021-12-23 주식회사 윈텍오토메이션 Improved inspection jig for inspecting inner wall of center holes of carbide inserts
CN111854604B (en) * 2020-07-28 2022-03-22 西安中科微精光子制造科技有限公司 Method and system for measuring shape and position parameters of air film hole by focusing laser beam
CN117961393B (en) * 2024-04-01 2024-06-18 江苏威士智能装备有限公司 Automatic welding device and working method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159355A (en) * 1974-06-12 1975-12-23
JPS51113754A (en) * 1975-03-31 1976-10-07 Mitsubishi Heavy Ind Ltd Method for finding the center of ultra-large, spherical tanks
JPS52107855A (en) * 1976-03-05 1977-09-09 Koito Mfg Co Ltd Noncontact type position detector

Also Published As

Publication number Publication date
JPH0262903A (en) 1990-03-02

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
US7209242B2 (en) Non-contact surface configuration measuring apparatus and method thereof
US20010033386A1 (en) Phase profilometry system with telecentric projector
US4204772A (en) Optical measuring system
JP2771546B2 (en) Hole inner surface measuring device
JPH02161332A (en) Device and method for measuring radius of curvature
JP3256286B2 (en) Optical connector core eccentricity measuring method and optical connector manufacturing method
JP3768822B2 (en) 3D measuring device
JP2983673B2 (en) Method and apparatus for measuring radius of curvature
JPH0755638A (en) Device and method for measuring focal length of optical system
JPH06258182A (en) Method and apparatus for measuring eccentricity of aspherical lens
JP2672771B2 (en) Through hole inner diameter measuring device
JPH07311117A (en) Apparatus for measuring position of multiple lens
JP3948852B2 (en) Refractive index distribution measuring apparatus and refractive index distribution measuring method
JPS6242327Y2 (en)
JPH08261734A (en) Shape measuring apparatus
JP6980304B2 (en) Non-contact inner surface shape measuring device
JP2000121340A (en) Face inclination angle measuring apparatus
JPH08233545A (en) Method and apparatus for measuring hole shape
JPH06148029A (en) Measuring method for gradient angle of optical fiber and light connector
KR910007629Y1 (en) Measuring apparatus
JPH02272308A (en) Non-contact type shape measuring instrument
JPH06103169B2 (en) Non-contact shape measuring device
JPH053537B2 (en)
CN112880585A (en) Non-contact shape measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees