JPH02272308A - Non-contact type shape measuring instrument - Google Patents

Non-contact type shape measuring instrument

Info

Publication number
JPH02272308A
JPH02272308A JP9548189A JP9548189A JPH02272308A JP H02272308 A JPH02272308 A JP H02272308A JP 9548189 A JP9548189 A JP 9548189A JP 9548189 A JP9548189 A JP 9548189A JP H02272308 A JPH02272308 A JP H02272308A
Authority
JP
Japan
Prior art keywords
optical sensor
measured
light
rotating
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9548189A
Other languages
Japanese (ja)
Other versions
JP2679236B2 (en
Inventor
Masato Kato
正人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP9548189A priority Critical patent/JP2679236B2/en
Publication of JPH02272308A publication Critical patent/JPH02272308A/en
Application granted granted Critical
Publication of JP2679236B2 publication Critical patent/JP2679236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the measurement accuracy by receiving a light beam in the direction being orthogonal to the surface containing a projection axis of a measuring instrument and a normal of the surface to be measured, based on an inclination of the surface to be measured, calculated, based on already calculated data. CONSTITUTION:On the downward part of an arch 20, a transfer device 22 for an object to be measured is provided so that it can slide in the X, Y and Z directions. On the arch 20, a sensor turning driving motor 32 is provided so as to turn a optical sensor 30. The optical sensor 30 measures a distance to the object to be measured by a theory of a trigonometrical survey by projecting a laser light onto a turning axis, and photodetecting a reflected light from the object to be measured from its side face. Subsequently, based on already calculated data, a normal of the surface to be measured is derived, and the optical sensor 30 is rotated so as to receive a light beam from the direction vertical to the surface containing the projection axis and the normal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定面に接触せずに彼ΔIII定物の形状
を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the shape of a ΔIII constant object without contacting the surface to be measured.

〔従来の技術〕[Conventional technology]

従来、プレス成形品や樹脂金型等の披−jJ定物の形状
測定には、その被測定面に直接計測針を接触さけ、位置
を読取るといった接触式の形状apl定装研装置く用い
られているが、この装置では上記計aPj針が摩耗する
といった不都合があった。そこで、近年、非接触式の形
状ハ1定装置が開発されており、そのうちの一つとして
三角1Pl−Jlil法を利用した装置が提案されてい
る。
Conventionally, contact-type shape measuring instruments have been used to measure the shape of fixed objects such as press-molded products and resin molds, by avoiding direct contact of the measurement needle with the surface to be measured and reading the position. However, this device had the disadvantage that the aPj needle was worn out. Therefore, in recent years, non-contact shape determination devices have been developed, and one of them has been proposed that uses the triangular 1Pl-Jlil method.

この装置を第8図に基づいて説明する。図において、8
0は発光および受光手段を備えた光センサであり、受光
手段は図のW軸方向に広がる受光可能領域を有している
。この光センサ80は、披n1定面S上に照射光Aを照
射するとともに、その反射光Bを上記受光手段で受光し
、その受光位置(W軸方向に関する受光位置)から被Δ
P1定而Sとの距離を求めるようになっている。
This device will be explained based on FIG. In the figure, 8
0 is an optical sensor equipped with a light emitting and light receiving means, and the light receiving means has a light receiving area extending in the W-axis direction in the figure. This optical sensor 80 irradiates the irradiation light A onto the Yen1 constant plane S, receives the reflected light B by the light receiving means, and receives the reflected light B from the light receiving position (the light receiving position in the W axis direction).
The distance between P1 and S is calculated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、同図に示されるように、被測定面Sが大きな
曲率で内側に湾曲していると、All定点Pから最短距
離で入射される正規の反射光Bだけでなく、他の点で二
次反射された反射光B′までが受光手段に入射され、正
確なΔP1定が妨げられる場合がある。また第9図に示
されるように、照射光Aの光軸に対する彼?IFj定面
Sの傾斜角度が大きいと、被測定物自身が障害となって
反射光が弱められ、あるいは完全に遮光されて受光手段
に到達せず、aFI定不可不可能る場合がある。
However, as shown in the figure, if the surface to be measured S is curved inward with a large curvature, not only the normal reflected light B incident from the All fixed point P at the shortest distance but also the two The next reflected light B' is incident on the light receiving means, which may prevent accurate determination of ΔP1. Also, as shown in FIG. If the inclination angle of the IFj constant plane S is large, the object to be measured itself becomes an obstacle and the reflected light is weakened or is completely blocked and does not reach the light receiving means, making it impossible to determine aFI.

そこで本発明は、被Δ−j定面の形状によって生じる問
題を解決し、精度良く測定することができる非接触式形
状測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a non-contact type shape measuring device that can solve problems caused by the shape of a Δ-j constant surface and measure the shape with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、発光手段および受光手段を有する光センサを
備え、上記発光手段により披71111定面に光を照射
し、その反射光を上記受光手段が受ける位置から披/I
III定面のflu定点と光センサとの距離データを順
次水めるようにした非接触式形状/ip+定装置におい
て、上記光センサを上記発光手段による照射光の光軸を
中心に旋回可能に構成するとともに、第1図に示される
ように、上記光センサを旋回駆動する駆動手段10と、
既に求められた距離データから上記光軸に対するilN
定点での被測定面の傾きを算出する演算手段12と、こ
の算出結果に基づき、上記発光手段および受光手段が上
記光軸および被A−1定面の法線ベクトルを含む平面に
対して略直交する方向に並ぶように光センサの旋回駆動
を制御する制御手段14とを備えたものである。
The present invention includes an optical sensor having a light emitting means and a light receiving means, the light emitting means irradiates light onto a plane 71111, and the reflected light is received from a position where the light receiving means receives the light.
In a non-contact type/IP+ constant device that sequentially records distance data between a flu fixed point on a III constant plane and an optical sensor, the optical sensor can be rotated around the optical axis of the light irradiated by the light emitting means. a driving means 10 configured to rotate the optical sensor, as shown in FIG.
ilN with respect to the above optical axis from the already determined distance data.
Calculating means 12 calculates the inclination of the surface to be measured at a fixed point, and based on the calculation result, the light emitting means and the light receiving means are arranged approximately relative to the plane including the optical axis and the normal vector of the constant surface A-1. The control means 14 controls the turning drive of the optical sensors so that they are arranged in orthogonal directions.

さらに、AFJ定点における被A11l定面の傾きと予
め設定された傾きとを比較する比較手段16を備え、前
者が後者を上回る場合にのみ光センサを旋回させるよう
にすれば、より効果的である。
Furthermore, it is more effective if a comparison means 16 is provided to compare the inclination of the A11l fixed plane at the AFJ fixed point with a preset inclination, and the optical sensor is rotated only when the former exceeds the latter. .

〔作 用〕[For production]

上記構成によれば、既算出データに基づいて演算された
被測定面の傾きに基づき、光センサの発光手段および受
光手段が照射光の光軸と被測定面の法線ベクトルとを含
む平面に直交する方向に並ぶように光センサが旋回駆動
されるので、上記発光手段から発せられ被ΔPI定面で
反射された光は、短い幅をもって確実に受光手段に入射
される。
According to the above configuration, based on the inclination of the surface to be measured calculated based on the already calculated data, the light emitting means and the light receiving means of the optical sensor are aligned to a plane including the optical axis of the irradiated light and the normal vector of the surface to be measured. Since the optical sensors are rotated so as to be aligned in orthogonal directions, the light emitted from the light emitting means and reflected by the ΔPI constant surface is reliably incident on the light receiving means with a short width.

さらに、上記被測定面の傾きと予め設定された傾きとを
比較するものによれば、上記光軸に対する披APj定面
の傾斜が定められた基準を超えた場合にのみ光センサが
旋回駆動される。
Furthermore, according to the method that compares the inclination of the surface to be measured with a preset inclination, the optical sensor is driven to rotate only when the inclination of the APj plane with respect to the optical axis exceeds a predetermined standard. Ru.

〔実施例〕〔Example〕

第2図は、本発明の一実施例における形状71r11定
装置の全体構成を示したものである。
FIG. 2 shows the overall configuration of a shape 71r11 fixing device in one embodiment of the present invention.

図において、20はアーチであり、このアーチ20の下
方に被測定物移送装置22が設置されている。この被測
定物移送装置22は、x、y、zの各軸方向にスライド
可能なX輔スライド部材241、Y輔スライド部材24
2、およびZ軸スライド部材243を備え、各スライド
部材241〜243は、X軸駆動モータ261、Y軸駆
動モタ262、Z軸駆動モータ263(後記第4図参照
)、および各モータの駆動軸に連結されたボールスクリ
ュー27によってスライド駆動されるようになっている
In the figure, 20 is an arch, and a measured object transfer device 22 is installed below this arch 20. This measured object transfer device 22 includes an X slide member 241 and a Y slide member 24 that are slidable in each axis direction of x, y, and z.
2, and a Z-axis slide member 243, each slide member 241-243 has an X-axis drive motor 261, a Y-axis drive motor 262, a Z-axis drive motor 263 (see FIG. 4 below), and a drive shaft of each motor. It is designed to be slidably driven by a ball screw 27 connected to.

Z輔スライド部材243の上部には、被alll定物が
載置されるテーブル28が固定され、このテーブル28
の上方に光センサ30が設けられている。
A table 28 on which all fixed objects are placed is fixed to the upper part of the Z-sliding member 243.
An optical sensor 30 is provided above.

この先センサ30は、アーチ20の上部に固定されたセ
ンサ旋回駆動モータ32に図外の減速機および旋回軸3
1を介して連結され、この旋回軸31回り(Z軸回り)
に旋回可能となっている。
The sensor 30 is connected to a sensor rotation drive motor 32 fixed to the upper part of the arch 20 and a reduction gear (not shown) and a rotation shaft 3.
1, and around this pivot axis 31 (around the Z axis)
It is possible to rotate.

第3図に示されるように、上記光センサ30のハウジン
グ34内には半導体レーザ(発光手段)36および位置
読取りセンサ(受光手段)37が設けられ、ハウジング
34の下部に形成された傾斜壁341には集光レンズ3
8が固定されている。
As shown in FIG. 3, a semiconductor laser (light emitting means) 36 and a position reading sensor (light receiving means) 37 are provided in the housing 34 of the optical sensor 30, and an inclined wall 341 formed at the lower part of the housing 34 Condensing lens 3
8 is fixed.

半導体レーザ36は、その照射光Aの光軸が上記旋回軸
31と合致する位置に配設されており、上記位置読取り
センサ37は、Z軸に対して所定の角度をもつW軸方向
に広がる受光可能領域を有している。この先センサ30
は、上記半導体レーザ36により被測定面S上に照射光
Aを照射するとともに、その反射光Bを集光レンズ38
を介して位置読取りセンサ37で受光し、その受光位置
(詳しくはW軸方向に関する受光位置)を読取るように
構成されている。
The semiconductor laser 36 is disposed at a position where the optical axis of the irradiated light A coincides with the rotation axis 31, and the position reading sensor 37 spreads in the W-axis direction at a predetermined angle with respect to the Z-axis. It has a light-receivable area. Sensor 30 ahead
The semiconductor laser 36 irradiates the surface S to be measured with the irradiation light A, and the reflected light B is sent to the condenser lens 38.
The light is received by the position reading sensor 37 via the light receiving sensor 37, and the light receiving position (specifically, the light receiving position in the W-axis direction) is read.

第4図は、この形状IP1定装置に備えられた演算制御
装置40を示したものである。この演算制御装置40に
は、上記位置読取りセンサ37、および各軸方向の被測
定物の移送距離をハ1定するΔP1長器421〜423
の検出信号が入力され、同演算制御装置40からは、表
示装置44、データ記録装置46、上記センサ旋回駆動
モータ32、およびx、y、z各軸の駆動モータ261
〜263に対して制御信号が出力されるようになってお
り、演算制御装置40自身は、上記第1図に示される演
算手段12、制御手段14、および比較手段16に各々
対応する機能を備えている。なお、上記表示装置44は
、AI定された形状データを表示するものであり、デー
タ記録装置46は算出データを磁気ディスクに記録する
ものである。
FIG. 4 shows an arithmetic and control device 40 provided in this shape IP1 determining device. This arithmetic and control device 40 includes the position reading sensor 37 and ΔP1 length devices 421 to 423 that determine the transfer distance of the object to be measured in each axis direction.
The arithmetic and control unit 40 outputs a display device 44, a data recording device 46, the sensor rotation drive motor 32, and drive motors 261 for each of the x, y, and z axes.
A control signal is outputted to . ing. Note that the display device 44 is for displaying the AI determined shape data, and the data recording device 46 is for recording the calculated data on a magnetic disk.

次に、この装置の行う形状AFI定動作を説明する。Next, the shape AFI constant operation performed by this device will be explained.

まず、テーブル28上に被−一1定物が載置された状態
で、この被11P1定物のall定が可能となる位置ま
でZ軸スライド部材243が昇降駆動される。通常は、
この段階でテーブル28の高さが固定されるが、被測定
物の被測定面Sの起伏が大きい場合には、測定中にも演
算制御装置40の制御の下でZ輔スライド部材28が適
宜駆動され、被測定物が常にaF1定可能な高さ位置に
保たれる。
First, with the first fixed object placed on the table 28, the Z-axis slide member 243 is driven up and down to a position where all the fixed objects 11P1 can be set. Normally,
Although the height of the table 28 is fixed at this stage, if the surface S to be measured of the object to be measured has large undulations, the Z-sliding member 28 may be moved as appropriate under the control of the arithmetic and control unit 40 during measurement. The object to be measured is always kept at a height position where aF1 can be determined.

この位置で、第3図に示されるように、光センサ30内
の半導体レーザ36から被測定面S上へ照射光Aが照射
される。この照射光Aは、上記彼Δ1定面Sで反射され
た後、集光レンズ38を通って位置読取りセンサ37で
受光され、その受光位置(W軸方向に関する受光位置)
に関する信号が演算制御装置40に人力される。演算制
御装置40は、この情報信号に基づいて半導体レーザ3
6から71−1定点Pに至るまでの距離を演算し、表示
装置44およびデータ記録装置46にデータを出力する
At this position, as shown in FIG. 3, irradiation light A is irradiated onto the surface to be measured S from the semiconductor laser 36 within the optical sensor 30. After this irradiation light A is reflected by the above-mentioned Δ1 constant plane S, it passes through the condensing lens 38 and is received by the position reading sensor 37, and its light receiving position (light receiving position in the W-axis direction)
A signal related to this is manually input to the arithmetic and control unit 40. The arithmetic and control unit 40 controls the semiconductor laser 3 based on this information signal.
The distance from 6 to 71-1 fixed point P is calculated and the data is output to display device 44 and data recording device 46.

一方、この演算制御装置40の制御信号によってX軸駆
動モータ261およびY軸駆動モータ262が適宜作動
することにより、X軸スライド部材241およびY軸ス
ライド部材242が各軸方向に駆動され、光センサ30
に対して被AFI定物が相対的に移送される。これによ
って、彼Al11定物に対する光センサ30の主走査お
よび副走査が行われ、このような走査と上記aPI定動
作とが並行して行われることにより、彼alll定面S
上の各点の高さ位置が順次読取られ、結果として全体の
形状が計1定される。
On the other hand, by appropriately operating the X-axis drive motor 261 and the Y-axis drive motor 262 according to the control signal of the arithmetic and control unit 40, the X-axis slide member 241 and the Y-axis slide member 242 are driven in the respective axial directions, and the optical sensor 30
The AFI constant is transferred relative to the AFI object. As a result, main scanning and sub-scanning of the optical sensor 30 with respect to the constant object Al11 are performed, and by performing such scanning and the aPI constant operation in parallel, the constant plane S
The height position of each point above is read in sequence, and as a result, the overall shape is determined.

さらに、この装置では、上記演算制御装置40からセン
サ旋回駆動モータ32に制御信号が出力されることによ
り、各API定点で光センサ30の向きが6凋節される
ようになっている。次に、その具体的な制御内容を説明
する。
Further, in this device, the direction of the optical sensor 30 is adjusted six times at each API fixed point by outputting a control signal from the arithmetic and control unit 40 to the sensor rotation drive motor 32. Next, the specific control contents will be explained.

第5図において、51は被測定面上で未だAPI定され
ていない未−P1定領域(図の無地領域)、52は既に
測定された既ΔI11定領域(図の斜線領域)であるが
、演算制御装置40は、上記数計1定領域52のうち今
回の1llll定点Pの近傍の領域(図の網目領域)5
3で算出された距離データを抽出し、これらのデータに
基づいて4p1定点Pでの被測定面Sの傾きを算出する
。この装置では、測定点P近傍の9つの既測定点につい
てのデータが抽出され、これらのデータに基づいて最小
二乗法により第6図に示されるような被測定面SのΔp
1定点Pにおける接手面Qの傾きが算出されるようにな
っている。
In FIG. 5, 51 is an undefined area (plain area in the figure) where API has not yet been determined on the surface to be measured, and 52 is an already measured ΔI11 constant area (shaded area in the figure). The arithmetic and control unit 40 selects an area (mesh area in the figure) 5 near the current 1llll fixed point P in the number 1 constant area 52.
The distance data calculated in step 3 is extracted, and the inclination of the surface to be measured S at the 4p1 fixed point P is calculated based on these data. In this device, data on nine measured points near the measuring point P are extracted, and based on these data, Δp of the surface to be measured S as shown in FIG. 6 is determined by the least squares method.
The inclination of the contact surface Q at one fixed point P is calculated.

この実施例では、上記傾きとして第7図に示されるよう
な接手面Qの測定点Pにおける法線ベクトル几が算出さ
れる。
In this embodiment, the normal vector at the measuring point P of the contact surface Q as shown in FIG. 7 is calculated as the above-mentioned inclination.

演算制御装置40は、上記法線ベクトルnと照射光Aの
光軸とのなす角度φを算出し、この角度φと予め設定さ
れた設定角度(この実施例では100)とを比較する。
The arithmetic and control unit 40 calculates the angle φ between the normal vector n and the optical axis of the irradiation light A, and compares this angle φ with a preset angle (100 in this embodiment).

角度φが設定角度以下である場合には光センサ30を旋
回させないが、角度φが設定角度を上回る場合には、上
記接平面QとXY平面との交線(すなわち等高線)Lを
求めるとともに該交線りとX軸とのなす角度θを求め、
この交線りと同方向に半導体レーザ36と位置読取りセ
ンサ37が並ぶように光センサ30を旋回させる。
If the angle φ is less than the set angle, the optical sensor 30 is not rotated, but if the angle φ exceeds the set angle, the intersection line (i.e., contour line) L between the tangent plane Q and the XY plane is determined, and the corresponding Find the angle θ between the intersection line and the X axis,
The optical sensor 30 is rotated so that the semiconductor laser 36 and the position reading sensor 37 are aligned in the same direction as this intersection line.

このような装置によれば、照射光Aの光軸に対して被測
定面Sが一定以上傾いている場合、その法線ベクトル几
と照射光Aの光軸とを含む平面に直交する方向、すなわ
ち披APj定面Sの等高線の方向に半導体レーザ36と
位置読取りセンサ37が並ぶように光センサ30が旋回
駆動されるので、上記第8図や第9図に示されるように
披4pj定而Sの起伏が反射光Bに影響することがなく
、各al定点で常に良好な71p1定を行うことができ
る。
According to such an apparatus, when the surface to be measured S is tilted by a certain amount or more with respect to the optical axis of the irradiation light A, the direction perpendicular to the plane containing the normal vector 几 and the optical axis of the irradiation light A; That is, since the optical sensor 30 is rotated so that the semiconductor laser 36 and the position reading sensor 37 are lined up in the direction of the contour line of the APj constant plane S, the APJ constant plane S is rotated as shown in FIGS. The undulations of S do not affect the reflected light B, and a good 71p1 constant can always be performed at each al fixed point.

さらに、上記のように、法線ベクトル几と光軸のなす角
度φが一定値以上の場合、すなわち彼Δ−1定而Sの形
状がnj定精度に影響を及ぼす場合にのみ光センサ30
を旋回させるようにすれば、光センサ30の旋回に要す
る時間を最小限に抑えることができ、aFJ定能率の向
上を図ることができる。
Furthermore, as described above, the optical sensor 30 is used only when the angle φ between the normal vector 几 and the optical axis is greater than a certain value, that is, when the shape of the Δ−1 constant S affects the nj constant accuracy.
By rotating the optical sensor 30, the time required for rotating the optical sensor 30 can be minimized, and the constant efficiency of the aFJ can be improved.

なお、本発明はこの実施例に限定されず、例として次の
ような態様をとることも可能である。
Note that the present invention is not limited to this embodiment, and can also take the following embodiments as an example.

(1)本発明では、照射光の光軸と光センサの旋回軸が
合致していればよく、両軸の具体的な方向は問わない。
(1) In the present invention, it is sufficient that the optical axis of the irradiated light and the rotation axis of the optical sensor match, and the specific directions of both axes do not matter.

例えば、被測定面に対してX軸方向に光が照射される場
合には、同方向に光センサの旋回軸を設定すればよい。
For example, when the surface to be measured is irradiated with light in the X-axis direction, the pivot axis of the optical sensor may be set in the same direction.

(2)本発明では、光センサの方向が光軸と法線ベクト
ルとを含む平面に直交する方向に厳密に一致していなく
てもよく、測定精度に影響を与えない範囲で両者に多少
の差があってもよい。また、実際に法線ベクトルを算出
する必要はなく、結果として上記方向に光センサが向く
ように制御すれば本発明の目的は達せられる。
(2) In the present invention, the direction of the optical sensor does not need to strictly coincide with the direction perpendicular to the plane containing the optical axis and the normal vector, and there may be some variation between the two as long as it does not affect measurement accuracy. There may be differences. Further, there is no need to actually calculate the normal vector, and the object of the present invention can be achieved by controlling the optical sensor so that it faces in the above direction.

(3)本発明は発光手段および受光手段の種類を間イ〕
ず、彼ハP1定物の形状に対しセンサの方向を鹿化させ
た時に4P1定精度が変わるようなAPI定装置に適用
することができる。
(3) The present invention allows for different types of light emitting means and light receiving means.
First, it can be applied to an API constant device in which the 4P1 constant accuracy changes when the direction of the sensor changes with respect to the shape of the P1 constant object.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、光センサにより既に検出された
データから照射光の光軸に対する披Ap1定面の傾きを
算出し、上記光センサの発光手段および受光手段が上記
光軸および彼ΔP1定面の法線ベクトルを含む平面に対
して略直交する方向に並ぶように、光センサを上記光軸
titりに旋回させるようにしたものであるので、簡単
な機構および制御によって、被−1定而の形状に拘らず
常に高精度で反射光の受光位置を読取ることができる効
果がある。
As described above, the present invention calculates the inclination of the ΔP1 constant plane with respect to the optical axis of the irradiated light from data already detected by the optical sensor, and the light emitting means and light receiving means of the optical sensor calculate the inclination of the ΔP1 constant plane with respect to the optical axis of the irradiated light. Since the optical sensors are rotated about the optical axis tit so that they are arranged in a direction substantially perpendicular to the plane containing the normal vector of the surface, the -1 constant This has the effect that the receiving position of reflected light can always be read with high precision regardless of the shape of the object.

さらに、披−1定而の法線ベクトルと上記光軸とが形成
する角度と予め設定された角度とを比較し、前者が後者
を上回る場合にのみ光センサを旋回させるようにすれば
、光センサを旋回させるための時間を最小限に抑えるこ
とにより、IIPj定能率の向上を図ることができる効
果がある。
Furthermore, if the angle formed by the normal vector of the fixed object and the optical axis is compared with a preset angle, and the optical sensor is rotated only when the former exceeds the latter, the light By minimizing the time required to rotate the sensor, the IIPj constant efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非接触式形状al定装置の主要部の機
能構成図、第2図は同発明の一実施例における非接触式
形状測定装置の全体構成図、第3図は同装置に備えられ
た光センサの内部構造図、第4図は同装置に備えられた
演算制御装置等のノ\ド構成図、第5図は彼A?I定面
における未4P1定領域お、よび既Mill定領域を示
す説明図、第6図は同波測定而の測定点における接平面
を示す斜視図、第7図は同接平面および同接平面の法線
ベクトルを示す斜視図、第8図および第9図は被測定面
の形状と光センサに入射される反射光との関係を示す説
明図である。 10・・・駆動手段、12・・・演算手段、14・・・
制御手段、16・・・比較手段、30・・・光センサ、
32・・・センサ旋回駆動モータ(駆動手段)、36・
・・半導体レーザ(発光手段)、37・・・位置読取り
センサ(受光手段)、40・・・演算制御装置(演算手
段、制御手段、および比較手段)、A・・・照射光、B
・・・反射光、P・・・測定点、S・・・被測定面、U
・・・法線ベクトル、φ・・・法線ベクトルと光軸との
なす角度。 特許用m1人    ミノルタカメラ株式会11代 理
 人     弁理士  手合 悦司同       
弁理士  長11   正目       弁理士  
伊藤 孝夫第 、図 第 図 第 図 第 図 第 図 入 第 図 第 図 第 図
FIG. 1 is a functional configuration diagram of the main parts of a non-contact shape measurement device of the present invention, FIG. 2 is an overall configuration diagram of a non-contact shape measurement device according to an embodiment of the invention, and FIG. 3 is the same device. Figure 4 is a diagram of the internal structure of the optical sensor installed in the device, Figure 4 is a node configuration diagram of the arithmetic and control unit installed in the device, and Figure 5 is a diagram of the internal structure of the optical sensor installed in the device. An explanatory diagram showing the non-4P1 constant area and the existing Mill constant area on the I constant plane, FIG. 6 is a perspective view showing the tangent plane at the measurement point of the same wave measurement, and FIG. 7 is the same tangent plane and the same tangent plane. FIGS. 8 and 9 are explanatory diagrams showing the relationship between the shape of the surface to be measured and the reflected light incident on the optical sensor. 10... Driving means, 12... Calculating means, 14...
Control means, 16... Comparison means, 30... Optical sensor,
32...Sensor swing drive motor (drive means), 36.
... Semiconductor laser (light emitting means), 37... Position reading sensor (light receiving means), 40... Arithmetic control device (arithmetic means, control means, and comparison means), A... Irradiation light, B
...Reflected light, P...Measurement point, S...Measurement surface, U
...Normal vector, φ...Angle between the normal vector and the optical axis. 1 person for patents Minolta Camera Co., Ltd. 11th representative Patent attorney Etsushi Teai
Patent Attorney Cho 11 Masame Patent Attorney
Takao Ito

Claims (1)

【特許請求の範囲】 1、発光手段および受光手段を有する光センサを備え、
上記発光手段により被測定面に光を照射し、その反射光
を上記受光手段が受ける位置から被測定面の測定点と光
センサとの距離データを順次求めるようにした非接触式
形状測定装置において、上記光センサを上記発光手段に
よる照射光の光軸を中心に旋回可能に構成するとともに
、この光センサを旋回駆動する駆動手段と、既に求めら
れた距離データから上記光軸に対する測定点での被測定
面の傾きを算出する演算手段と、この算出結果に基づき
、上記発光手段および受光手段が上記光軸および被測定
面の法線ベクトルを含む平面に対して略直交する方向に
並ぶように光センサの旋回駆動を制御する制御手段とを
備えたことを特徴とする非接触式形状測定装置。 2、請求項1記載の非接触式形状測定装置において、測
定点における被測定面の傾きと予め設定された傾きとを
比較する比較手段を備え、前者が後者を上回る場合にの
み光センサを旋回させるように制御手段を構成したこと
を特徴とする非接触式形状測定装置。
[Claims] 1. A light sensor having a light emitting means and a light receiving means;
In a non-contact type shape measuring device, distance data between a measurement point on the surface to be measured and an optical sensor is sequentially obtained from a position where the surface to be measured is irradiated with light by the light emitting means and the light receiving means receives the reflected light. , the optical sensor is constructed to be able to rotate around the optical axis of the light irradiated by the light emitting means, and a drive means for driving the optical sensor to rotate, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor, and a drive means for rotating the optical sensor; calculation means for calculating the inclination of the surface to be measured, and based on the calculation result, the light emitting means and the light receiving means are arranged in a direction substantially perpendicular to a plane including the optical axis and the normal vector of the surface to be measured. 1. A non-contact shape measuring device, comprising: control means for controlling rotational drive of an optical sensor. 2. The non-contact shape measuring device according to claim 1, further comprising comparison means for comparing the inclination of the surface to be measured at the measurement point with a preset inclination, and rotating the optical sensor only when the former exceeds the latter. 1. A non-contact shape measuring device, characterized in that the control means is configured to
JP9548189A 1989-04-14 1989-04-14 Non-contact type shape measuring device Expired - Lifetime JP2679236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9548189A JP2679236B2 (en) 1989-04-14 1989-04-14 Non-contact type shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9548189A JP2679236B2 (en) 1989-04-14 1989-04-14 Non-contact type shape measuring device

Publications (2)

Publication Number Publication Date
JPH02272308A true JPH02272308A (en) 1990-11-07
JP2679236B2 JP2679236B2 (en) 1997-11-19

Family

ID=14138806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9548189A Expired - Lifetime JP2679236B2 (en) 1989-04-14 1989-04-14 Non-contact type shape measuring device

Country Status (1)

Country Link
JP (1) JP2679236B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189452A (en) * 1990-11-20 1992-07-07 Fanuc Ltd Digitizing control device
WO1996010726A1 (en) * 1994-09-30 1996-04-11 Sintokogio, Ltd. Method of measuring sizes of mold and mold-associated components by laser measuring instrument
WO1997012199A1 (en) * 1995-09-27 1997-04-03 Sintokogio, Ltd. Method of measuring sizes of mold and mold-associated components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04189452A (en) * 1990-11-20 1992-07-07 Fanuc Ltd Digitizing control device
WO1996010726A1 (en) * 1994-09-30 1996-04-11 Sintokogio, Ltd. Method of measuring sizes of mold and mold-associated components by laser measuring instrument
US5715062A (en) * 1994-09-30 1998-02-03 Sintokogio, Ltd. Method of measuring sizes of mold and mold-associated components by laser measuring instrument
WO1997012199A1 (en) * 1995-09-27 1997-04-03 Sintokogio, Ltd. Method of measuring sizes of mold and mold-associated components
US5771100A (en) * 1995-09-27 1998-06-23 Sintokogio, Ltd. Method of measuring dimension of mold or mold-associated component by laser measuring instrument

Also Published As

Publication number Publication date
JP2679236B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
JPS61240104A (en) Method and device for electrooptically measuring size, position and attitude of object
JP3537522B2 (en) Crucible measurement method
JPS59190607A (en) Contactless measuring device for measuring shape of body
JP3768822B2 (en) 3D measuring device
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JP2771546B2 (en) Hole inner surface measuring device
JPH02272308A (en) Non-contact type shape measuring instrument
CN109520443A (en) A kind of roll angle measurement method based on combinatorial surface type standard
JPH08145620A (en) Position measuring apparatus for foreign matter on rotating body
JPH03264804A (en) Surface-shape measuring apparatus
JP2000046529A (en) Method and device for measuring shape of object with 3-dimensional curves
JPH01188254A (en) Noncontact copying digitizing
RU2275652C2 (en) Method for location of radiation source and device for its realization
KR100479412B1 (en) Straightness measurement device
JPH09178439A (en) Three-dimensional shape measuring device
JP3607821B2 (en) Inclination angle measuring machine
JPH03167404A (en) Method for measuring size of large object
JPH01235807A (en) Depth measuring instrument
JP3176734B2 (en) Optical position measuring device
JPH0216965B2 (en)
JP2891410B2 (en) Method and apparatus for measuring three-dimensional shape and normal vector of specular object
JPH09189545A (en) Distance measuring device
JP2002340535A (en) Method and apparatus for measuring tilt angle of mirror surface
JPS61189405A (en) Non-contacting shape measuring instrument