JPH0216965B2 - - Google Patents
Info
- Publication number
- JPH0216965B2 JPH0216965B2 JP58027613A JP2761383A JPH0216965B2 JP H0216965 B2 JPH0216965 B2 JP H0216965B2 JP 58027613 A JP58027613 A JP 58027613A JP 2761383 A JP2761383 A JP 2761383A JP H0216965 B2 JPH0216965 B2 JP H0216965B2
- Authority
- JP
- Japan
- Prior art keywords
- displacement meter
- angle
- measurement
- distance
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 37
- 238000006073 displacement reaction Methods 0.000 claims description 34
- 230000007246 mechanism Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はレーザー光等を利用した光学的変位計
により、非接触で物体形状を測定する方法に係
り、特に、変位計の駆動を改良した物体断面形状
の自動測定法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of measuring the shape of an object in a non-contact manner using an optical displacement meter using laser light or the like. Concerning automatic measurement method of cross-sectional shape.
近時、オプトエレクトロニクスの発展に伴い、
レーザー光等の光学的手段により、非接触で物体
形状を測定する方法が開発されている。この方法
の内、倣い計測方式の一例を第1図により説明す
る。
Recently, with the development of optoelectronics,
BACKGROUND ART A method of measuring the shape of an object in a non-contact manner using optical means such as laser light has been developed. Among these methods, an example of the scanning measurement method will be explained with reference to FIG.
被測定物体1の外部に配置された駆動テーブル
2は駆動機構3等により3次元的に駆動される。
駆動テーブル2に配置された光学系は、レーザー
等の光源4、半透鏡5、レンズ6,7、振動ピン
ホール8及び受光器9から成つている。また、演
算制御装置は振動ピンホール8の発振器10、受
光器9の出力の増巾器11、これら発振器10及
び増巾器11の出力を演算して駆動機構3を制御
する演算制御回路12より成る。今、物体1とレ
ンズ6との距離Aが、レンズ6の焦点距離に等し
い場合は、反射光は第1図に示すように振動ピン
ホールの振巾の中心で焦点を結ぶので、受光器9
の出力は最大となるが、距離Aがレンズ6の焦点
距離f6の大小いずれの方向に偏つても、受光器9
の出力は減少する。更に、第2図に示すように周
波数で振動する振動ピンホールの作用により、
距離Aがf6に等しい場合は受光器9の出力の周波
数は2であるが、Af6の場合の出力は周波数〓
となり、その位相は振動ピンホールの位相と夫々
同相もしくは逆相となる。したがつて、演算制御
回路12により、出力の周波数及び位相の検出結
果に基づいて駆動機構3を駆動し、距離Aをレン
ズ6の焦点距離f6に一致させれば、その駆動量に
よつて物体1の形状を倣い計測することができ
る。 A drive table 2 placed outside the object to be measured 1 is three-dimensionally driven by a drive mechanism 3 or the like.
The optical system arranged on the drive table 2 includes a light source 4 such as a laser, a semi-transparent mirror 5, lenses 6 and 7, a vibrating pinhole 8, and a light receiver 9. The arithmetic and control device also includes an oscillator 10 of the vibration pinhole 8, an amplifier 11 for the output of the light receiver 9, and an arithmetic and control circuit 12 that calculates the outputs of the oscillator 10 and the amplifier 11 to control the drive mechanism 3. Become. Now, if the distance A between the object 1 and the lens 6 is equal to the focal length of the lens 6, the reflected light will be focused at the center of the amplitude of the vibrating pinhole as shown in FIG.
The output of is maximum, but regardless of whether the distance A is biased toward the focal length f6 of the lens 6, the output from the light receiver 9
output decreases. Furthermore, as shown in Figure 2, due to the action of a vibrating pinhole that vibrates at a frequency,
When the distance A is equal to f 6 , the frequency of the output of the receiver 9 is 2, but when the distance A is equal to f 6 , the output is equal to the frequency 〓
The phase is the same or opposite to the phase of the vibrating pinhole, respectively. Therefore, if the arithmetic control circuit 12 drives the drive mechanism 3 based on the detection results of the frequency and phase of the output and makes the distance A match the focal length f6 of the lens 6, the amount of drive The shape of the object 1 can be traced and measured.
本方式には次の問題がある。 This method has the following problems.
(a) 測定時間が長いこと。これは、第1図に示す
ように物体1のx−y断面の形状を測定する場
合、x軸方向の駆動にあわせて、常にy方向、
すなわち、光軸方向の駆動を行なう必要がある
からである。(a) Measurement time is long. This means that when measuring the shape of the x-y cross section of object 1 as shown in Fig. 1, in addition to driving in the x-axis direction, the y-direction
That is, this is because it is necessary to drive in the optical axis direction.
(b) 振動に弱いこと。これは、物体との距離の検
出に振動ピンホールを用いているため、外部か
らの加振に対して、共振等の問題を起こし易い
からである。(b) Sensitive to vibration. This is because since a vibrating pinhole is used to detect the distance to an object, problems such as resonance are likely to occur due to external vibrations.
(c) 物体表面の大きな傾斜角に対して測定不能な
こと。これは、第1図の物体表面の法線と照射
光軸とのなす角αが大きくなると、受光器に向
かう反射光の光量が減少するためである。(c) Unable to measure large inclination angles of object surfaces. This is because as the angle α between the normal to the object surface and the irradiation optical axis in FIG. 1 increases, the amount of reflected light directed toward the light receiver decreases.
本発明の目的は、測定時間が短かく、かつ、物
体形状の急激な変化にも自動的に追随し得る測定
方法を提供するにある。
An object of the present invention is to provide a measurement method that requires short measurement time and can automatically follow sudden changes in the shape of an object.
本発明の測定方法の要点は次のとおりである。 The main points of the measurement method of the present invention are as follows.
(a) 物体との距離の測定に、測定可能範囲が広く
かつ原理的に振動を用いない変位計を利用した
こと。(a) A displacement meter that has a wide measurable range and does not use vibration in principle is used to measure the distance to an object.
(b) 変位計を3次元駆動装置に取付け、この取付
部に角度変化機構を付設したこと。(b) The displacement meter is attached to the three-dimensional drive device, and an angle change mechanism is attached to this attachment part.
(c) 変位計の距離と角度の測定限界内に制限範囲
を設定し、測定点で距離と角度のいずれかがこ
の制限範囲を外れた場合には、次の点の測定値
を得る前に上記制限範囲内に戻す制御を行なう
こと。(c) Set a limit range within the distance and angle measurement limits of the displacement meter, and if either the distance or angle at a measurement point is outside this limit range, before obtaining the measurement value at the next point. Control should be carried out to bring it back within the above limit range.
以下、本発明の実施例を図面を引用して説明す
る。第3図はその全体構成を示したもので、基台
20に置かれた被測定物体1の上方には、変位計
40が角度変化機構21を介して、クロスヘツド
22に取付けられている。このクロスヘツド22
は、三次元駆動装置のアーム23と滑合し、その
ガイド部24が横送りねじ25に結合されたモー
タ26の回転により左右に駆動されるため、変位
計40は図示のx軸方向に移動可能となつてい
る。また、y軸方向の移動はモータ27に結合さ
れた縦方向送りねじ28と、アーム29に滑合さ
れたギアボツクス30により行なわれる。更に、
モータ31は基台32に載せられた装置全体をz
軸方向に駆動する。したがつて、変位計40は
x,y,zの3軸方向に移動可能であり、角度変
化機構21の駆動モータ33(第9図に示す)に
よりz軸に垂直な断面内で回転可能である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows its overall configuration. Above the object to be measured 1 placed on a base 20, a displacement meter 40 is attached to a crosshead 22 via an angle changing mechanism 21. This crosshead 22
slides on the arm 23 of the three-dimensional drive device, and its guide portion 24 is driven left and right by the rotation of the motor 26 coupled to the transverse feed screw 25, so the displacement meter 40 moves in the x-axis direction shown in the figure. It's becoming possible. Further, movement in the y-axis direction is performed by a longitudinal feed screw 28 coupled to a motor 27 and a gearbox 30 slidably fitted to the arm 29. Furthermore,
The motor 31 moves the entire device mounted on the base 32 to
Drive in the axial direction. Therefore, the displacement meter 40 is movable in the directions of the three axes x, y, and z, and can be rotated within a cross section perpendicular to the z-axis by the drive motor 33 (shown in FIG. 9) of the angle change mechanism 21. be.
第4図は変位計の取付け状況を示す。以下の説
明では簡単のため照射光軸上に角度変化機構の回
転中心Dがあるものとし、投射光軸と物体1の表
面との交点をPと呼び、PDの長さLを変位計4
0と物体との距離と定義する。また、照射角α
は、照射角θdとP点における物体断面の法線nの
角度θoとのなす角度により定義する。ここに、α
は下式で表わされる。 Figure 4 shows how the displacement gauge is installed. In the following explanation, for simplicity, it is assumed that the rotation center D of the angle changing mechanism is on the irradiation optical axis, the intersection of the projection optical axis and the surface of the object 1 is called P, and the length L of PD is the displacement meter 4.
It is defined as the distance between 0 and the object. Also, the irradiation angle α
is defined by the angle between the irradiation angle θ d and the angle θ o of the normal n to the cross section of the object at point P. Here, α
is expressed by the following formula.
α=θd−θo ………()
第5図は本実施例で使用する変位計の構造を示
す。レーザー光等の光源41より発射された光線
は、照射レンズ42を通つて物体表面上の測定点
Pを照射するが、この拡散反射光は照射光軸と一
定角度をなす受光光軸上に設けた集光レンズ43
により集光され、受光器44で検出される。距離
測定の原理は、物体変位計との距離が変化すると
受光器44上の受光面に対する反射光の入射位置
が連続的に変化する現象を用いたものであるが、
受光面の大きさ等の制約により、変位計で測定可
能な距離には自ずと限界があり、以下距離の測定
限度の上限及び下限を夫々Lnax及びLnioと呼ぶ。 α=θ d −θ o () FIG. 5 shows the structure of the displacement meter used in this embodiment. A light beam emitted from a light source 41 such as a laser beam passes through the irradiation lens 42 and irradiates the measurement point P on the object surface, but this diffusely reflected light is placed on the receiving optical axis that forms a certain angle with the irradiating optical axis. condensing lens 43
The light is collected by the light receiver 44 and detected by the light receiver 44. The principle of distance measurement is based on the phenomenon that when the distance to the object displacement meter changes, the incident position of the reflected light on the light receiving surface on the light receiver 44 changes continuously.
Due to restrictions such as the size of the light-receiving surface, there is naturally a limit to the distance that can be measured with a displacement meter, and hereinafter the upper and lower limits of distance measurement limits will be referred to as L nax and L nio , respectively.
また、第6図ないし第8図は変位計の照射角α
の測定限度の説明図である。まず、第6図は反射
光の光量が最大値となる場合を示す。照射角αが
照射光軸と受光光軸のなす角βの2分の1である
ため、受光光軸の方向が拡散反射光の光量分布の
最大値の方向と一致している。一方、第7図及び
第8図は、測定可能な照射角αの上限及び下限を
示す。これら両図から、αが過大もしくは過小に
なつた場合は、受光光軸の方向が拡散反射の光量
が小さい領域になるため、受光器44で光量不足
が起きることがわかる。この照射角αの上限及び
下限を夫々αnax及びαnioと呼ぶ。 In addition, Figures 6 to 8 show the irradiation angle α of the displacement meter.
It is an explanatory view of the measurement limit of. First, FIG. 6 shows a case where the amount of reflected light reaches its maximum value. Since the irradiation angle α is half of the angle β between the irradiation optical axis and the light reception optical axis, the direction of the reception optical axis coincides with the direction of the maximum value of the light quantity distribution of the diffusely reflected light. On the other hand, FIGS. 7 and 8 show the upper and lower limits of the measurable irradiation angle α. From these figures, it can be seen that when α becomes too large or too small, the direction of the light receiving optical axis becomes a region where the amount of diffusely reflected light is small, so that an insufficient amount of light occurs in the light receiver 44. The upper and lower limits of this irradiation angle α are called α nax and α nio , respectively.
第9図は本発明の演算制御機構を示したもので
ある。変位計40から得られた距離Lに関する情
報は検出回路45を経て演算制御回路46に入力
される。また、x,y,z軸の移動量を測定する
磁気スケール47からの位置情報及び角度変化機
構21のロータリーエンコーダ48からの角度情
報は、夫々の検出回路49及び50を経て演算制
御回路46に入力される。演算制御回路46で
は、これらの情報に基づいて、物体1のP点の座
標(x、y、z)を演算すると共に、その結果を
表示装置51に表示する。更に、距離L及び照射
角αに関しては、後述の比較演算を行ない、その
結果に基づいて駆動モータ26,27,31及び
33の駆動制御を行なう。 FIG. 9 shows the arithmetic control mechanism of the present invention. Information regarding the distance L obtained from the displacement meter 40 is input to the calculation control circuit 46 via the detection circuit 45. Further, the position information from the magnetic scale 47 that measures the amount of movement in the x, y, and z axes and the angle information from the rotary encoder 48 of the angle change mechanism 21 are sent to the arithmetic control circuit 46 via the respective detection circuits 49 and 50. is input. The calculation control circuit 46 calculates the coordinates (x, y, z) of point P of the object 1 based on this information, and displays the result on the display device 51. Further, regarding the distance L and the irradiation angle α, a comparison calculation, which will be described later, is performed, and the drive motors 26, 27, 31, and 33 are controlled based on the results.
次に、本実施例における変位計の具体的な駆動
制御方法を説明する。第10図は、変位計の駆動
と距離Lの測定限度の関係を示す。図中のAは、
距離Lに関して変位計が検出限度のほぼ中央に位
置しているので、何ら問題なく測定できる場合を
示す。しかし、変位計をx軸方向に平行に駆動し
ながら測定を続けて、図中のBに移動した場合
は、距離Lが図中のロの曲線で示す検出限度Lnax
を越えてしまうので、距離の測定が不可能とな
る。したがつて、AからBに至る途中の段階で、
この現象の発生を未然に防止し、図中Cに例示し
たように検出限度内に戻す制御が必要である。同
様の現象が第11図に示すように照射角αについ
ても起こり得る。すなわち、図中AからBの過程
でx軸及びy軸方向の駆動のみを行ない、物体1
の断面形状の変化にあわせてαの値を変更しない
と、図中Bのような場合が起こり、測定不可能と
なる。したがつて、AからBに至る途中の段階
で、αについてもBの場合の起きることを未然に
防止し、図中Cに例示したように角度の検出限度
内に戻す制御が必要となる。 Next, a specific drive control method of the displacement meter in this embodiment will be explained. FIG. 10 shows the relationship between the drive of the displacement meter and the measurement limit of the distance L. A in the diagram is
A case is shown in which the displacement meter is located approximately at the center of the detection limit with respect to the distance L, so that measurement can be performed without any problem. However, if you continue measuring while driving the displacement meter parallel to the x-axis direction and move it to B in the figure, the distance L will exceed the detection limit L nax shown by the curve B in the figure.
, it becomes impossible to measure the distance. Therefore, on the way from A to B,
It is necessary to control the occurrence of this phenomenon and bring it back within the detection limit, as illustrated by C in the figure. A similar phenomenon can occur with respect to the illumination angle α, as shown in FIG. That is, in the process from A to B in the figure, only the drive in the x-axis and y-axis directions is performed, and the object 1
If the value of α is not changed in accordance with the change in the cross-sectional shape, a situation like B in the figure will occur and measurement will become impossible. Therefore, on the way from A to B, it is necessary to control α to prevent the occurrence of case B and return it to within the angle detection limit as illustrated in C in the figure.
一方、測定時間の短縮の観点からは、できる丈
位置及び角度の駆動の回数を減少させ、可能なら
ば断面形状の測定にあたつて必要なx軸の駆動だ
けにしたいという要求がある。 On the other hand, from the viewpoint of shortening measurement time, there is a desire to reduce the number of times the length position and angle can be driven, and if possible, to only drive the x-axis necessary for measuring the cross-sectional shape.
本発明では、この矛盾する要求を、次のように
解決する。すなわち、まず、距離L及び角度αの
測定限度Lnio〜Lnax及びαnio〜αnax内に、制限範
囲Ll〜Lo及びαl〜αoを設定する。いま、ある測定
点Piで、Lないしαの測定値がこれら制限範囲を
外れた場合は、次の測定点Pi+1の測定をする前
に、Pi及びそれ以前のデータに基づいてLないし
αを制限範囲内の値Lp及びαpに戻す制御を行な
う。ここに、以下の関係式が成立する。 In the present invention, these contradictory demands are resolved as follows. That is, first, the limit ranges L l to Lo and α l to α o are set within the measurement limits L nio to L nax and α nio to α nax for the distance L and the angle α. Now, if the measured value of L or α at a certain measuring point P i is out of these limited ranges, then before measuring the next measuring point P i +1 , based on the data of P i and previous ones, Control is performed to return L to α to values L p and α p within the limited range. Here, the following relational expression holds true.
Lnio<Ll≦Lp≦Lo<Lnax ………()
αnio<αl≦αp≦αo<αnax ………()
この場合、Pi点よりも前のデータをも用いるの
は、照射角αの算定にはその点の法線の角度θoが
必要なためである。第12図に示すように、この
θoの算定には図中のPi-2〜Pi点の座標を用い、例
えば多項式近似によりPi点の接点の傾きを求めれ
ばよい。 L nio <L l ≦L p ≦L o <L nax ………() α nio <α l ≦α p ≦α o <α nax ………() In this case, the data before the P i point is also used because the angle θ o of the normal to that point is required to calculate the illumination angle α. As shown in FIG. 12, the coordinates of points P i-2 to P i in the figure are used to calculate θ o , and the slope of the contact point of point P i may be determined by polynomial approximation, for example.
このように本発明の物体形状の自動測定方法
は、受光器44で物体の測定点を測定出来ない範
囲外であれば、変位計40を測定距離および測定
角度限度範囲内に移動すると、測定点を測定でき
る。この結果、物体形状測定装置の動作を停止す
ることなく、連続して測定作業が出来ること、お
よび限度範囲内に変位計40を移動するだけでよ
いから、正確な調整を必要としないこと、等によ
り、測定作業時間を大幅に短縮することができ
る。 In this way, in the automatic object shape measuring method of the present invention, if the measurement point of the object is outside the range where the light receiver 44 cannot measure the measurement point, when the displacement meter 40 is moved within the measurement distance and measurement angle limit range, the measurement point is detected. can be measured. As a result, measurement work can be performed continuously without stopping the operation of the object shape measuring device, and since it is only necessary to move the displacement meter 40 within the limit range, accurate adjustment is not required. This allows the measurement work time to be significantly reduced.
第13図は、この制御を採用した場合の、角度
変化機構の中心点Diの軌跡を示す。第10図と比
較すると、本制御の採用により距離Lが測定限度
を越える現象が、未然に防止されていることがわ
かる。照射角αについても同様の制御により、同
様な効果が期待できる。 FIG. 13 shows the locus of the center point D i of the angle changing mechanism when this control is adopted. Comparison with FIG. 10 shows that the adoption of this control prevents the phenomenon in which the distance L exceeds the measurement limit. A similar effect can be expected by controlling the illumination angle α in a similar manner.
なお、これらの制御を行なう場合には、制御後
のDiの座標(X′、Y′)及び取付け角θd′が、第1
2図にみるように制御前のDi点の座標(X、Y)、
取付け角d〓及びPi点の座標(x、y)を用いれば
下式により与えられるので、3次元駆動装置の
x、y軸及び角度変化機構のθd軸を、これらの値
になるように駆動すればよい。 Note that when performing these controls, the coordinates (X', Y') of D i and the mounting angle θ d ' after the control are
As shown in Figure 2, the coordinates (X, Y) of point D i before control,
Using the mounting angle d〓 and the coordinates (x, y) of point P i , it can be given by the following formula, so set the x, y axes of the three-dimensional drive device and the θ d axis of the angle change mechanism to these values. All you have to do is drive it.
θd′=αp+θo ………()
X′=X+Lcosθd−Lpcosθd′ ………()
Y′=Y+Lsinθd−Lpsinθd′ ………()
ここに、Lp,αpは()及び()式で示す
夫々の制限範囲内の適切な値である。 θ d ′ = α p + θ o ……… ( ) , α p are appropriate values within the respective limit ranges shown in equations () and ().
第14図に、この制御方法のフローチヤートを
示す。上述の制御方法では、x,y軸及びθ軸の
駆動の後、その点で再度測定を行なつているが、
これは必ずしも必要でなく、図中の破線に示すよ
うに、次の点の測定に移行しても良い。 FIG. 14 shows a flowchart of this control method. In the above control method, after driving the x, y and θ axes, measurement is performed again at that point.
This is not always necessary, and the measurement may proceed to the next point as shown by the broken line in the figure.
なお、以上の説明ではz軸に垂直な断面の形状
を得る場合を取り扱つているが、任意の断面に対
する測定を行なう場合にも、計算式及び制御方法
は複雑となるが、同様の制御を行なうことができ
る。 Although the above explanation deals with the case of obtaining the shape of a cross section perpendicular to the z-axis, similar control can be used when measuring any cross section, although the calculation formula and control method are complicated. can be done.
本発明は、上述の実施例のみにその適用が限定
されるのではなく、三次元駆動機構及び角度変化
機構の構成及び配置には、種々の変形例ないし応
用例が考えられるが、同様の制御方法を用いたも
のは全て本発明と同等とみなされる。 The application of the present invention is not limited to the above-described embodiments, and various modifications and applications can be made to the configuration and arrangement of the three-dimensional drive mechanism and the angle change mechanism. Any use of the method is considered equivalent to the present invention.
本発明によれば測定の途中で、変位計の距離L
及び照射角αが検出限度外となることが未然に防
止でき、必要の都度この制御を行なうのみである
から測定時間の短縮が図れる。
According to the present invention, during the measurement, the distance L of the displacement meter is
It is possible to prevent the irradiation angle α from exceeding the detection limit, and because this control is only performed each time it is necessary, the measurement time can be shortened.
第1図は従来の形状測定装置の側面図、第2図
は従来の変位と出力の関係を示す説明図、第3図
は本発明の実施例の全体構成を示す側面図、第4
図は変位計の取付け状況の説明図、第5図は変位
計の構造図、第6図ないし第8図は変位計の照射
角の測定限度を示す説明図、第9図は演算制御機
構の説明図、第10図は検出器の駆動方法と距離
の測定限度との関係を示す説明図、第11図は検
出器の駆動方法と照射角の測定限度との関係を示
す説明図、第12図は照射角の計算方法を示す説
明図、第13図は本発明の効果を示す説明図、第
14図は本発明による制御方法のフローチヤート
である。
1……被測定物体、2……駆動テーブル、3…
…駆動機構、8……振動ピンホール、9……受光
器、10……発振器、11……増巾器、12……
演算制御回路、21……角度変化機構、40……
変位計、42……照射レンズ、43……集光レン
ズ、44……受光器、45……検出回路、46…
…演算制御回路、49,50……検出回路。
FIG. 1 is a side view of a conventional shape measuring device, FIG. 2 is an explanatory diagram showing the relationship between displacement and output of the conventional device, FIG. 3 is a side view showing the overall configuration of an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the installation situation of the displacement meter, Figure 5 is a structural diagram of the displacement meter, Figures 6 to 8 are explanatory diagrams showing the measurement limit of the irradiation angle of the displacement meter, and Figure 9 is an illustration of the calculation control mechanism. An explanatory diagram, FIG. 10 is an explanatory diagram showing the relationship between the detector driving method and the measurement limit of the distance, FIG. 11 is an explanatory diagram showing the relationship between the detector driving method and the measurement limit of the irradiation angle, and FIG. 13 is an explanatory diagram showing the method of calculating the irradiation angle, FIG. 13 is an explanatory diagram showing the effects of the present invention, and FIG. 14 is a flowchart of the control method according to the present invention. 1...Object to be measured, 2...Drive table, 3...
... Drive mechanism, 8 ... Vibration pinhole, 9 ... Light receiver, 10 ... Oscillator, 11 ... Amplifier, 12 ...
Arithmetic control circuit, 21... Angle change mechanism, 40...
Displacement meter, 42... Irradiation lens, 43... Condenser lens, 44... Light receiver, 45... Detection circuit, 46...
...Arithmetic control circuit, 49, 50...Detection circuit.
Claims (1)
ることで前記物体との距離を測定する、変位計と
この変位計を取り付けてこれを三次元的に駆動す
る駆動テーブルと、前記変位計の取付角度を変え
る角度変化機構と、前記変位計による距離の測定
値と前記駆動テーブルの駆動量及び前記変位計の
取付角度とを入力して演算すると共に、前記駆動
テーブルと前記角度変化機構の動きを制御する演
算制御機構とより構成され、被測定物体の断面形
状を測定点の集合として連続して測定する方法に
おいて、 前記各測定点で求めた前記変位計と前記測定点
との距離及び前記測定点における物体断面の法線
と照射光軸のなす角が、前記変位計の測定距離限
度及び測定角度限度範囲内の限定距離範囲および
限定角度範囲内にあるか否かを判定し、ある測定
点でこれらの少くとも一方がこれら限定範囲を外
れた場合には、次の測定点の測定を行なう前に、
前記限定範囲内に戻す制御を行なうことを特徴と
する物体形状の自動測定方法。[Claims] 1. A displacement meter that measures the distance to the object by receiving the reflected light of the light beam projected onto the surface of the object, and a drive table to which the displacement meter is attached and drives the displacement meter three-dimensionally. and an angle changing mechanism that changes the mounting angle of the displacement meter; and an angle changing mechanism that inputs and calculates the distance measured by the displacement meter, the drive amount of the drive table, and the mounting angle of the displacement meter; and a calculation control mechanism that controls the movement of the angle changing mechanism, in which the cross-sectional shape of the object to be measured is continuously measured as a set of measurement points, the displacement meter obtained at each measurement point and the measurement Whether the distance to the point and the angle formed by the normal to the cross section of the object at the measurement point and the irradiation optical axis are within a limited distance range and a limited angle range within the measurement distance limit and measurement angle limit range of the displacement meter. If at least one of these is outside the limited range at a certain measurement point, before measuring the next measurement point,
An automatic method for measuring the shape of an object, characterized by performing control to return the object shape to within the limited range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2761383A JPS59154308A (en) | 1983-02-23 | 1983-02-23 | Automatic measuring method of object shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2761383A JPS59154308A (en) | 1983-02-23 | 1983-02-23 | Automatic measuring method of object shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59154308A JPS59154308A (en) | 1984-09-03 |
JPH0216965B2 true JPH0216965B2 (en) | 1990-04-19 |
Family
ID=12225782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2761383A Granted JPS59154308A (en) | 1983-02-23 | 1983-02-23 | Automatic measuring method of object shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59154308A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60205306A (en) * | 1984-03-30 | 1985-10-16 | Mitsubishi Electric Corp | Automatic three-dimensional measuring system |
DE3836198A1 (en) * | 1987-10-23 | 1989-05-03 | Toyoda Machine Works Ltd | LEARNING METHOD FOR DETECTING A MACHINE LINE |
JP4512405B2 (en) * | 2004-04-23 | 2010-07-28 | 本田技研工業株式会社 | 3D shape measurement method |
JP5187068B2 (en) * | 2008-08-20 | 2013-04-24 | パルステック工業株式会社 | Three-dimensional shape measuring apparatus and three-dimensional shape measuring method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5280148A (en) * | 1975-12-26 | 1977-07-05 | Mitsubishi Motors Corp | Contactless measuring method and apparatus for same |
JPS5834781A (en) * | 1981-08-21 | 1983-03-01 | 株式会社日立製作所 | Method of controlling form profiling by robot |
-
1983
- 1983-02-23 JP JP2761383A patent/JPS59154308A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5280148A (en) * | 1975-12-26 | 1977-07-05 | Mitsubishi Motors Corp | Contactless measuring method and apparatus for same |
JPS5834781A (en) * | 1981-08-21 | 1983-03-01 | 株式会社日立製作所 | Method of controlling form profiling by robot |
Also Published As
Publication number | Publication date |
---|---|
JPS59154308A (en) | 1984-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63500119A (en) | Instruments for measuring surface morphology | |
US6124934A (en) | High-accuracy high-stability method and apparatus for measuring distance from surface to reference plane | |
JPS59190607A (en) | Contactless measuring device for measuring shape of body | |
WO2016031935A1 (en) | Surface shape measuring device | |
JP4571256B2 (en) | Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method | |
JP3768822B2 (en) | 3D measuring device | |
JPH0216965B2 (en) | ||
JPH0123041B2 (en) | ||
JPH0769151B2 (en) | Surface shape measuring device | |
JP3607821B2 (en) | Inclination angle measuring machine | |
JP3285256B2 (en) | Automatic alignment adjustment method and apparatus for laser robot | |
TWI247095B (en) | Optical revolving spindle error measurement device | |
JPH07253304A (en) | Multi-axial positioning unit and length measuring method therefor | |
JPS6210361B2 (en) | ||
JPH10132523A (en) | Measuring device of object surface height | |
JPH10103937A (en) | Optical axis inclination measuring method for laser light and apparatus therefor | |
JP4128262B2 (en) | Sample stage and particle size measuring apparatus using the same | |
JPH0519641B2 (en) | ||
JPH10332349A (en) | Three-dimensional shape measuring method | |
JPH09189545A (en) | Distance measuring device | |
JPH02272308A (en) | Non-contact type shape measuring instrument | |
JP3029572B2 (en) | Method for measuring cross-sectional contour shape of object to be measured and method for measuring three-dimensional shape | |
JP2511809B2 (en) | Surface shape measuring device | |
JP2643270B2 (en) | Interval measuring device | |
JPS61207909A (en) | Angle detecting method for angle variation mechanism of non-contact shape measuring instrument |