JPH10332349A - Three-dimensional shape measuring method - Google Patents

Three-dimensional shape measuring method

Info

Publication number
JPH10332349A
JPH10332349A JP9154340A JP15434097A JPH10332349A JP H10332349 A JPH10332349 A JP H10332349A JP 9154340 A JP9154340 A JP 9154340A JP 15434097 A JP15434097 A JP 15434097A JP H10332349 A JPH10332349 A JP H10332349A
Authority
JP
Japan
Prior art keywords
axis
measurement
displacement sensor
axis table
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9154340A
Other languages
Japanese (ja)
Inventor
Yasuhiro Murai
康弘 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP9154340A priority Critical patent/JPH10332349A/en
Publication of JPH10332349A publication Critical patent/JPH10332349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring method by which precise three-dimensional shape data can be obtained in a single measurement without performing any preparatory measurement. SOLUTION: When a position output is taken from an optical displacement sensor 5, an X-axis table 1, a Y-axis table 2, and a C-axis rotational table 3, by which a horizontal position and a rotational position of an object 4 to be measured are positioned, are controlled so that a relative distance between the optical displacement sensor 5 and a measuring point on the object 4 to be measured is kept constant and so that a face including a light projection axis 13 and a light receiving axis 14 of the optical displacement sensor 5 orthogonally crosses a face including the light projection axis 13 and a normal vector for a face in the vicinity of the measuring point. In addition, as a Z-axis table 6 positioning the vertical position of the optical displacement sensor 5 is controlled, a proper relative positional relationship between the object 4 to be measured and the optical displacement sensor 5 is predicted on the basis of the data of an already measured measuring point in the vicinity of the measuring point, and then, controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学式変位センサ
による被測定物の3次元形状測定方法に関し、特に、歯
科補綴物用模型に代表される、表面の起伏が大きい被測
定物の3次元形状を高精度に測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a three-dimensional shape of an object to be measured by an optical displacement sensor, and more particularly to a method of measuring a three-dimensional object having a large surface undulation such as a dental prosthesis model. The present invention relates to a method for measuring a shape with high accuracy.

【0002】[0002]

【従来の技術】被測定物の3次元形状を測定する装置と
して、被測定物に対してレーザ光を照射する投光部と、
被測定物からの反射光を受光する受光部からなる光学式
変位センサが、従来から用いられてきた。これは、被測
定物の測定点の位置に応じて受光部に入射する反射光の
位置が変化することを利用し、三角測量の原理にて測定
点までの距離を求めるものである。
2. Description of the Related Art As an apparatus for measuring a three-dimensional shape of an object to be measured, a light projecting unit for irradiating a laser beam to the object to be measured,
2. Description of the Related Art An optical displacement sensor including a light receiving unit that receives reflected light from an object to be measured has been conventionally used. This utilizes the fact that the position of the reflected light incident on the light receiving unit changes according to the position of the measurement point on the object to be measured, and obtains the distance to the measurement point based on the principle of triangulation.

【0003】この光学式変位センサは、被測定物に対し
て非接触であることから、被測定物の変形や接触子の補
正を考慮することなく、比較的高精度な測定が可能であ
るという利点があるが、被測定物の測定点を含む面の傾
斜によっては測定不能の箇所が生ずるという問題点もあ
った。すなわち、光学式変位センサは被測定物からの反
射光を受光することにより距離の検出を行っているわけ
であるから、検出精度を確保するためには受光部におい
て十分な量の反射光が得られる必要がある。しかし、光
学式変位センサの投光部から照射されたレーザ光が、被
測定物の測定点を含む面に対して垂直ではなく大きく傾
斜して入射された場合は、反射光の多くは光学式変位セ
ンサの受光部には入射されず、よって光学式変位センサ
は検出精度を確保できるほどの反射光を得ることができ
なくなる。特に、歯科補綴物の製造に際して行われる歯
科補綴物用模型のように、その表面の起伏が大きい被測
定物の3次元形状の測定においては、測定不能の箇所が
発生する可能性が高いことになる。
[0003] Since this optical displacement sensor is not in contact with the object to be measured, it can perform relatively high-accuracy measurement without considering deformation of the object to be measured or correction of the contact. Although there is an advantage, there is also a problem that an unmeasurable portion occurs depending on the inclination of the surface including the measurement point of the object to be measured. That is, since the optical displacement sensor detects the distance by receiving the reflected light from the object to be measured, a sufficient amount of reflected light can be obtained at the light receiving section to secure the detection accuracy. Need to be done. However, if the laser beam emitted from the light projection part of the optical displacement sensor is incident on the surface of the measured object at a large angle instead of perpendicularly to the plane including the measurement point, most of the reflected light is of the optical type. The light is not incident on the light receiving portion of the displacement sensor, so that the optical displacement sensor cannot obtain reflected light enough to secure the detection accuracy. In particular, in the measurement of a three-dimensional shape of an object to be measured having a large surface undulation, such as a dental prosthesis model performed in the manufacture of a dental prosthesis, there is a high possibility that an unmeasurable portion will occur. Become.

【0004】この問題点に対処するものとして、特開平
8−233518号では、被測定物と光学式変位センサ
を適切な相対位置関係により測定するために、予め予備
測定により被測定物の概略3次元形状を測定した後、そ
の予備測定データに基づいて被測定物と光学式変位セン
サとを適切な相対位置関係となるよう制御しながら本測
定を行うようにしている。すなわち、予備測定において
測定不能の箇所が発生しても、この予備測定において得
られた測定不能の箇所の近傍の3次元形状データにより
測定不能の箇所の近傍の面の傾きを算出し、この傾きに
応じて測定箇所の面の法線に対して光学式変位センサの
投光軸及び受光軸の傾斜が可能な限り小さくなるよう
に、被測定物及び光学式変位センサを動作させる各駆動
軸の位置を演算し、この演算結果に基づいて各駆動軸を
制御する。これにより、測定不能の箇所が発生した際
に、被測定物を位置や角度を変えて測定台等に載せ直し
て再度測定するという煩雑な作業をほとんど行う必要が
ないとしている。
To cope with this problem, Japanese Patent Laid-Open Publication No. Hei 8-233518 discloses a method of measuring an object to be measured and an optical displacement sensor based on an appropriate relative positional relationship. After measuring the dimensional shape, the main measurement is performed while controlling the object to be measured and the optical displacement sensor so as to have an appropriate relative positional relationship based on the preliminary measurement data. That is, even if an unmeasurable part occurs in the preliminary measurement, the inclination of the surface near the unmeasurable part is calculated from the three-dimensional shape data near the unmeasurable part obtained in the preliminary measurement, and this inclination is calculated. Of the optical axis of the optical displacement sensor with respect to the normal line of the surface of the measurement point in accordance with The position is calculated, and each drive shaft is controlled based on the calculation result. Thus, when an unmeasurable portion occurs, there is almost no need to perform a complicated operation of changing the position and angle of the object to be measured, mounting the object again on a measuring table, and measuring again.

【0005】[0005]

【発明が解決しようとする課題】しかし、この特開平8
−233518号の方法では、予備測定と本測定の2度
の測定が必要であり、測定時間が長くかかるという問題
があった。
However, Japanese Patent Application Laid-open No.
The method of -233518 requires two measurements, a preliminary measurement and a main measurement, and has a problem that the measurement time is long.

【0006】本発明は、予備測定を行うことなく、被測
定物と光学式変位センサとの適切な相対位置関係を、測
定点の近傍のデータより予測し、制御することにより、
1度の測定で正確な3次元形状データを得ることのでき
る3次元形状測定方法を提供することを目的とする。
According to the present invention, an appropriate relative positional relationship between an object to be measured and an optical displacement sensor is predicted from data in the vicinity of a measuring point and controlled without performing preliminary measurement.
It is an object of the present invention to provide a three-dimensional shape measuring method capable of obtaining accurate three-dimensional shape data in one measurement.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、本体基盤と、本体基盤に載置される
とともに、本体基盤の設置面に対して平行に移動可能に
されたX軸テーブルと、X軸テーブルに載置されるとと
もに、本体基盤の設置面に対して平行かつX軸テーブル
の可動方向と直交して移動可能にされたY軸テーブル
と、Y軸テーブルに載置され、本体基盤の設置面に対し
て垂直な回転軸を有するとともに、被測定物を載置可能
にされたC軸回転テーブルと、本体基盤の設置面に対し
て垂直に移動可能にされたZ軸テーブルと、Z軸テーブ
ルに設けられるとともに、投光軸がZ軸テーブルの可動
方向と平行になるように設置された光学式変位センサ
と、を有する被測定物の3次元形状測定装置において、
光学式変位センサからの位置出力を取り込む際、光学式
変位センサと被測定物上の測定点との相対距離が一定と
なり、かつ、光学式変位センサの投光軸及び受光軸を含
む面と、投光軸及び測定点の近傍の面の法線ベクトルを
含む面とが、互いに直交関係となるよう、X軸テーブ
ル、Y軸テーブル、C軸回転テーブル、及びZ軸テーブ
ルを制御するようにしたことを特徴とする3次元形状測
定方法を提供した。
In order to achieve the above object, according to the present invention, a main body base and a main body base are placed on the main body base and are movable in parallel to a mounting surface of the main body base. An X-axis table, a Y-axis table mounted on the X-axis table, and movable on the Y-axis table parallel to the installation surface of the main body base and movable perpendicular to the movable direction of the X-axis table. It has a rotation axis perpendicular to the installation surface of the main body base, and has a C-axis rotating table on which the object to be measured can be mounted, and is movable vertically to the installation surface of the main body base. An apparatus for measuring a three-dimensional shape of an object to be measured, comprising: a Z-axis table; and an optical displacement sensor provided on the Z-axis table and installed so that a light projecting axis is parallel to a movable direction of the Z-axis table. ,
When capturing the position output from the optical displacement sensor, the relative distance between the optical displacement sensor and the measurement point on the object to be measured becomes constant, and a surface including the light projecting axis and the light receiving axis of the optical displacement sensor, The X-axis table, the Y-axis table, the C-axis rotation table, and the Z-axis table are controlled so that the projection axis and the plane including the normal vector of the plane near the measurement point are orthogonal to each other. A three-dimensional shape measuring method is provided.

【0008】より具体的には、C軸回転テーブルの回転
軸を中心とするとともに、光学式変位センサから見た被
測定物をX−Y平面へ投影したときの被測定物の輪郭線
がすべて含まれるように第1の測定円を設定し、この第
1の測定円の内側に、第1の測定円と同一の中心を有
し、かつ、第1の測定円の半径に対して予め設定した半
径ピッチ毎に小さい半径を有する第2乃至第mまでの測
定円を設定し、これらm個の測定円のそれぞれについ
て、予め設定した角度ピッチ毎に測定点を設定し、第2
乃至第mまでの測定円の各測定点における測定について
は、現測定点の近傍に位置する既に測定済みの測定点を
3点指定し、この3点を含む面の法線ベクトルを算出
し、算出された法線ベクトルを現測定点の法線ベクトル
とし、この現測定点の法線ベクトルをX−Y平面へ射影
したときの射影ベクトルのX軸とのなす角θを算出し、
この射影ベクトルのX軸とのなす角θ及び現測定点の法
線ベクトルに基づき、X軸テーブル、Y軸テーブル、C
軸回転テーブル、及びZ軸テーブルを位置決め動作さ
せ、この位置決め動作の完了後に、現測定点における光
学式変位センサの出力を検出し、X軸テーブル、Y軸テ
ーブル、C軸回転テーブルの位置に基づき現測定点のX
座標値及びY座標値を算出するとともに、Z軸テーブル
の位置及び前記光学式変位センサの出力に基づき現測定
点のZ座標値を算出するようにした。
More specifically, all the contours of the object to be measured when the object to be measured as viewed from the optical displacement sensor is projected onto the XY plane while being centered on the rotation axis of the C-axis rotary table are all A first measurement circle is set to be included, has the same center as the first measurement circle inside the first measurement circle, and is preset with respect to a radius of the first measurement circle. The second to m-th measurement circles having a small radius are set for each of the radius pitches, and the measurement points are set for each of these m measurement circles at a preset angle pitch, and
For the measurement at each measurement point of the measurement circles from m to m, three measurement points that have already been measured near the current measurement point are specified, and a normal vector of a plane including these three points is calculated. The calculated normal vector is defined as the normal vector of the current measurement point, and the angle θ between the projection vector and the X axis when the normal vector of the current measurement point is projected on the XY plane is calculated.
Based on the angle θ between the projection vector and the X axis and the normal vector of the current measurement point, an X axis table, a Y axis table, C
The positioning operation of the axis rotation table and the Z axis table is performed. After the positioning operation is completed, the output of the optical displacement sensor at the current measurement point is detected, and based on the positions of the X axis table, the Y axis table, and the C axis rotation table. X of current measurement point
The coordinate value and the Y coordinate value are calculated, and the Z coordinate value of the current measurement point is calculated based on the position of the Z-axis table and the output of the optical displacement sensor.

【0009】上記の構成としたことにより、これから測
定しようとする測定点すなわち現測定点については、ま
ず、現測定点の近傍に位置する既に測定済みの測定点3
点を含む面の法線ベクトルが算出され、算出された法線
ベクトルを現測定点の法線ベクトルとし、この現測定点
の法線ベクトルをX−Y平面へ射影したときの射影ベク
トルのX軸とのなす角θが算出される。次に、この射影
ベクトルのX軸とのなす角θ及び現測定点の法線ベクト
ルに基づき、X軸テーブル、Y軸テーブル、C軸回転テ
ーブル、及びZ軸テーブルを位置決め動作させる。最後
に、位置決め動作の完了後に、現測定点における光学式
変位センサの出力が検出され、X軸テーブル、Y軸テー
ブル、C軸回転テーブルの位置に基づき現測定点のX座
標値及びY座標値が算出されるとともに、Z軸テーブル
の位置及び前記光学式変位センサの出力に基づき現測定
点のZ座標値が算出されることとなる。したがって、従
来技術のような予備測定は不要であり、1度の測定で3
次元形状データを得ることができる。
[0009] With the above configuration, the measurement point to be measured from now on, that is, the current measurement point, first, the already measured measurement point 3 near the current measurement point.
The normal vector of the plane including the point is calculated, the calculated normal vector is set as the normal vector of the current measurement point, and the normal vector of the current measurement point is projected on the XY plane. The angle θ with the axis is calculated. Next, the X-axis table, the Y-axis table, the C-axis rotation table, and the Z-axis table are positioned based on the angle θ between the projection vector and the X axis and the normal vector of the current measurement point. Finally, after the positioning operation is completed, the output of the optical displacement sensor at the current measurement point is detected, and the X and Y coordinate values of the current measurement point are determined based on the positions of the X-axis table, Y-axis table, and C-axis rotation table. Is calculated, and the Z coordinate value of the current measurement point is calculated based on the position of the Z-axis table and the output of the optical displacement sensor. Therefore, preliminary measurement as in the prior art is unnecessary, and three measurements are required in one measurement.
The dimensional shape data can be obtained.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して説明する。図1に示すように、本体基
板31上にはこの設置面31aに対して平行に移動可能
にされたX軸テーブル1が載置され、さらにこのX軸テ
ーブル1上には設置面31aに対して平行かつX軸テー
ブル1の可動方向と直交して移動可能にされたY軸テー
ブル2が載置されている。また、Y軸テーブル2上には
設置面31aに対して垂直な回転軸を有するC軸回転テ
ーブル3が載置されており、このC軸回転テーブル3上
には図示しない取付具を介して被測定物としての歯科補
綴物用模型4が取り付け可能にされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, an X-axis table 1 that is movable in parallel with the installation surface 31a is mounted on a main substrate 31. Further, on the X-axis table 1, the X-axis table 1 A Y-axis table 2 which is movable in parallel with and perpendicular to the movable direction of the X-axis table 1 is mounted. On the Y-axis table 2, a C-axis rotation table 3 having a rotation axis perpendicular to the installation surface 31a is mounted. A dental prosthesis model 4 as a measurement object can be attached.

【0011】さらに、本体基板31上にはコラム32が
設置されており、コラム32には設置面31aに対して
垂直方向に移動可能にされたZ軸テーブル6が設置され
ている。このZ軸テーブル6上には被測定物としての歯
科補綴物用模型4の3次元形状を測定するための光学式
変位センサ5が載置されており、この光学式変位センサ
5の投光軸13はZ軸テーブル6の可動方向と平行にな
るように設定されている。
Further, a column 32 is provided on the main body substrate 31, and the column 32 is provided with a Z-axis table 6 which is movable in a direction perpendicular to the installation surface 31a. An optical displacement sensor 5 for measuring the three-dimensional shape of the dental prosthesis model 4 as an object to be measured is mounted on the Z-axis table 6. Reference numeral 13 is set so as to be parallel to the movable direction of the Z-axis table 6.

【0012】上記の各駆動軸(X軸テーブル1、Y軸テ
ーブル2、Z軸テーブル6、C軸回転テーブル3)の駆
動には高精度な位置決め制御が要求されるので、そのア
クチエータとしてはパルスモータやサーボーモータを使
用し、これらを数値制御させる。これら各駆動軸のアク
チエータ及び光学式変位センサ5の動作制御は、図示し
ない制御装置により行われる。各駆動軸にはエンコーダ
(位置検出器)が設けられており、各駆動軸の位置が制
御装置に随時伝送される。上記の構成により、被測定物
としての歯科補綴物用模型4と光学式変位センサ5との
相対位置関係は、制御装置に格納された動作プログラム
に基づいて各駆動軸が動作されることにより設定され
る。
The driving of each of the above drive shafts (X-axis table 1, Y-axis table 2, Z-axis table 6, and C-axis rotary table 3) requires high-precision positioning control. Use a motor or servo motor and control these numerically. The operation control of the actuator of each of these drive shafts and the optical displacement sensor 5 is performed by a control device (not shown). Each drive shaft is provided with an encoder (position detector), and the position of each drive shaft is transmitted to the control device as needed. With the above configuration, the relative positional relationship between the dental prosthesis model 4 as an object to be measured and the optical displacement sensor 5 is set by operating each drive shaft based on an operation program stored in the control device. Is done.

【0013】次に、上記測定装置における被測定物とし
ての歯科補綴物用模型4に対する3次元形状測定手順に
ついて説明する。光学式変位センサ5の投光軸13から
見た歯科補綴物用模型4のX−Y平面(設置面31aに
対して平行な面)への投影が、図2の輪郭線7に示すよ
うな形状になったとする。まず、C軸回転テーブル3の
回転軸33を中心とし、歯科補綴物用模型4を示す輪郭
線7を完全に含む第1の測定円8を設定し、この第1の
測定円8の内部を測定範囲とする。測定円8の設定にお
いては、測定円8の半径を数値で指定するようにしても
よいし、予め登録しておいた数種のパターンから選択す
るようにしてもよい。
Next, a procedure for measuring a three-dimensional shape of the dental prosthesis model 4 as an object to be measured in the above-described measuring apparatus will be described. The projection of the dental prosthesis model 4 onto the XY plane (plane parallel to the installation surface 31a) as viewed from the light projection axis 13 of the optical displacement sensor 5 is as shown by the contour line 7 in FIG. Suppose that it became a shape. First, a first measurement circle 8 that completely includes the contour line 7 indicating the dental prosthesis model 4 is set around the rotation axis 33 of the C-axis rotation table 3, and the inside of the first measurement circle 8 is set. The measurement range. In setting the measurement circle 8, the radius of the measurement circle 8 may be specified by a numerical value, or may be selected from several types of patterns registered in advance.

【0014】次に、光学式変位センサ5の投光軸13と
受光軸14を含む面15が測定範囲を示す第1の測定円
8の接線方向と一致するように第1の測定円8上に第1
の測定開始点8′を設定する。これは、投光軸13に沿
って照射された投射光が測定点の表面にて反射され、そ
の反射光が受光軸14に沿って受光されるよう、測定精
度を確保する目的で行う処置である。次に、第1の測定
開始点8′を始点として予め設定された角度ピッチ毎に
C軸を反時計回りに回転させながら、第1の測定円8上
の各ピッチ点における各駆動軸の位置及び光学式変位セ
ンサ5の出力を検出していく。C軸のピッチの値(角
度)は、第1の測定円8の周回360°をn等分したも
のとすれば、このnの数値を設定することになる。これ
により、第1の測定円8の周上については、n個の測定
データが得られる。
Next, on the first measuring circle 8 such that the surface 15 including the light projecting axis 13 and the light receiving axis 14 of the optical displacement sensor 5 coincides with the tangential direction of the first measuring circle 8 indicating the measuring range. First
The measurement start point 8 'is set. This is a process performed for the purpose of ensuring the measurement accuracy so that the projection light irradiated along the light projection axis 13 is reflected on the surface of the measurement point and the reflected light is received along the light receiving axis 14. is there. Next, while rotating the C-axis counterclockwise at every preset angular pitch starting from the first measurement start point 8 ', the position of each drive axis at each pitch point on the first measurement circle 8 And the output of the optical displacement sensor 5 is detected. The value (angle) of the pitch of the C-axis is set to the value of n, assuming that 360 ° of rotation of the first measurement circle 8 is divided into n equal parts. As a result, n pieces of measurement data are obtained on the circumference of the first measurement circle 8.

【0015】制御装置においては、X軸テーブル1、Y
軸テーブル2、及びC軸回転テーブル3からのエンコー
ダ出力に基づいて、測定点のX座標値及びY座標値を算
出し、また、Z軸テーブル6のエンコーダ出力及び光学
式変位センサ5の出力に基づいて、測定点のZ座標値を
算出する。これは、歯科補綴物用模型4の3次元形状に
おけるX座標値及びY座標値は、X軸テーブル1の位
置、Y軸テーブル2の位置、及びC軸回転テーブル3の
回転角より得られ、また、歯科補綴物用模型4の3次元
形状におけるZ座標値は、光学式変位センサ5の位置と
してのZ軸テーブル6の位置、及び光学式変位センサ5
と歯科補綴物用模型4との距離としての光学式変位セン
サ5の出力より、それぞれ得られることによるものであ
る。測定円8上の測定点の測定に関しては、測定円8上
には歯科補綴物用模型4は存在しないので、C軸回転テ
ーブル3については角度ピッチ毎に動作するが、X軸テ
ーブル1、Y軸テーブル2、及びZ軸テーブル6につい
ては動作せず、第1の測定開始点8′の位置を保持する
ことになる。
In the control device, the X-axis table 1, Y
Based on the encoder outputs from the axis table 2 and the C axis rotation table 3, the X coordinate value and the Y coordinate value of the measurement point are calculated, and the encoder output of the Z axis table 6 and the output of the optical displacement sensor 5 are output. Based on this, the Z coordinate value of the measurement point is calculated. This is because the X coordinate value and the Y coordinate value in the three-dimensional shape of the dental prosthesis model 4 are obtained from the position of the X-axis table 1, the position of the Y-axis table 2, and the rotation angle of the C-axis rotation table 3, The Z coordinate value of the three-dimensional shape of the dental prosthesis model 4 is determined by the position of the Z-axis table 6 as the position of the optical displacement sensor 5 and the position of the optical displacement sensor 5.
This is obtained from the output of the optical displacement sensor 5 as the distance between the dental prosthesis model 4 and the distance. Regarding the measurement of the measurement points on the measurement circle 8, since the dental prosthesis model 4 does not exist on the measurement circle 8, the C-axis rotary table 3 operates at each angular pitch, but the X-axis table 1 and Y The axis table 2 and the Z-axis table 6 do not operate, and hold the position of the first measurement start point 8 '.

【0016】次に、図2に示すように、第1の測定開始
点8′より予め設定された一定距離(半径ピッチ)だけ
第1の測定円8の内側に入った点9′を第2の測定開始
点として設定し、この第2の測定開始点9′を含む第2
の測定円9上について、上記第1の測定円8の場合と同
様な測定を行う。このとき、第2の測定開始点9′の測
定時における光学式変位センサ5の位置すなわちZ軸テ
ーブル6の位置は、第1の測定開始点8′の測定時と同
じとする。ただし、第2の測定開始点9′が輪郭線7の
内側すなわち歯科補綴物用模型4の上であった場合に
は、光学式変位センサ5の測定可能範囲に入るように光
学式変位センサ5の位置すなわちZ軸テーブル6の位置
を変更することにより、光学式変位センサ5の位置決め
を行う。
Next, as shown in FIG. 2, a point 9 'which is located inside the first measurement circle 8 by a predetermined distance (radial pitch) from the first measurement start point 8' is defined as a second point. Of the second measurement including the second measurement start point 9 '.
On the measurement circle 9, the same measurement as in the case of the first measurement circle 8 is performed. At this time, the position of the optical displacement sensor 5 at the time of measurement at the second measurement start point 9 ', that is, the position of the Z-axis table 6, is the same as that at the time of measurement at the first measurement start point 8'. However, when the second measurement start point 9 ′ is inside the contour line 7, that is, on the dental prosthesis model 4, the optical displacement sensor 5 is set to be within the measurable range of the optical displacement sensor 5. Is changed, that is, the position of the Z-axis table 6 is changed, thereby positioning the optical displacement sensor 5.

【0017】第2の測定開始点9′における測定が終了
した後は、第2の測定開始点9′を始点として予め設定
されたピッチ毎にC軸を反時計回りに回転させながら、
第2の測定円9上の各ピッチ点における各駆動軸の位置
及び光学式変位センサ5の出力を検出していく。このと
き、X軸テーブル1及びY軸テーブル2については第2
の測定円9の円周に沿って順に位置決めすればよいが、
Z軸テーブル6については、歯科補綴物用模型4の表面
と光学式変位センサ5との距離が、測定可能範囲に入る
よう一定になるように制御することにより、精度良く測
定することができるようにする。
After the measurement at the second measurement start point 9 'has been completed, the C-axis is rotated counterclockwise at every preset pitch starting from the second measurement start point 9'.
The position of each drive shaft at each pitch point on the second measurement circle 9 and the output of the optical displacement sensor 5 are detected. At this time, the X-axis table 1 and the Y-axis table 2
It may be positioned in order along the circumference of the measurement circle 9 of
The Z-axis table 6 can be accurately measured by controlling the distance between the surface of the dental prosthesis model 4 and the optical displacement sensor 5 to be constant so as to be within the measurable range. To

【0018】また、光学式変位センサ5と歯科補綴物用
模型4の表面との位置関係については、図3に示すよう
に、歯科補綴物用模型4の表面の測定点近傍の領域18
を想定すると、光学式変位センサ5の投光軸13と受光
軸14を含む面15が、光学式変位センサ5の投光軸1
3と測定点近傍の領域18の法線ベクトル16を含む面
17と、互いに直交するように光学式変位センサ5の投
光軸13と平行な軸を中心として、光学式変位センサ5
と歯科補綴物用模型4との相対的な位置を、X軸テーブ
ル1、Y軸テーブル2、及びC軸回転テーブル3を制御
することことにより、反射光が歯科補綴物用模型4の表
面の凹凸の陰に隠れることがなくなり、精度良く測定す
ることが可能となる。
As for the positional relationship between the optical displacement sensor 5 and the surface of the dental prosthesis model 4, as shown in FIG. 3, an area 18 near the measurement point on the surface of the dental prosthesis model 4 is used.
When the surface 15 including the light projecting axis 13 and the light receiving axis 14 of the optical displacement sensor 5 is
3 and a plane 17 including a normal vector 16 of an area 18 near the measurement point, and an optical displacement sensor 5 centered on an axis parallel to the light projecting axis 13 of the optical displacement sensor 5 so as to be orthogonal to each other.
By controlling the X-axis table 1, the Y-axis table 2, and the C-axis rotary table 3, the relative position of the dental prosthesis model 4 and the relative position of the dental prosthesis model 4 can be adjusted so that the reflected light There is no hiding behind the irregularities, and it is possible to measure with high accuracy.

【0019】この点についてさらに詳述すると、例え
ば、これから測定しようとする点が、近くの点ですでに
データ取得済みの3点を含む面上にあると仮定すること
により、測定点の高さ、及び測定点を含む面の法線ベク
トルの方向を予測し、各駆動軸を制御すればよい。具体
的には、図4に示すように、既に測定データ取得済みの
3点A、B、Cからその近傍の点DのZ座標、およびそ
の法線ベクトルの方向を予測するためには、点Dが、3
点A、B、Cを含む平面19と同一平面上にあると仮定
し、点Aの座標が(XI、YI、ZI)、点Bの座標が
(XJ、YJ、ZJ)、点Cの座標が(XK、YK、Z
K)、点DのX、Y座標がそれぞれXL、YLとする
と、点DのZ座標ZLは式(1)により求めることがで
きる。また、点Dにおける法線ベクトルは、3点A、
B、Cにより形成される平面の法線ベクトル20と同一
であると仮定すると、この法線ベクトル20のX−Y平
面への射影ベクトル21のX軸とのなす角θは、式
(2)により求めることができる。
This point will be described in more detail. For example, assuming that the point to be measured is located on a plane including three points for which data has already been acquired at nearby points, the height of the measurement point is obtained. , And the direction of the normal vector of the plane including the measurement point may be predicted to control each drive axis. Specifically, as shown in FIG. 4, in order to predict the Z coordinate of a point D in the vicinity and the direction of the normal vector from three points A, B, and C for which measurement data has already been acquired, a point D is 3
Assume that the coordinates of point A are (XI, YI, ZI), the coordinates of point B are (XJ, YJ, ZJ), and the coordinates of point C, assuming that they are on the same plane as plane 19 including points A, B, and C. Is (XK, YK, Z
K), assuming that the X and Y coordinates of the point D are XL and YL, respectively, the Z coordinate ZL of the point D can be obtained by equation (1). The normal vector at the point D is 3 points A,
Assuming that this is the same as the normal vector 20 of the plane formed by B and C, the angle θ formed by the projection vector 21 of this normal vector 20 onto the XY plane and the X axis is expressed by the following equation (2). Can be obtained by

【0020】[0020]

【数1】 (Equation 1)

【0021】式(1)及び式(2)により求められた点
DのZ座標ZL及び点Dの法線ベクトルのX−Y平面へ
の射影ベクトル21のX軸とのなす角θにより、光学式
変位センサ5を歯科補綴物用模型4に対して前述したよ
うな最適な位置関係となるように位置決めすればよい。
The angle θ formed by the Z coordinate ZL of the point D obtained by the equations (1) and (2) and the angle θ between the normal vector of the point D and the X axis of the projection vector 21 onto the XY plane. What is necessary is just to position the type displacement sensor 5 with respect to the dental prosthesis model 4 so that it may have the above-mentioned optimal positional relationship.

【0022】なお、前述のように、第1の測定円8上の
測定点における測定では、歯科補綴物用模型4は存在し
ないので測定不能な測定点は存在せず、よって上記第2
の測定円9上の測定点における測定のような、データ取
得済みの測定点を利用した一連の処理は行う必要がな
い。また、第2の測定開始点9′を含む第2の測定円9
上の測定点における測定では、既に測定済みの第1の測
定円8上の測定点のデータを使用することになるので、
第1の測定円8上には歯科補綴物用模型4が存在するこ
とに起因する測定不能な測定点は存在してはならないこ
とになる。
As described above, in the measurement at the measurement points on the first measurement circle 8, there is no unmeasurable measurement point because the dental prosthesis model 4 does not exist.
It is not necessary to perform a series of processes using measurement points for which data has been acquired, such as measurement at measurement points on the measurement circle 9 described above. A second measurement circle 9 including a second measurement start point 9 '
In the measurement at the upper measurement point, the data of the measurement point on the first measurement circle 8 which has already been measured is used.
A measurement point that cannot be measured due to the presence of the dental prosthesis model 4 must not be present on the first measurement circle 8.

【0023】第2の測定円9上の測定点における測定の
後、図2に示すように、第2の測定開始点9′より予め
設定された一定距離(半径ピッチ)だけ第2の測定円9
の内側に入った点10′を第3の測定開始点として設定
し、この第3の測定開始点10′を含む第3の測定円1
0上について、上記第2の測定円9の場合と同様な測定
を行う。以降、第mの測定円に至まで、上記第2の測定
円9の場合と同様な測定を繰り返し行うことにより、歯
科補綴物用模型4の3次元形状データを得ることができ
る。
After the measurement at the measurement point on the second measurement circle 9, as shown in FIG. 2, the second measurement circle is moved a predetermined distance (radius pitch) from the second measurement start point 9 '. 9
Is set as the third measurement start point, and the third measurement circle 1 including the third measurement start point 10 '
With respect to 0, the same measurement as in the case of the second measurement circle 9 is performed. Thereafter, by repeating the same measurement as in the case of the second measurement circle 9 up to the m-th measurement circle, three-dimensional shape data of the dental prosthesis model 4 can be obtained.

【0024】以上、本発明の一実施形態について説明し
た。なお、上記式(1)及び式(2)に関して、求めら
れた点DのZ座標ZL及び点Dの法線ベクトルのX−Y
平面への射影ベクトル21のX軸とのなす角θを正確に
求めるためには、これから測定しようとする点(現測定
点)のすぐ近傍にデータ取得済みの3点がなければなら
ないから、測定点全体の密度を高めるために、測定円の
角度ピッチを小さく設定したり(等分nの数を多く設定
したり)、測定円の間隔すなわち半径ピッチを小さく設
定したりする必要がある。
The embodiment of the present invention has been described above. With respect to the above equations (1) and (2), the Z coordinate ZL of the obtained point D and the XY of the normal vector of the point D are obtained.
In order to accurately determine the angle θ between the projection vector 21 and the X-axis on the plane, there must be three data-acquired points in the immediate vicinity of the point to be measured (current measurement point). In order to increase the density of the entire point, it is necessary to set the angle pitch of the measurement circle small (set a large number of equal parts n) or to set the interval of the measurement circles, that is, the radius pitch small.

【0025】また、本実施形態では、第1の測定円8を
除く第2の測定円9以降の測定円における測定では、既
に測定済みの測定点のデータを必ず使用するようにして
いるが、第2の測定円9以降の測定円のある測定点にお
ける測定において、光学式変位センサ5の受光部に対し
て十分な反射光が入射された場合には、この測定点に関
しては既に測定済みの測定点のデータを使用することな
く、第1の測定円8における測定と同様に、光学式変位
センサ5の出力をそのまま取り込むようにしてもよい。
Further, in the present embodiment, in the measurement in the measurement circles after the second measurement circle 9 except for the first measurement circle 8, the data of the measurement points which have already been measured is always used. In the measurement at a certain measurement point on the measurement circle after the second measurement circle 9, if sufficient reflected light is incident on the light receiving section of the optical displacement sensor 5, this measurement point has already been measured. Instead of using the data of the measurement points, the output of the optical displacement sensor 5 may be taken as it is, similarly to the measurement in the first measurement circle 8.

【0026】[0026]

【発明の効果】本発明によれば、光学式変位センサから
の位置出力を取り込む際、光学式変位センサと被測定物
上の測定点との相対距離が一定となり、かつ、光学式変
位センサの投光軸及び受光軸を含む面と、投光軸及び測
定点の近傍の面の法線ベクトルを含む面とが、互いに直
交関係となるよう、被測定物の水平位置及び回転位置を
位置決めするX軸テーブル、Y軸テーブル、及びC軸回
転テーブルを制御し、なおかつ、光学式変位センサの垂
直位置を位置決めするZ軸テーブルを制御するようにし
たので、被測定物と光学式変位センサとの適切な相対位
置関係を、測定点の近傍のデータより予測し、制御する
ことにより、予備測定を行うことなく、1度の測定で3
次元形状データを得ることができるようになった。
According to the present invention, when the position output from the optical displacement sensor is taken in, the relative distance between the optical displacement sensor and the measurement point on the object to be measured becomes constant, and the position of the optical displacement sensor is reduced. The horizontal position and the rotational position of the object to be measured are positioned so that the plane including the projection axis and the reception axis and the plane including the normal vector of the plane near the projection axis and the measurement point are orthogonal to each other. The X-axis table, the Y-axis table, and the C-axis rotary table are controlled, and the Z-axis table for positioning the vertical position of the optical displacement sensor is controlled. By predicting and controlling an appropriate relative positional relationship from data in the vicinity of the measurement point, it is possible to perform three measurements in one measurement without performing a preliminary measurement.
Dimensional shape data can be obtained.

【0027】そして、これにより、本測定のみを行う場
合と比して測定時間をほとんど増加させることなく、光
学式変位センサの測定誤差を小さくすることができ、ま
た、反射光が被測定物の陰に隠れることなく、正確な3
次元形状データを得ることができるようになった。
As a result, the measurement error of the optical displacement sensor can be reduced with almost no increase in the measurement time as compared with the case where only the main measurement is performed, and the reflected light can be reflected on the object to be measured. Accurate 3 without hiding behind
Dimensional shape data can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかる歯科補綴物用模型
4の測定装置の全体構成を示す図である。
FIG. 1 is a view showing an entire configuration of a measuring device for a dental prosthesis model 4 according to an embodiment of the present invention.

【図2】本発明の一実施形態における、歯科補綴物用模
型4を示す輪郭線7と、測定円を示す図である。
FIG. 2 is a view showing a contour line 7 showing a dental prosthesis model 4 and a measurement circle in one embodiment of the present invention.

【図3】本発明の一実施形態における、光学式変位セン
サ5と歯科補綴物用模型4の表面の測定点近傍の領域1
8との位置関係を説明するための図である。
FIG. 3 shows an area 1 near a measurement point on the surface of the optical displacement sensor 5 and the dental prosthesis model 4 in one embodiment of the present invention.
FIG. 8 is a diagram for explaining a positional relationship with the position No. 8;

【図4】本発明の一実施形態における、既に測定データ
取得済みの3点A、B、Cからその近傍の点DのZ座
標、およびその法線ベクトルの方向を予測することを説
明するための図である。
FIG. 4 is a view for explaining prediction of a Z coordinate of a point D in the vicinity thereof and a direction of a normal vector thereof from three points A, B, and C for which measurement data has already been acquired in an embodiment of the present invention. FIG.

【符号の説明】[Explanation of symbols]

1 X軸テーブル 2 Y軸テーブル 3 C軸回転テーブル 4 歯科補綴物用模型(被測定物) 5 光学式変位センサ 6 Z軸テーブル 7 歯科補綴物用模型4の輪郭線 8 第1の測定円 8′ 第1の測定開始点 9 第2の測定円 9′ 第2の測定開始点 10 第3の測定円 10′ 第3の測定開始点 13 光学式変位センサ5の投光軸 14 光学式変位センサ5の受光軸 15 投光軸13及び受光軸14を含む面 16 領域18の法線ベクトル 17 投光軸13及び法線ベクトル16を含む面 18 歯科補綴物用模型4の表面の測定点近傍の領域 19 測定データ取得済みの3点A,B,Cを含む平
面 20 平面19の法線ベクトル 21 法線ベクトル20の射影ベクトル 31 本体基盤 31a 本体基盤の設置面 32 コラム 33 測定円の中心(C軸回転テーブルの回転軸)
DESCRIPTION OF SYMBOLS 1 X-axis table 2 Y-axis table 3 C-axis rotation table 4 Model for dental prosthesis (measurement object) 5 Optical displacement sensor 6 Z-axis table 7 Outline line of model 4 for dental prosthesis 8 First measurement circle 8 'First measurement start point 9 Second measurement circle 9' Second measurement start point 10 Third measurement circle 10 'Third measurement start point 13 Projection axis of optical displacement sensor 5 14 Optical displacement sensor 5 Light receiving axis 15 Surface including light projecting axis 13 and light receiving axis 14 16 Normal vector of region 18 17 Surface including light projecting axis 13 and normal vector 16 18 Near the measurement point on the surface of the dental prosthesis model 4 Area 19 Plane including three points A, B, and C for which measurement data has been acquired 20 Normal vector of plane 19 21 Projection vector of normal vector 31 Main body base 31a Installation surface of main body base 32 Column 33 Center of measurement circle (C Shaft rotation Bull of the axis of rotation)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】本体基盤と、該本体基盤に載置されるとと
もに、本体基盤の設置面に対して平行に移動可能にされ
たX軸テーブルと、 該X軸テーブルに載置されるとともに、前記本体基盤の
設置面に対して平行かつX軸テーブルの可動方向と直交
して移動可能にされたY軸テーブルと、 該Y軸テーブルに載置され、前記本体基盤の設置面に対
して垂直な回転軸を有するとともに、被測定物を載置可
能にされたC軸回転テーブルと、 前記本体基盤の設置面に対して垂直に移動可能にされた
Z軸テーブルと、 該Z軸テーブルに設けられるとともに、投光軸がZ軸テ
ーブルの可動方向と平行になるように設置された光学式
変位センサと、 を有する被測定物の3次元形状測定装置において、 前記光学式変位センサからの位置出力を取り込む際、光
学式変位センサと被測定物上の測定点との相対距離が一
定となり、かつ、光学式変位センサの投光軸及び受光軸
を含む面と、該投光軸及び前記測定点の近傍の面の法線
ベクトルを含む面とが、互いに直交関係となるよう、前
記X軸テーブル、Y軸テーブル、C軸回転テーブル、及
びZ軸テーブルを制御するようにしたことを特徴とする
3次元形状測定方法。
An X-axis table mounted on the main body base and movable parallel to an installation surface of the main body base; and an X-axis table mounted on the X-axis table; A Y-axis table movable parallel to the installation surface of the main body base and orthogonal to the movable direction of the X-axis table; and mounted on the Y-axis table and perpendicular to the installation surface of the main body base. A C-axis rotary table having a rotating axis and capable of mounting an object to be measured; a Z-axis table movable vertically to an installation surface of the main body base; and a Z-axis table provided on the Z-axis table. And a three-dimensional shape measuring device for an object to be measured, comprising: an optical displacement sensor installed so that a light projecting axis is parallel to a movable direction of a Z-axis table; and a position output from the optical displacement sensor. When capturing The relative distance between the displacement sensor and the measurement point on the object to be measured is constant, and the method of measuring the surface including the light projecting axis and the light receiving axis of the optical displacement sensor and the surface near the light projecting axis and the measurement point A three-dimensional shape measuring method, wherein the X-axis table, the Y-axis table, the C-axis rotation table, and the Z-axis table are controlled so that a plane including a line vector is orthogonal to each other.
【請求項2】本体基盤と、 該本体基盤に載置されるとともに、本体基盤の設置面に
対して平行なX軸方向に移動可能にされたX軸テーブル
と、 該X軸テーブルに載置されるとともに、前記本体基盤の
設置面に対して平行かつX軸と直交関係にあるY軸方向
に移動可能にされたY軸テーブルと、 該Y軸テーブルに載置され、前記本体基盤の設置面に対
して垂直な回転軸を有するとともに、被測定物を載置可
能にされたC軸回転テーブルと、 前記本体基盤の設置面に対して垂直なZ軸方向に移動可
能にされたZ軸テーブルと、 該Z軸テーブルに設けられるとともに、投光軸がZ軸と
平行になるように設置された光学式変位センサと、 を有する被測定物の3次元形状測定装置において、 前記C軸回転テーブルの回転軸を中心とするとともに、
前記光学式変位センサから見た被測定物をX−Y平面へ
投影したときの被測定物の輪郭線がすべて含まれるよう
に第1の測定円を設定し、 該第1の測定円の内側に、第1の測定円と同一の中心を
有し、かつ、第1の測定円の半径に対して予め設定した
半径ピッチ毎に小さい半径を有する第2乃至第mまでの
測定円を設定し、 該m個の測定円のそれぞれについて、予め設定した角度
ピッチ毎に測定点を設定し、 前記第2乃至第mまでの測定円の各測定点における測定
については、 現測定点の近傍に位置する既に測定済みの測定点を3点
指定し、 該3点を含む面の法線ベクトルを算出し、該算出された
法線ベクトルを現測定点の法線ベクトルとし、 該現測定点の法線ベクトルをX−Y平面へ射影したとき
の射影ベクトルのX軸とのなす角θを算出し、 該射影ベクトルのX軸とのなす角θ及び前記現測定点の
法線ベクトルに基づき、前記X軸テーブル、Y軸テーブ
ル、C軸回転テーブル、及びZ軸テーブルを位置決め動
作させ、 該位置決め動作の完了後に、現測定点における光学式変
位センサの出力を検出し、 前記X軸テーブル、Y軸テーブル、C軸回転テーブルの
位置に基づき現測定点のX座標値及びY座標値を算出す
るとともに、前記Z軸テーブルの位置及び前記光学式変
位センサの出力に基づき現測定点のZ座標値を算出する
ようにしたことを特徴とする3次元形状測定方法。
2. An X-axis table mounted on the main body base and movable in an X-axis direction parallel to an installation surface of the main body base, and mounted on the X-axis table. A Y-axis table parallel to the installation surface of the main body base and movable in the Y-axis direction orthogonal to the X-axis; and a table mounted on the Y-axis table for installation of the main body base. A C-axis rotary table having a rotation axis perpendicular to the surface and capable of mounting an object to be measured, and a Z-axis movable in a Z-axis direction perpendicular to the installation surface of the main body base A three-dimensional shape measuring device for an object to be measured, comprising: a table; and an optical displacement sensor provided on the Z-axis table and installed so that a projection axis is parallel to the Z-axis. Around the rotation axis of the table,
A first measurement circle is set so as to include all the contours of the measured object when the measured object viewed from the optical displacement sensor is projected on an XY plane, and the inside of the first measured circle is set. The second to m-th measurement circles having the same center as the first measurement circle and having smaller radii at every predetermined radius pitch with respect to the radius of the first measurement circle are set. For each of the m measurement circles, a measurement point is set for each preset angular pitch. For the measurement at each measurement point of the second to m-th measurement circles, the measurement circle is located near the current measurement point. Specifying three measurement points that have already been measured, calculating a normal vector of a plane including the three points, and using the calculated normal vector as a normal vector of the current measurement point, When the line vector is projected on the XY plane, the angle θ between the projected vector and the X axis is The X-axis table, the Y-axis table, the C-axis rotation table, and the Z-axis table are positioned based on the angle θ between the projection vector and the X-axis and the normal vector of the current measurement point. After the operation is completed, the output of the optical displacement sensor at the current measurement point is detected, and the X and Y coordinate values of the current measurement point are calculated based on the positions of the X-axis table, Y-axis table, and C-axis rotation table. And a method of calculating a Z-coordinate value of a current measurement point based on a position of the Z-axis table and an output of the optical displacement sensor.
JP9154340A 1997-05-29 1997-05-29 Three-dimensional shape measuring method Pending JPH10332349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9154340A JPH10332349A (en) 1997-05-29 1997-05-29 Three-dimensional shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9154340A JPH10332349A (en) 1997-05-29 1997-05-29 Three-dimensional shape measuring method

Publications (1)

Publication Number Publication Date
JPH10332349A true JPH10332349A (en) 1998-12-18

Family

ID=15582019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9154340A Pending JPH10332349A (en) 1997-05-29 1997-05-29 Three-dimensional shape measuring method

Country Status (1)

Country Link
JP (1) JPH10332349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314942C (en) * 2003-09-27 2007-05-09 宝元科技股份有限公司 Device for scanning teeth mode
EP1892522A2 (en) * 2006-08-25 2008-02-27 Carl Zeiss MicroImaging GmbH Rotating device for an optical tomograph and optical tomograph with a rotating device
KR20160087579A (en) * 2015-01-14 2016-07-22 한양대학교 에리카산학협력단 3-Dimensional Printer
CN113894570A (en) * 2021-10-26 2022-01-07 中国航发沈阳黎明航空发动机有限责任公司 Positioning device and machining method for micropores on space curved surface
CN114485533A (en) * 2021-12-28 2022-05-13 浙江大学嘉兴研究院 Device and method for measuring axis of quadric surface optical element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314942C (en) * 2003-09-27 2007-05-09 宝元科技股份有限公司 Device for scanning teeth mode
EP1892522A2 (en) * 2006-08-25 2008-02-27 Carl Zeiss MicroImaging GmbH Rotating device for an optical tomograph and optical tomograph with a rotating device
EP1892522A3 (en) * 2006-08-25 2008-04-02 Carl Zeiss MicroImaging GmbH Rotating device for an optical tomograph and optical tomograph with a rotating device
KR20160087579A (en) * 2015-01-14 2016-07-22 한양대학교 에리카산학협력단 3-Dimensional Printer
CN113894570A (en) * 2021-10-26 2022-01-07 中国航发沈阳黎明航空发动机有限责任公司 Positioning device and machining method for micropores on space curved surface
CN113894570B (en) * 2021-10-26 2024-01-05 中国航发沈阳黎明航空发动机有限责任公司 Micropore positioning device on space curved surface and processing method
CN114485533A (en) * 2021-12-28 2022-05-13 浙江大学嘉兴研究院 Device and method for measuring axis of quadric surface optical element

Similar Documents

Publication Publication Date Title
CN108917604B (en) Normal measuring device and calibration method thereof
EP1787176B2 (en) Machine tool method
JP3678915B2 (en) Non-contact 3D measuring device
JPS60149905A (en) Device for obtaining stereo coordinate of point on part
US11268800B2 (en) Method for calibrating a measuring probe in a gear cutting machine
TW201913034A (en) Non-contact and optical measuring automation system for the profile accuracy of disk cams and method thereof
JP2542631B2 (en) Non-contact tracing method
US20170199030A1 (en) Shape measurement apparatus and shape measurement method
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
US5760906A (en) Shape measurement apparatus and method
CN110030962B (en) Lens measuring device and lens measuring method
JPH10332349A (en) Three-dimensional shape measuring method
JP6205727B2 (en) Shape measuring method, structure manufacturing method, shape measuring program, optical shape measuring apparatus, and structure manufacturing system
JPH06201351A (en) Shape measurement for rotary tool
JP3880030B2 (en) V-groove shape measuring method and apparatus
JP3093192B2 (en) Work processing apparatus and computer-readable recording medium
JPH09178439A (en) Three-dimensional shape measuring device
JPH0854234A (en) Three-dimensional coordinate position measuring method
JP2003337018A (en) Three-dimensional shape measuring machine
JP3029572B2 (en) Method for measuring cross-sectional contour shape of object to be measured and method for measuring three-dimensional shape
JP2007046937A (en) Profilometer and profilometry method
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor
JP2001159515A (en) Flatness measuring method and flatness measuring device
JP2003227713A (en) Three-dimensional shape measuring apparatus and its error calibration method
JPH04140691A (en) Positioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314