JPH04140691A - Positioner - Google Patents

Positioner

Info

Publication number
JPH04140691A
JPH04140691A JP2263033A JP26303390A JPH04140691A JP H04140691 A JPH04140691 A JP H04140691A JP 2263033 A JP2263033 A JP 2263033A JP 26303390 A JP26303390 A JP 26303390A JP H04140691 A JPH04140691 A JP H04140691A
Authority
JP
Japan
Prior art keywords
stage
directions
axis
movement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263033A
Other languages
Japanese (ja)
Inventor
Kazuya Ono
一也 小野
Yukio Yamane
幸男 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2263033A priority Critical patent/JPH04140691A/en
Publication of JPH04140691A publication Critical patent/JPH04140691A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

PURPOSE:To improve accuracy by measuring the position of X-Y stage and determining in advance the shift of length axis in X and Y direction, from the point to be positioned. CONSTITUTION:Beneath the Y stage, an X mirror 9 and a Y mirror 10 are fixed. These are used as mirrors for a laser interference meter to measure the movements of a wafer 8 in X and Y directions and pitching, rolling and yawing directions. And the rotations around Y axis, and Z axis and displacement toward X axis are measured with lasers 11 through 13. Based on these detection results and the distance between the movement measuring position on each of X and Y directions measured in advance and the standard point of positioning, a true movement to each of X and Y directions are calculated. By measuring in advance the shift of length axis on X, Y directions from the point to be positioned in this manner, accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、2次元的な平面内での位置決め装置に関し、
特に半導体露光装置、各種測定機および工作機械等に用
いられるXYステージに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a positioning device within a two-dimensional plane,
In particular, the present invention relates to an XY stage used in semiconductor exposure equipment, various measuring machines, machine tools, and the like.

〔従来の技術〕[Conventional technology]

従来例を第3図に示す。ステージ基盤1に固定されたX
サーボモータ2と送りネジおよびガイド(不図示)によ
りXステージ3をX方向に直線駆動する。同様にXステ
ージ3に固定されたXサーボモータ4と送りネジおよび
ガイド(不図示)によりYステージ5をY方向に直線駆
動する。
A conventional example is shown in FIG. X fixed to stage base 1
The X stage 3 is linearly driven in the X direction by the servo motor 2, feed screw, and guide (not shown). Similarly, a Y stage 5 is linearly driven in the Y direction by an X servo motor 4 fixed to the X stage 3, a feed screw, and a guide (not shown).

Yステージ上のZTiltステージ(不図示)により天
板6を2方向、X軸回りの回転、Y軸回りの回転方向に
移動可能としている。天板6上にチャック7が固定され
ている。チャック7は位置決め対象物となるウェハ8を
吸着固定する。さらに天板6にはXミラー16Yミラー
17が固定されている。これらのミラーはウェハ8のX
Y力方向移動量を計測するためのレーザ干渉計用のミラ
ーである。18はX軸のレーザビームの測長軸(レーザ
ビーム光束の中心)、19はY軸のレーザビームの測長
軸である。不図示の干渉計および測長システム、ステー
ジ制御装置により移動量を計測し、今一ボモータに駆動
指令を与えてウェハ8のXY力方向位置決めを行う。
A ZTilt stage (not shown) on the Y stage allows the top plate 6 to move in two directions: rotation around the X axis and rotation around the Y axis. A chuck 7 is fixed on the top plate 6. The chuck 7 attracts and fixes a wafer 8, which is an object to be positioned. Furthermore, an X mirror 16 and a Y mirror 17 are fixed to the top plate 6. These mirrors are
This is a mirror for a laser interferometer for measuring the amount of movement in the Y force direction. 18 is the length measurement axis of the X-axis laser beam (the center of the laser beam luminous flux), and 19 is the length measurement axis of the Y-axis laser beam. The amount of movement is measured by an interferometer, a length measuring system, and a stage control device (not shown), and a drive command is given to the motor to position the wafer 8 in the XY force directions.

Zステージはウェハを所望の高さに位置決めする。例え
ば投影レンズ像面の高さにウェハ8を位置決めする。
The Z stage positions the wafer at a desired height. For example, the wafer 8 is positioned at the height of the projection lens image plane.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例では、XYステージの姿勢変
化に伴うアツベ誤差の発生をなくすために、XYのレー
ザ測長軸の交点と位置決めすべき点0とを一致させ、ま
たは、ある許容値以内に調整する必要がある。このよう
な調整作業を完全に行うことは極めて困難であり、その
ため、アツベ誤差が発生し、所望の位置決め精度が得ら
れなかフた。
However, in the above conventional example, in order to eliminate the occurrence of Atsube errors due to changes in the posture of the There is a need to. It is extremely difficult to perform such adjustment work perfectly, and as a result, errors occur and the desired positioning accuracy cannot be obtained.

また、構成上、レーザ用ミラーはウニへ面の高さに設置
する必要があるが、ミラー重量(XY両方で約2kg)
のためXYステージの重心位置を高め、この結果、位置
決め時間を長びかせていた。
Also, due to the configuration, the laser mirror needs to be installed at the level of the sea urchin surface, but the mirror weight (about 2 kg for both X and Y)
Therefore, the center of gravity of the XY stage was raised, and as a result, the positioning time was lengthened.

本発明は上記従来技術の欠点に鑑みなされたものであっ
て、アツベ誤差を最小限に抑え、高精度の位置決めが達
成できる位置決め装置の提供を目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a positioning device that can minimize Atsube errors and achieve highly accurate positioning.

〔課題を解決するための手段及び作用〕前記目的を達成
するため、本発明によればXYステージのピッチング、
ロークング、ヨーイングを計測し、XYステージのXY
力方向変位を計測する計測軸と位置決めすべき点とのズ
レ量をあらかしめ既知のものとしておくことによりアツ
ベ誤差を極小(または零)とし、XYステージの動特性
に優利な位置に計測系を配置できるようにした。
[Means and effects for solving the problem] In order to achieve the above object, according to the present invention, the pitching of the XY stage,
Measuring the locating and yawing, and
By making the amount of deviation between the measurement axis for measuring displacement in the force direction and the positioning point known in advance, the Atsube error can be minimized (or zero) and the measurement system can be placed in a position that is advantageous for the dynamic characteristics of the XY stage. I was able to place it.

(実施例) 第1図は本発明の実施例の概略斜視図である。(Example) FIG. 1 is a schematic perspective view of an embodiment of the invention.

ステージ基盤1に固定されたXサーボモータ2と送りネ
ジおよびガイド(不図示)によりXステージ3をX方向
に直線駆動する。同様にXステージ3に固定されたYサ
ーボモータ4と送りネジおよびガイド(不図示)により
Yステージ5をY方向に直線駆動する。Yステージ上の
ZTiltステージ(不図示)により天板6をZ方向、
X軸回りの回転、Y軸回りの回転方向に駆動する。天板
6はさらにZ軸廻りに回転可能である。チャック7は天
板6上に固定され、位置決め対象物となるウェハ8を吸
着、固定する。ざらにYステージ下部にXミラー9およ
びYミラー10が固定されている。これらのミラーはウ
ェハ8のXY力方向移動量、およびピッチング(X又は
Y@廻りの回転)、ローリング(Y又はX@廻りの回転
)、ヨーイング(Z軸廻りの回転)方向の移動量を計測
するためのレーザ干渉計用のミラーである。11〜15
はレーザ干渉計の測長軸を示す。レーザ11と12およ
び13によりY軸回りの回転、Z軸回りの回転およびX
軸方向の変位を計測する。
An X stage 3 is linearly driven in the X direction by an X servo motor 2 fixed to a stage base 1, a feed screw, and a guide (not shown). Similarly, the Y stage 5 is linearly driven in the Y direction by a Y servo motor 4 fixed to the X stage 3, a feed screw, and a guide (not shown). The top plate 6 is moved in the Z direction by the ZTilt stage (not shown) on the Y stage.
Drives in rotation around the X axis and rotation around the Y axis. The top plate 6 is further rotatable around the Z axis. The chuck 7 is fixed on the top plate 6, and attracts and fixes a wafer 8, which is an object to be positioned. An X mirror 9 and a Y mirror 10 are roughly fixed to the lower part of the Y stage. These mirrors measure the amount of movement of the wafer 8 in the XY force direction, as well as the amount of movement in the pitching (rotation around the X or Y axis), rolling (rotation around the Y or X axis), and yawing (rotation around the Z axis). This is a mirror for a laser interferometer. 11-15
indicates the measurement axis of the laser interferometer. Lasers 11, 12, and 13 rotate around the Y axis, rotate around the Z axis, and
Measure axial displacement.

レーザ14と15によりX軸回りの回転およびY軸方向
の変位を計測する。第1図の装置のA−A矢視図を第2
図に示す。レーザ測長軸11による変位をX11、その
時のY軸回りの回転をθア、Z軸回りの回転をθ工とす
ると、位置決めすべき点0のX座標の変位X0は Xo ”Xt+  L+ θ2−L2θうて表わされる
。従って、Ll、L2を前もって測定しておけばxoを
正確に求めることができる。Y座標の変位Yoも同様に
して求まる。Xo、Yoをもとに位置決めを行う。
Lasers 14 and 15 measure rotation around the X-axis and displacement in the Y-axis direction. The A-A arrow view of the device in Figure 1 is shown in Figure 2.
As shown in the figure. If the displacement by the laser length measurement axis 11 is X11, the rotation around the Y axis is θa, and the rotation around the Z axis is θ, then the displacement X0 of the X coordinate of the point 0 to be positioned is Xo ''Xt+L+θ2- It is expressed as L2θ. Therefore, if Ll and L2 are measured in advance, xo can be determined accurately. The Y-coordinate displacement Yo can be found in the same way. Positioning is performed based on Xo and Yo.

以上説明した通り、レーザ干渉計用ミラーを従来より低
い位置に配置し、XYステージの重心位置を下げること
ができる。そのため、XYステージの動特性が向上し位
置決め時間の短縮が図られる。また、Ll、L2を正確
に計ることにより位置決め精度が向上する。Ll、L2
を正確に計ることは必要であるが、絶対値の公差は極め
てゆるく、調整は非常に容易になる。
As explained above, the laser interferometer mirror can be placed at a lower position than before, and the center of gravity of the XY stage can be lowered. Therefore, the dynamic characteristics of the XY stage are improved and the positioning time can be shortened. Furthermore, positioning accuracy is improved by accurately measuring Ll and L2. Ll, L2
Although it is necessary to measure accurately, the tolerance of the absolute value is extremely loose, making adjustment very easy.

〔発明の効果〕〔Effect of the invention〕

以上説明したよいうに、XYステージの姿勢(ピッチン
グ、ローリング、ヨーイング)を計測し、XY方向の測
長軸と位置決めすべき点とのズレ量を前もって測定して
おくことにより、アツベ誤差を極小(または零)とし位
置決め精度を向上させることができる。さらに測長軸を
任意の位置に配置することができるため、測定部品の重
心をXYステージの重心に近づけることができXYステ
ージの動特性を向上させることができる。また、XYス
テージを構成する上でスペースを有効に活用できる。
As explained above, by measuring the attitude (pitching, rolling, yawing) of the XY stage and measuring the amount of deviation between the length measurement axis in the XY direction and the point to be positioned in advance, the Atsube error can be minimized ( or zero) to improve positioning accuracy. Furthermore, since the length measurement axis can be placed at an arbitrary position, the center of gravity of the part to be measured can be moved closer to the center of gravity of the XY stage, and the dynamic characteristics of the XY stage can be improved. Furthermore, space can be effectively utilized when configuring the XY stage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る位置決め装置の斜視図、 第2図は第1図のA−A矢視図、 第3図は従来例の斜視図である。 1:ステージ基盤、2:xサーボモータ、3:Xステー
ジ、4:Yサーボモータ、5:Yステージ、6:天板、
7:チャック、8:ウェハ、9゜Xミラー 10:Yミ
ラー 11〜15レーザ測長軸。 特許出願人  キャノン株式会社 代理人 弁理士  伊 東 哲 也
FIG. 1 is a perspective view of a positioning device according to an embodiment of the present invention, FIG. 2 is a view taken along the line A-A in FIG. 1, and FIG. 3 is a perspective view of a conventional example. 1: Stage base, 2: x servo motor, 3: X stage, 4: Y servo motor, 5: Y stage, 6: Top plate,
7: Chuck, 8: Wafer, 9°X mirror 10: Y mirror 11-15 Laser length measurement axis. Patent applicant Canon Co., Ltd. agent Patent attorney Tetsuya Ito

Claims (3)

【特許請求の範囲】[Claims] (1)位置決めすべき平板状物体をXY平面に平行に搭
載しかつXY各方向の移動およびXYZ各軸廻りの回転
が可能なステージと、前記XY各方向の移動量およびX
YZ各軸廻りの回転量を検出する検出手段と、該検出手
段の検出結果および予め計測した前記XY各方向の移動
測定位置と位置決め基準点との間の距離に基づいて真の
XY各方向の移動量を算出する演算手段とを具備したこ
とを特徴とする位置決め装置。
(1) A stage on which a flat object to be positioned is mounted parallel to the XY plane and capable of movement in each of the XY directions and rotation around each of the XYZ axes, and the amount of movement in each of the XY directions and the
A detection means for detecting the amount of rotation around each of the Y and Z axes, and a detection means for detecting the amount of rotation in each of the X and Y directions based on the detection results of the detection means and the distance between the previously measured movement measurement position in each of the X and Y directions and the positioning reference point. 1. A positioning device comprising: arithmetic means for calculating a movement amount.
(2)前記検出手段はレーザ干渉計からなり、前記演算
手段は該レーザ干渉計のレーザ光の測長軸と前記基準点
との間の距離および前記検出結果に基づいて前記移動量
の算出を行うことを特徴とする特許請求の範囲第1項記
載の位置決め装置。
(2) The detection means includes a laser interferometer, and the calculation means calculates the amount of movement based on the distance between the measurement axis of the laser beam of the laser interferometer and the reference point and the detection result. The positioning device according to claim 1, wherein the positioning device performs the following steps.
(3)前記レーザ干渉計の測長軸は、XY平面に平行で
あって、Z方向に関し前記基準点よりステージの重心に
近い側に設けたことを特徴とする特許請求の範囲第2項
記載の位置決め装置。
(3) The length measurement axis of the laser interferometer is parallel to the XY plane, and is provided closer to the center of gravity of the stage than the reference point in the Z direction. positioning device.
JP2263033A 1990-10-02 1990-10-02 Positioner Pending JPH04140691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263033A JPH04140691A (en) 1990-10-02 1990-10-02 Positioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263033A JPH04140691A (en) 1990-10-02 1990-10-02 Positioner

Publications (1)

Publication Number Publication Date
JPH04140691A true JPH04140691A (en) 1992-05-14

Family

ID=17383949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263033A Pending JPH04140691A (en) 1990-10-02 1990-10-02 Positioner

Country Status (1)

Country Link
JP (1) JPH04140691A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306829A (en) * 2000-01-01 2000-11-02 Nikon Corp Projection aligner and manufacture of element
JP2002107136A (en) * 2000-09-28 2002-04-10 Advantest Corp Stage apparatus, measurement method, and electron beam exposure apparatus
JP2012040645A (en) * 2010-08-19 2012-03-01 Canon Inc Processing device
CN102969030A (en) * 2012-12-03 2013-03-13 哈尔滨工业大学 Plane type precise two-dimensional micrometric displacement platform
CN102969031A (en) * 2012-12-12 2013-03-13 中国科学院光电技术研究所 Z-thetax-thetay three-degree-of-freedom nanoscale precision split worktable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306829A (en) * 2000-01-01 2000-11-02 Nikon Corp Projection aligner and manufacture of element
JP2002107136A (en) * 2000-09-28 2002-04-10 Advantest Corp Stage apparatus, measurement method, and electron beam exposure apparatus
JP2012040645A (en) * 2010-08-19 2012-03-01 Canon Inc Processing device
CN102969030A (en) * 2012-12-03 2013-03-13 哈尔滨工业大学 Plane type precise two-dimensional micrometric displacement platform
CN102969031A (en) * 2012-12-12 2013-03-13 中国科学院光电技术研究所 Z-thetax-thetay three-degree-of-freedom nanoscale precision split worktable

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
CN108917604B (en) Normal measuring device and calibration method thereof
US10118227B2 (en) Machine tool and workpiece flattening method
JPH038683B2 (en)
JP2001518606A (en) Device for detecting the position of two objects
JP2831610B2 (en) measuring device
US6351313B1 (en) Device for detecting the position of two bodies
JPH04140691A (en) Positioner
CN110640546B (en) Measured gear rotation axis measuring method for large gear measurement beside machine
JP3394972B2 (en) Automatic machine tool
JP2755346B2 (en) Method and apparatus for measuring motion accuracy of automatic machine tool
JP2006162537A (en) Calibration method for sensor original position of three-dimensional shape measuring machine
JPS60207742A (en) On-machine measurement correcting apparatus for machine tool
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
TW202146187A (en) Coordinate calibration method of manipulator
JPH01250891A (en) Plane positioning device
JP2003097943A (en) Method and device for measuring straightness of mobile stage, and three-dimensional shape measuring machine using them
JP2758810B2 (en) Shape measurement method
JP2005181023A (en) Measuring device and method of height difference and tilt angle between planes
CN114440849B (en) Method and device for calibrating verticality of two-dimensional feedback positioning frame
JPH06137852A (en) Motion error measuring device for linear moving body
JPH11151639A (en) Inprocess measurement device
JPH04135186A (en) Reference-position determining method and apparatus for industrial travel robot
JPH0637444Y2 (en) Machined surface vertical direction detector
JP2572936B2 (en) Shape measuring instruments