JP2001159515A - Flatness measuring method and flatness measuring device - Google Patents

Flatness measuring method and flatness measuring device

Info

Publication number
JP2001159515A
JP2001159515A JP34337899A JP34337899A JP2001159515A JP 2001159515 A JP2001159515 A JP 2001159515A JP 34337899 A JP34337899 A JP 34337899A JP 34337899 A JP34337899 A JP 34337899A JP 2001159515 A JP2001159515 A JP 2001159515A
Authority
JP
Japan
Prior art keywords
flatness
point
measuring
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34337899A
Other languages
Japanese (ja)
Inventor
Kiyoaki Niimi
清明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP34337899A priority Critical patent/JP2001159515A/en
Publication of JP2001159515A publication Critical patent/JP2001159515A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flatness measuring method and a flatness measuring device capable of measuring precisely flatness of a work by eliminating a measurement error caused by thermal expansion of a measuring jig. SOLUTION: This device is equipped with a measuring mechanism 10 having at least four sensors D1-D4 in prescribed arrangement for measuring the distance to the work surface WS, an X-axis driving mechanism 20 for moving the measuring mechanism 10 in the X-axis direction and a Y-axis driving mechanism 30 for moving the mechanism 10 in the Y-axis direction, a driver 40 for driving the X-axis and Y-axis driving mechanisms 20, 30, and a controller 50 for controlling the driver 40, and for executing operation processing of a measured value from the measuring mechanism 10, to measure the flatness of the work surface WS. The measurement is executed based on the difference between the point corresponding to a fourth point on the plane formed by three points, namely, a first point, a second point and a third point, where measurement of the flatness is executed, and the fourth point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面度測定方法お
よび平面度測定装置に関する。さらに詳しくは、例えば
定盤などの高精度の平面を備えることが必要とされる製
品の平面度を測定する平面度測定方法および平面度測定
装置に関する。
The present invention relates to a flatness measuring method and a flatness measuring device. More specifically, the present invention relates to a flatness measuring method and a flatness measuring apparatus for measuring the flatness of a product which is required to have a highly accurate flat surface such as a surface plate.

【0002】[0002]

【従来の技術】従来より、定盤などの高精度の平面度が
要求される製品(以下、ワークという)を製造する場合
には、例えば抜き取り検査によって、製造されるワーク
の平面度を測定するのが通常である。というのは、通常
の工場内では温度管理を行うことが容易ではない。この
ため、製造ライン内にある製品の平面度を測定しようと
すると、測定治具が温度変化に伴って伸縮し、これによ
って測定結果に誤差が生じる。したがって、工場内の温
度変化による測定誤差の影響を避けるために、温度管理
が実施されている検査室内でワークの平面度を測定する
ことが行われる。
2. Description of the Related Art Conventionally, when manufacturing a product (hereinafter referred to as a work) requiring a high degree of flatness such as a surface plate, the flatness of the manufactured work is measured by, for example, a sampling inspection. Is usually the case. This is because it is not easy to perform temperature control in a normal factory. For this reason, when trying to measure the flatness of a product in a production line, the measuring jig expands and contracts with a change in temperature, thereby causing an error in the measurement result. Therefore, in order to avoid the influence of the measurement error due to the temperature change in the factory, the flatness of the work is measured in the inspection room where the temperature control is performed.

【0003】図7にこのような従来の平面度測定方法の
一例を示す。この例では、定盤の長方形平面F´の各辺
あたり3個、合計8個の測定点Eについて、例えばダイ
アルゲージにより基準位置からの高さが測定される。そ
して、その最大値と最小値との差を適当な数で割ること
によって、平面F´の例えば100mm角あたりの平面
度が算出される。
FIG. 7 shows an example of such a conventional flatness measuring method. In this example, the height from the reference position is measured by, for example, a dial gauge at eight measurement points E, three on each side of the rectangular plane F ′ of the surface plate. Then, by dividing the difference between the maximum value and the minimum value by an appropriate number, the flatness per 100 mm square of the plane F ′ is calculated.

【0004】このように、従来より、例えば定盤などの
ワークの平面度について検査する際には周囲の温度変化
による誤差の影響を排除するために、温度管理が実施さ
れている検査室内で平面度を測定するのが通常である。
このため、ワークの平面度について検査するために、ワ
ークを製造ラインから検査室に搬入する必要があり、ワ
ークの全数について検査を実行することが困難であると
ともに、検査結果を直ちに製造工程にフィードバックし
たり、あるいは検査結果に応じて平面度の不良なワーク
を再加工するなどの適切な処置を行うことが困難である
という問題がある。
As described above, conventionally, when inspecting the flatness of a work such as a surface plate, in order to eliminate the influence of an error due to a change in ambient temperature, a flat surface is inspected in an inspection room where temperature control is performed. It is usual to measure degrees.
For this reason, in order to inspect the flatness of the work, it is necessary to carry the work from the production line to the inspection room, and it is difficult to perform the inspection on all the works, and the inspection result is immediately fed back to the manufacturing process. There is a problem that it is difficult to perform appropriate measures such as reworking a workpiece having poor flatness according to the inspection result.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたものであって、ワークの平面度
を測定治具の熱膨張による測定誤差とセンサ駆動部の真
直度誤差とを排除して精密に測定することができる平面
度測定方法および平面度測定装置を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems in the prior art, and is intended to measure the flatness of a work by measuring a measurement error caused by thermal expansion of a measuring jig and a straightness error of a sensor driving unit. It is an object of the present invention to provide a flatness measuring method and a flatness measuring device which can be precisely measured without being removed.

【0006】[0006]

【課題を解決するための手段】本発明の平面度測定方法
は、ワークの平面度を測定する平面度測定方法であっ
て、被測定面上の少なくとも4点について同時または略
同時に距離センサにより距離を測定し、前記測定値を適
宜処理することによって前記ワークの平面度を測定する
ことを特徴とする。
A flatness measuring method according to the present invention is a flatness measuring method for measuring flatness of a workpiece, wherein at least four points on a surface to be measured are simultaneously or almost simultaneously measured by a distance sensor. Is measured, and the measured value is appropriately processed to measure the flatness of the work.

【0007】本発明の平面度測定方法においては、例え
ば平面度の測定が、測定された第1の点、第2の点およ
び第3の点の3点により形成される平面上の第4の点に
対応する点と、第4の点との距離の差に基づいてなされ
る。この場合、第1の点、第2の点、第3の点および第
4の点が正方形をなすように配列され、前記第4の点に
対応する点と、第4点との距離の差の1/2が被測定面
の平面度とされてもよい。
In the flatness measuring method of the present invention, for example, the flatness is measured by measuring a fourth point on a plane formed by three points of the measured first point, second point and third point. This is performed based on the difference in distance between the point corresponding to the point and the fourth point. In this case, the first point, the second point, the third point, and the fourth point are arranged so as to form a square, and the difference between the point corresponding to the fourth point and the fourth point. May be set as the flatness of the surface to be measured.

【0008】一方、本発明の平面度測定装置は、被測定
面までの距離を測定するセンサを所定配列にて有する測
定機構と、前記測定機構を一方向に移動させる第1駆動
機構およびそれと直交する方向に移動させる第2駆動機
構と、前記第1駆動機構および第2駆動機構を駆動する
ドライバと、前記ドライバを制御するとともに前記測定
機構からの測定値を演算処理して被測定面の平面度を測
定するコントローラとを備えてなることを特徴とする。
On the other hand, a flatness measuring apparatus according to the present invention comprises a measuring mechanism having a predetermined arrangement of sensors for measuring a distance to a surface to be measured, a first driving mechanism for moving the measuring mechanism in one direction, and an orthogonal mechanism. A second drive mechanism for moving in a direction to be driven, a driver for driving the first drive mechanism and the second drive mechanism, and a plane for the surface to be measured by controlling the driver and arithmetically processing a measurement value from the measurement mechanism. A controller for measuring the degree.

【0009】本発明の平面度測定装置においは、前記セ
ンサが正方形を形成するように配列されてなるのが好ま
しい。
In the flatness measuring apparatus of the present invention, it is preferable that the sensors are arranged so as to form a square.

【0010】[0010]

【作用】本発明は、前記の如く構成されているので、例
えば製造ライン内であってもワークの平面度を周囲の温
度変化に拘らず精密に測定することをができる。
According to the present invention, the flatness of a work can be accurately measured irrespective of a change in ambient temperature, for example, even in a production line.

【0011】[0011]

【発明の実施の形態】以下、添付図面を参照しながら本
発明を実施形態に基づいて説明するが、本発明は係る実
施形態のみに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments with reference to the accompanying drawings, but the present invention is not limited to only such embodiments.

【0012】本発明の一実施形態に係る平面度測定方法
が適用される平面度測定装置の構成を図1に示し、この
平面度測定装置Aは、例えば定盤などの製品(以下、ワ
ークという)Wの平面度を製造ライン内で測定できるよ
うに、ワークWを搬送するコンベアKの近傍に配設され
ている。
FIG. 1 shows a configuration of a flatness measuring apparatus to which a flatness measuring method according to an embodiment of the present invention is applied. This flatness measuring apparatus A is, for example, a product such as a surface plate (hereinafter referred to as a work). ) It is arranged near the conveyor K that transports the work W so that the flatness of W can be measured in the production line.

【0013】平面度測定装置Aは、ワークW表面までの
距離を測定する測定機構10と、この測定機構10をX
軸方向に駆動するX軸駆動機構(第1の駆動機構)20
と、Y軸方向に駆動するY軸駆動機構(第2の駆動機
構)30と、これら各駆動機構20、30に駆動用電力
を供給するX・Y軸駆動ドライバ40と、X・Y軸駆動
ドライバ40を制御するとともに測定機構10からの測
定値を演算処理するコントローラ50とから構成され、
コントローラ50の制御によって、測定機構10をワー
クWの被検査面WSと略平行に駆動しつつ(図2参照)
ワークWの平面度を測定するようにされてなる。
The flatness measuring device A includes a measuring mechanism 10 for measuring a distance to the surface of the work W, and an X
X-axis drive mechanism (first drive mechanism) 20 driven in the axial direction
A Y-axis driving mechanism (second driving mechanism) 30 for driving in the Y-axis direction; an X / Y-axis driving driver 40 for supplying driving power to these driving mechanisms 20 and 30; A controller 50 that controls the driver 40 and performs arithmetic processing on the measurement value from the measurement mechanism 10.
Under the control of the controller 50, the measuring mechanism 10 is driven substantially parallel to the inspection surface WS of the workpiece W (see FIG. 2).
The flatness of the work W is measured.

【0014】測定機構10は、図3に示すように、ワー
クWの被検査面WSと相対する面11に第1〜第4の距
離センサD1〜D4を有している。各センサD1〜D4は各
センサD1〜D4の中心が、面11において1辺が100
mmの正方形12の各頂点を構成するように配設されて
いる。各距離センサD1〜D4は、それぞれ例えばレーザ
光をワークWに照射して、その反射光をイメージセンサ
により検出し、このときのレーザ光の照射角度から測定
点までの距離を測定するレーザレージファインダから構
成される。また、超音波、マイクロ波あるいは光の反射
時間を測定して距離を測定するダイアフラム法、または
2つのカメラを用いた両眼立体視による方法を利用した
ものであってもよい。
As shown in FIG. 3, the measuring mechanism 10 has first to fourth distance sensors D 1 to D 4 on a surface 11 of the work W opposite to the inspection surface WS. Each sensor D 1 to D 4 is the center of the sensor D 1 ~D 4, 1 side in the surface 11 is 100
It is arranged so that each vertex of the square 12 of mm may be comprised. Each of the distance sensors D 1 to D 4 irradiates the workpiece W with, for example, a laser beam, detects the reflected light with an image sensor, and measures the distance from the laser beam irradiation angle to the measurement point at this time. It consists of a rangefinder. Further, a diaphragm method for measuring the distance by measuring the reflection time of ultrasonic waves, microwaves or light, or a method using binocular stereoscopic vision using two cameras may be used.

【0015】次に、図4を参照して、平面度測定装置A
のコントローラ50の制御により実行される平面度測定
方法を具体的に説明する。
Next, with reference to FIG.
A flatness measurement method executed under the control of the controller 50 will be specifically described.

【0016】図4はワークWの被検査面WSを示してい
る。ワークWは長方形形状の被検査面WSの長辺W1
図1のX軸方向と平行となり、また短辺W2が図1のY
軸方向と平行となるように置かれている。この状態で被
検査面WSの1つの角C近傍の点P2の鉛直上方に例え
ば第2のセンサD2が位置するように各駆動機構20、
30により測定機構10を移動させる。これによって、
点P2よりX軸方向に−100mmの点P1の鉛直上方に
第1のセンサD1が位置し、点P2よりY軸方向に100
mmの点P4の鉛直上方に第4のセンサD4が位置すると
ともに、点P2よりX軸方向に−100mm、Y軸方向
に100mmの点P3の鉛直上方に第3のセンサD3が位
置する。
FIG. 4 shows the inspection surface WS of the work W. Workpiece W is long side W 1 of the inspected surface WS of the rectangular is parallel to the X-axis direction in FIG. 1, also the short side W 2 is 1 Y
It is placed parallel to the axial direction. In this state, each driving mechanism 20 is positioned so that, for example, the second sensor D 2 is located vertically above a point P 2 near one corner C of the inspection surface WS.
30 moves the measuring mechanism 10. by this,
First sensor D 1 is located from the point P 2 in the X-axis direction vertically above the point P 1 of -100 mm, 100 from the point P 2 in the Y-axis direction
with mm point vertically above the fourth sensor D 4 P 4 is positioned, the point P 2 than -100mm in the X-axis direction, Y to vertically above the point P 3 of 100mm axial third sensor D 3 Is located.

【0017】さらに、この状態で各センサD1〜D4から
被検査面WSまでの距離を同時に測定することによっ
て、点P1、P2、P3、P4を頂点とする正方形内部の領
域R1における平面度を以下に説明する原理により測定
することができる。
Furthermore, by measuring the distance from the sensor D 1 to D 4 to the inspected surface WS at the same time in this state, the square inner area of the point P 1, P 2, P 3 , P 4 and vertices The flatness at R 1 can be measured according to the principle described below.

【0018】図5に示すように、被検査面WSに対応す
る理想平面をXY平面とし、Z軸が点P1を通過すると
ともに、X軸方向およびY軸方向がそれぞれ平面度測定
装置AのX軸方向およびY軸方向と一致するXYZ座標
系を考える。このとき、各センサD1〜D4による測定結
果に応じて、各点P1、P2、P3、P4の座標はそれぞれ
(0,0,z1)、(100,0,z2)、(0,10
0,z3)、(100,100,z4)と表すことができ
る。
As shown in FIG. 5, the ideal plane corresponding to the inspected surface WS to the XY plane, with the Z-axis passes through the point P 1, X-axis direction and the Y-axis direction of the flatness measuring device A, respectively Consider an XYZ coordinate system that matches the X-axis direction and the Y-axis direction. At this time, depending on the measurement result by the sensor D 1 to D 4, each point P 1, P 2, P 3 , P 4 is the coordinates respectively (0,0, z 1), ( 100,0, z 2 ), (0,10
0, z 3 ) and (100, 100, z 4 ).

【0019】ここで、点P1、P2、P3を頂点とする3
角形を含む平面Fと、点P4を通りZ軸に平行な直線L
との交点をP4´(100,100,z4´)とすると、
1+z4´=z2+z3、すなわちz4´=z2+z3−z1
という関係が成り立つ。このとき平面Fは、測定機構1
0を支持するX軸駆動機構20やY軸駆動機構30など
のメカ系の熱膨張や真直度誤差により前記理想平面とは
平行にならないのが通常である。
Here, points 3 having points P 1 , P 2 and P 3 as vertices
A plane F including a polygon and a straight line L passing through the point P 4 and parallel to the Z axis.
Let P 4 ′ (100, 100, z 4 ′) be the intersection with
z 1 + z 4 '= z 2 + z 3, i.e. z 4' = z 2 + z 3 -z 1
The relationship holds. At this time, the plane F is
Normally, it does not become parallel to the ideal plane due to thermal expansion and straightness errors of mechanical systems such as the X-axis drive mechanism 20 and the Y-axis drive mechanism 30 that support 0.

【0020】つまり、平面Fは前記理想平面に対して傾
いた面となるが、領域R1が完全な平面であれば点P4
点P4´とは理論上一致する。したがって、点P4と点P
4´が乖離することは領域R1に平面度誤差があることを
示しており、下記の手順でこの平面度誤差を算出するこ
とができる。
That is, the plane F is inclined with respect to the ideal plane, but if the region R 1 is a perfect plane, the point P 4 and the point P 4 ′ are theoretically identical. Therefore, the points P 4 and P
4 'that diverge indicates that there is a flatness error to the region R 1, it is possible to calculate the flatness error to the following procedure.

【0021】すなわち、点P4と点P4´との距離をdz
4とすると、図6に示すように、被検査面WSの領域R1
における平面度Mはdz4/2で近似できることが分か
る。したがって、被検査面WSの領域R1における平面
度Mは下記式(1)で表すことができる。
That is, the distance between the point P 4 and the point P 4 ′ is dz
When 4, as shown in FIG. 6, the inspected surface WS region R 1
Flatness M is seen can be approximated by dz 4/2 in. Therefore, flatness M in the region R 1 of the inspected surface WS can be expressed by the following formula (1).

【0022】 M=(z4´−z4)/2=(z2+z3−z1−z4)/2 (1)M = (z 4 ′ −z 4 ) / 2 = (z 2 + z 3 −z 1 −z 4 ) / 2 (1)

【0023】このようにして、領域R1の平面度の検出
が終わると、測定機構10を領域R1と隣接する領域R2
の上方に移動させる。すなわち、第1のセンサD1を点
3の鉛直上方に移動させるとともに、第2のセンサD2
を点P4の鉛直上方に移動させる。これによって、第3
のセンサD3は点P3よりY軸方向に100mmの点P5
の鉛直上方に移動し、第4のセンサD4は点P4よりY軸
方向に100mmの点P 6の鉛直上方に移動する。この
状態で領域R1におけると同様の方法によって、点P3
4、P5、P6を頂点とする正方形内部の領域R2におけ
る平面度を測定する。
Thus, the region R1Flatness detection
Is completed, the measuring mechanism 10 is moved to the region R1And the area R adjacent toTwo
Move it up. That is, the first sensor D1The point
PThreeAnd the second sensor DTwo
To the point PFourTo move vertically upward. As a result, the third
Sensor DThreeIs the point PThree100 mm point P in the Y-axis directionFive
Moves vertically above the fourth sensor DFourIs the point PFourMore Y axis
100 mm point P in the direction 6To move vertically upward. this
Region R in state1In the same way as inThree,
PFour, PFive, P6Region R inside the square with the vertexTwoSmell
Measure flatness.

【0024】このようにして、測定機構10をY軸方向
またはX軸方向に100mmづつ移動させて、被検査面
WS上で1辺が100mmの正方形からなる各領域Rに
おける平面度を測定していくことによって、被検査面W
Sの全域において100mm角あたりの平面度を測定す
ることができる。そして、この測定値の中で最大のもの
が当該ワークWの平面度として検出される。さらに、測
定値を連続的に結ぶ処理を行うことにより、ワーク全体
のプロファイルを描くことができる。
In this manner, the measuring mechanism 10 is moved in the Y-axis direction or the X-axis direction by 100 mm to measure the flatness in each area R of a square having a side of 100 mm on the inspection surface WS. The inspection target surface W
The flatness per 100 mm square can be measured in the entire region of S. Then, the largest of the measured values is detected as the flatness of the work W. Further, by performing a process of continuously connecting the measured values, a profile of the entire work can be drawn.

【0025】このように、本実施形態の平面度測定方法
は、ワークWの被検査面WS上で1辺が100mmの正
方形の各頂点までの距離を略同時に測定することによっ
て、当該正方形内部の領域Rの平面度を測定し、これを
被検査面WS全域に亘って行うので、平面度測定装置A
のメカ系における熱膨張や真直度誤差の影響を排除し
て、温度管理の困難な製造ライン内においてもワークW
の平面度を精密に測定することができる。
As described above, according to the flatness measuring method of the present embodiment, the distance to each vertex of a square having a side of 100 mm on the inspection surface WS of the work W is measured at substantially the same time, so that the inside of the square can be measured. Since the flatness of the region R is measured and is measured over the entire inspection surface WS, the flatness measuring device A
Eliminates the effects of thermal expansion and straightness errors in the mechanical systems of
Can be precisely measured.

【0026】なお、前記実施形態においては、測定機構
10が4つの距離センサDを有する構成としたが、これ
に限られるものではなく、センサDの数を5個以上とす
ることも可能である。
In the above embodiment, the measuring mechanism 10 has four distance sensors D. However, the present invention is not limited to this, and the number of sensors D can be five or more. .

【0027】また、測定機構10に第1および第4の距
離センサD1、D4に対応するセンサのみを備えさせると
ともに、2つのセンサの中点を通る軸を中心として90
度回転可能に構成することによって、4点までの距離を
2回に分けて略同時に測定することによって平面度を検
出するようにしてもよい。
Further, the measuring mechanism 10 is provided with only the sensors corresponding to the first and fourth distance sensors D 1 and D 4 , and the measuring mechanism 10 is connected to an axis passing through the midpoint between the two sensors.
By being configured to be rotatable by degrees, the flatness may be detected by measuring the distance up to four points twice and substantially simultaneously.

【0028】また、例えば測定機構の1回の移動距離を
100mm以下として、測定領域を重ならせてさらに高
精度な測定を行うことも可能である。
Further, for example, it is also possible to make the measuring area overlap by one measuring distance of 100 mm or less, and to perform the measurement with higher accuracy.

【0029】[0029]

【実施例】以下、より具体的に本発明を説明する。The present invention will be described below more specifically.

【0030】実施例1および比較例1 表1に前記実施形態の平面度測定方法により測定した平
面度の測定結果(実施例1)を参照値(比較例1)と対
比して示す。
Example 1 and Comparative Example 1 Table 1 shows the flatness measurement results (Example 1) measured by the flatness measuring method of the above-mentioned embodiment in comparison with reference values (Comparative Example 1).

【0031】表1はNo.1、No.2、No.3の3
個のサンプル定盤について、高精度の3次元測定機によ
り測定された100mm角あたりの平面度(比較例1)
と、前記実施形態の平面度測定方法により測定された1
00mm角あたりの平面度(実施例1)とを対比して示
したものである。
Table 1 shows No. 1, No. 2, No. 3 of 3
Flatness per 100 mm square measured by a high-precision 3D measuring machine for each sample platen (Comparative Example 1)
And 1 measured by the flatness measuring method of the embodiment.
The flatness per 00 mm square (Example 1) is shown in comparison.

【0032】[0032]

【表1】 [Table 1]

【0033】表1より明らかなように、各サンプルN
o.1〜No.3における実施例1と比較例1との測定
結果の差は0.001mm〜0.002mm程度である
が、この値は実用上問題とならない範囲のものである。
したがって、前記実施形態の平面度測定方法によれば、
非常に高価な高精度の3次元測定機による測定結果と略
同一精度の平面度の測定結果を得られることが分かる。
As is clear from Table 1, each sample N
o. 1 to No. The difference between the measurement results of Example 1 and Comparative Example 1 in Example 3 is about 0.001 mm to 0.002 mm, but this value is in a range that does not pose a problem in practical use.
Therefore, according to the flatness measuring method of the embodiment,
It can be seen that the measurement result of the flatness with almost the same accuracy as the measurement result by the very expensive high-precision three-dimensional measuring machine can be obtained.

【0034】実施例2および比較例2 表2は、高精度な平面度を有する基準材について、当該
基準材の製作メーカが保証する100mm角あたりの平
面度(比較例2)と、前記実施形態の平面度測定方法に
より測定された100mm角あたりの平面度(実施例
2)とを対比して示したものである。
Example 2 and Comparative Example 2 Table 2 shows the flatness per 100 mm square guaranteed by the maker of the reference material (Comparative Example 2) with respect to the reference material having a high-precision flatness. And the flatness per 100 mm square measured by the flatness measuring method (Example 2).

【0035】[0035]

【表2】 [Table 2]

【0036】表2により明らかなように、両者の差は
0.0001mmであるが、この値は実用上問題となら
ない範囲のものである。したがって、前記実施形態の平
面度測定方法によれば、比較的安価な装置で非常に高精
度の測定結果を得られることが分かる。
As is clear from Table 2, the difference between the two is 0.0001 mm, but this value is in a range that does not pose a problem in practical use. Therefore, according to the flatness measuring method of the embodiment, it can be seen that a very high-precision measurement result can be obtained with a relatively inexpensive device.

【0037】[0037]

【発明の効果】以上詳述したように本発明によれば、被
測定面上の少なくとも4点について略同時に距離センサ
により距離を測定することによって、ワークの平面度が
測定されるので、測定結果から測定治具の熱膨張や真直
度誤差に起因する測定誤差の影響を排除することができ
るという優れた効果を奏する。これによって、製造ライ
ンを有する温度管理が困難な工場内においてもワークの
平面度を精密に測定することができるので、製造される
ワークの全数について平面度の検査を行うことが容易に
なるとともに、平面度の測定結果をワークの製造に反映
させることができるという効果を達成することもでき
る。
As described above in detail, according to the present invention, at least four points on the surface to be measured are measured at substantially the same time by the distance sensor to measure the flatness of the work. Therefore, it is possible to eliminate the influence of the measurement error caused by the thermal expansion and the straightness error of the measuring jig. With this, the flatness of the work can be accurately measured even in a factory having a manufacturing line and in which temperature control is difficult, so that it is easy to perform the flatness inspection on all of the manufactured works. The effect that the measurement result of the flatness can be reflected in the manufacture of the work can also be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る平面度測定方法が適
用される平面度測定装置の概略構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a schematic configuration of a flatness measuring device to which a flatness measuring method according to an embodiment of the present invention is applied.

【図2】同装置を正面から見た図である。FIG. 2 is a front view of the device.

【図3】同装置の測定機構の概略構成を示すブロック図
である。
FIG. 3 is a block diagram showing a schematic configuration of a measurement mechanism of the apparatus.

【図4】本発明の一実施形態に係る平面度測定方法の手
順を説明するための説明図である。
FIG. 4 is an explanatory diagram illustrating a procedure of a flatness measurement method according to an embodiment of the present invention.

【図5】同平面度測定方法の原理を説明するための説明
図である。
FIG. 5 is an explanatory diagram for explaining the principle of the flatness measurement method.

【図6】同平面度測定方法の原理を説明するための説明
図である。
FIG. 6 is an explanatory diagram for explaining the principle of the flatness measurement method.

【図7】従来の平面度測定方法の一例を説明するための
説明図である。
FIG. 7 is an explanatory diagram for explaining an example of a conventional flatness measurement method.

【符号の説明】[Explanation of symbols]

10 測定機構 20 X軸駆動機構 30 Y軸駆動機構 40 X・Y軸駆動ドライバ 50 コントローラ A 平面度測定装置 D 距離センサ W ワーク WS 被検査面 Reference Signs List 10 measuring mechanism 20 X-axis driving mechanism 30 Y-axis driving mechanism 40 X / Y-axis driving driver 50 Controller A Flatness measuring device D Distance sensor W Work WS Inspected surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ワークの平面度を測定する平面度測定方
法であって、 被測定面上の少なくとも4点について同時または略同時
に距離センサにより距離を測定し、前記測定値を適宜処
理することによって前記ワークの平面度を測定すること
を特徴とする平面度測定方法。
1. A flatness measuring method for measuring the flatness of a workpiece, comprising: measuring at least four points on a surface to be measured simultaneously or substantially simultaneously with a distance sensor, and processing the measured values appropriately. A flatness measuring method, wherein the flatness of the work is measured.
【請求項2】 平面度の測定が、測定された第1の点、
第2の点および第3の点の3点により形成される平面上
の第4の点に対応する点と、第4の点との距離の差に基
づいてなされることを特徴とする請求項1記載の平面度
測定方法。
2. The method of claim 1, wherein the measurement of the flatness is a first point measured,
The method is performed based on a difference in distance between a point corresponding to a fourth point on a plane formed by the three points of the second point and the third point, and the fourth point. 2. The flatness measurement method according to 1.
【請求項3】 第1の点、第2の点、第3の点および第
4の点が正方形をなすように配列され、前記第4の点に
対応する点と、第4点との距離の差の1/2が被測定面
の平面度とされることを特徴とする請求項2記載の平面
度測定方法。
3. A first point, a second point, a third point, and a fourth point are arranged so as to form a square, and a distance between a point corresponding to the fourth point and a fourth point. 3. The flatness measuring method according to claim 2, wherein 1/2 of the difference between the two is defined as the flatness of the surface to be measured.
【請求項4】 被測定面までの距離を測定するセンサを
所定配列にて有する測定機構と、前記測定機構を一方向
に移動させる第1駆動機構およびそれと直交する方向に
移動させる第2駆動機構と、前記第1駆動機構および第
2駆動機構を駆動するドライバと、前記ドライバを制御
するとともに前記測定機構からの測定値を演算処理して
被測定面の平面度を測定するコントローラとを備えてな
ることを特徴とする平面度測定装置。
4. A measuring mechanism having a predetermined arrangement of sensors for measuring a distance to a surface to be measured, a first driving mechanism for moving the measuring mechanism in one direction, and a second driving mechanism for moving the measuring mechanism in a direction orthogonal thereto. And a driver for driving the first drive mechanism and the second drive mechanism, and a controller for controlling the driver and calculating the measured value from the measurement mechanism to measure the flatness of the surface to be measured. A flatness measuring device, characterized in that:
【請求項5】 前記センサが正方形を形成するように配
列されてなることを特徴とする請求項4記載の平面度測
定装置。
5. The flatness measuring device according to claim 4, wherein the sensors are arranged so as to form a square.
JP34337899A 1999-12-02 1999-12-02 Flatness measuring method and flatness measuring device Pending JP2001159515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34337899A JP2001159515A (en) 1999-12-02 1999-12-02 Flatness measuring method and flatness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34337899A JP2001159515A (en) 1999-12-02 1999-12-02 Flatness measuring method and flatness measuring device

Publications (1)

Publication Number Publication Date
JP2001159515A true JP2001159515A (en) 2001-06-12

Family

ID=18361059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34337899A Pending JP2001159515A (en) 1999-12-02 1999-12-02 Flatness measuring method and flatness measuring device

Country Status (1)

Country Link
JP (1) JP2001159515A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249842A (en) * 2010-07-30 2010-11-04 Toshiba Corp Rotary shaft connecting joint adjustment support device and rotary shaft connection joint adjustment method
CN102853757A (en) * 2012-09-24 2013-01-02 大连海事大学 Online measurement system and method for plane shape errors
KR101223389B1 (en) * 2011-01-27 2013-01-16 경북대학교 산학협력단 Apparatus for measuring roll error and method for measuring roll error thereof
WO2017133176A1 (en) * 2016-02-02 2017-08-10 意力(广州)电子科技有限公司 Panel flatness tester based on distance sensing
CN107421493A (en) * 2017-09-05 2017-12-01 滁州克莱帝玻璃科技有限公司 A kind of glass partition surface smoothness detection means

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249842A (en) * 2010-07-30 2010-11-04 Toshiba Corp Rotary shaft connecting joint adjustment support device and rotary shaft connection joint adjustment method
KR101223389B1 (en) * 2011-01-27 2013-01-16 경북대학교 산학협력단 Apparatus for measuring roll error and method for measuring roll error thereof
CN102853757A (en) * 2012-09-24 2013-01-02 大连海事大学 Online measurement system and method for plane shape errors
WO2017133176A1 (en) * 2016-02-02 2017-08-10 意力(广州)电子科技有限公司 Panel flatness tester based on distance sensing
CN107421493A (en) * 2017-09-05 2017-12-01 滁州克莱帝玻璃科技有限公司 A kind of glass partition surface smoothness detection means

Similar Documents

Publication Publication Date Title
JP4504818B2 (en) Workpiece inspection method
JP5255012B2 (en) Calibration method of gear measuring device
KR101373001B1 (en) Method for detecting top surface of substrate and scribing apparatus
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JPWO2006077629A1 (en) Positioning device and positioning method
JP2008256462A (en) Image display method of shape data
CN111928776A (en) Multi-sensor-based non-contact online measurement system and method for numerical control machine tool
KR20080111653A (en) 3d measuring apparatus for camera using measurment probe of origin correction
JP2001330430A (en) Method and apparatus for measurement of flatness
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JP2001159515A (en) Flatness measuring method and flatness measuring device
US6351313B1 (en) Device for detecting the position of two bodies
JP2007509332A (en) Method and apparatus for ultrasonic inspection of members with complex surface contours
JP2001157951A (en) Shape accuracy measuring device by sequential two-point method, and method for measuring space between laser displacement meter for measuring shape accuracy by sequential two-point method
CN110666591A (en) Numerical control machine tool straight error identification method based on combined surface type
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JPH0854234A (en) Three-dimensional coordinate position measuring method
US20220381660A1 (en) Systems and methods for error correction for video extensometers
JP2019100899A (en) Laser device and measurement system
JP4533050B2 (en) Surface shape measuring apparatus and surface shape measuring method
JPH04140691A (en) Positioner
JPH10332349A (en) Three-dimensional shape measuring method
JP2572936B2 (en) Shape measuring instruments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091021