JP2511809B2 - Surface shape measuring device - Google Patents

Surface shape measuring device

Info

Publication number
JP2511809B2
JP2511809B2 JP28426094A JP28426094A JP2511809B2 JP 2511809 B2 JP2511809 B2 JP 2511809B2 JP 28426094 A JP28426094 A JP 28426094A JP 28426094 A JP28426094 A JP 28426094A JP 2511809 B2 JP2511809 B2 JP 2511809B2
Authority
JP
Japan
Prior art keywords
optical sensor
measured
moving
movement
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28426094A
Other languages
Japanese (ja)
Other versions
JPH0814822A (en
Inventor
均 高林
敏夫 市川
憲司 松丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP28426094A priority Critical patent/JP2511809B2/en
Publication of JPH0814822A publication Critical patent/JPH0814822A/en
Application granted granted Critical
Publication of JP2511809B2 publication Critical patent/JP2511809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光センサを用いて被測
定物の表面形状(即ち表面の凹凸)を広い面積にわたっ
て、極めて高精度に且つ高速で測定できるようにした表
面形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface profile measuring device which is capable of measuring the surface profile (that is, surface irregularities) of an object to be measured over a wide area with extremely high accuracy and at high speed by using an optical sensor. .

【0002】[0002]

【従来の技術】従来より、非接触式に被測定物の表面形
状(表面の凹凸、即ち、高さの変化)を測定する方法と
して、特開昭51−124944号公報において、光セ
ンサを用いて、光束ビームを被測定物の表面に直交する
X−Y方向に移動させつつ照射し、その反射した光点像
の位置によって測定する方法が提案されている。
2. Description of the Related Art Conventionally, as a non-contact method for measuring the surface shape (surface irregularities, that is, change in height) of an object to be measured, an optical sensor has been used in JP-A-51-124944. Then, a method of irradiating a light beam while moving it in the XY direction orthogonal to the surface of the object to be measured and measuring the position by the reflected light point image has been proposed.

【0003】また、同公報には、この凹凸の高さを測定
する光センサを被測定物の表面の凹凸に合わせて高さ方
向に進退させて光センサの出力を零にし、この光センサ
の進退量を測定して凹凸の量として検出する技術も提案
されている。
Further, in this publication, an optical sensor for measuring the height of this unevenness is advanced and retracted in the height direction in accordance with the unevenness of the surface of the object to be measured so that the output of the optical sensor becomes zero. A technique for measuring the amount of advance / retreat and detecting it as the amount of unevenness has also been proposed.

【0004】また、特開昭50−98864号公報にお
いて、センサが検出する被測定物表面からセンサまでの
高さ信号と、予め記憶された一定値との差が零に近づく
方向にセンサを高さ方向に進退させてセンサの出力を一
定値にし、このセンサの進退量を被測定物表面の凹凸の
量として検出する技術も提案されている。
Further, in Japanese Patent Laid-Open No. 50-98864, the sensor is raised in a direction in which the difference between the height signal from the surface of the object to be measured detected by the sensor and the sensor stored in advance approaches zero. A technique has also been proposed in which the sensor output is made to be a constant value by advancing and retreating in the vertical direction and the amount of advancing and retreating of this sensor is detected as the amount of irregularities on the surface of the object to be measured.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では、センサの出力が零または一定値と
なるように、センサを物品表面の高さ方向に進退させ、
この進退量を物品表面の高さの測定値としているが、被
測定物をX−Yテーブルで移動させながら被測定物表面
の高さに合わせてセンサを進退させつつ連続測定しよう
としても、被測定物の移動が高速な場合や、物品表面の
凹凸の変化が急な場合には、完全に表面の凹凸に一致さ
せて正確な量だけ進退するように制御することは極めて
困難で、被測定物の移動が高速となるほどセンサ進退の
正確な追随が不可能であった。このため、センサの進退
の制御誤差がそのまま測定誤差として表われ、極めて微
小なオーダーで測定したい場合には重大な欠陥となって
いた。このため、この制御誤差を小さくするには、被測
定物の移動速度を充分に遅くするか、あるいは連続測定
の代わりに、被測定物の移動を停止して間欠測定にする
しかなく、微小なオーダーでの高速な連続測定及び高精
度な測定が困難であった。
However, in such a conventional method, the sensor is advanced and retracted in the height direction of the article surface so that the output of the sensor becomes zero or a constant value.
Although this amount of advance / retreat is used as the measurement value of the height of the article surface, even if the sensor is moved forward / backward according to the height of the object surface while moving the object under measurement on the XY table, continuous measurement is performed. When the movement of the object to be measured is fast or when the unevenness of the surface of the article changes suddenly, it is extremely difficult to control it so that it moves exactly back and forth by exactly matching the unevenness of the surface. The faster the movement of an object, the more difficult it was to accurately follow the movement of the sensor. For this reason, the control error of advancing and retracting the sensor is directly expressed as a measurement error, which is a serious defect when it is desired to perform measurement in an extremely minute order. Therefore, in order to reduce this control error, the moving speed of the object to be measured must be sufficiently slowed, or the movement of the object to be measured must be stopped for intermittent measurement instead of continuous measurement. It was difficult to perform high-speed continuous measurement and high-precision measurement on the order.

【0006】本発明は、このような問題点を解決し、微
小なオーダーでの高速な連続測定及び高精度な測定を可
能にした表面形状測定装置を提供することを目的として
いる。
It is an object of the present invention to solve the above problems and to provide a surface profile measuring apparatus capable of high-speed continuous measurement of a minute order and highly accurate measurement.

【0007】[0007]

【課題を解決するための手段】前記問題点を解決するた
めに本発明の表面形状測定装置では被測定物をX方向に
移動させるX方向移動テーブルと、前記X方向移動テー
ブルの移動量を検出するX方向移動量検出器と、被測定
物を前記X方向と直交するY方向に移動させるY方向移
動テーブルと、前記Y方向移動テーブルの移動量を検出
するY方向移動量検出器と、被測定物表面に光ビームを
照射し、その反射光点の位置を検出することによって、
被測定物表面の高さ信号を出力する光センサと、前記光
センサを前記X−Y平面に垂直なZ方向に移動させるZ
方向移動テーブルと、前記Z方向移動テーブルの移動量
を検出するZ方向移動量検出器と、前記光センサからの
ある時点での高さ信号出力値を記憶する記憶装置と、前
記記憶装置に記憶されたこの値と、前記光センサからの
高さ信号とを比較して、両者の差が零に近づく方向に、
前記Z方向移動テーブルを移動させる制御信号を出力す
るZ方向移動制御装置と、前記記憶装置に記憶された値
と前記光センサからの高さ信号との差が零に近づいたと
きの前記光センサからの高さ信号と前記Z方向移動量検
出器からの移動量とを加算した値を表面高さ測定値とし
て出力する加算装置とを備えている。
In order to solve the above-mentioned problems, the surface profile measuring apparatus of the present invention detects an X-direction moving table for moving an object to be measured in the X-direction and a moving amount of the X-direction moving table. An X-direction movement amount detector, a Y-direction movement table that moves an object to be measured in a Y direction orthogonal to the X direction, a Y-direction movement amount detector that detects a movement amount of the Y-direction movement table, By irradiating the light beam on the surface of the object to be measured and detecting the position of the reflected light spot,
An optical sensor that outputs a height signal of the surface of the object to be measured, and Z that moves the optical sensor in the Z direction perpendicular to the XY plane.
A direction movement table, a Z direction movement amount detector for detecting the movement amount of the Z direction movement table, a storage device for storing a height signal output value from the optical sensor at a certain time, and a storage device for storing the height signal output value. Compared this value and the height signal from the optical sensor, in the direction where the difference between the two approaches zero,
A Z-direction movement control device that outputs a control signal for moving the Z-direction movement table, and the optical sensor when the difference between the value stored in the storage device and the height signal from the optical sensor approaches zero. And an adder for outputting a value obtained by adding the movement amount from the Z-direction movement amount detector as a surface height measurement value.

【0008】[0008]

【作用】このようにしたため、本発明の表面形状測定装
置では被測定物をX−Y平面で移動させつつ、光センサ
の高さ信号と記憶装置に記憶されたある時点での値との
差が零に近づくようにZ方向に光センサを移動制御し、
両者の差が零に近づいたときの光センサ出力とZ方向移
動量とを加算する。従って、光センサの追随移動が被測
定物表面の凹凸に完全に一致しない場合でも、その不一
致がZ方向移動量と光センサ出力との加算によって相殺
されることになる。
Thus, in the surface profile measuring apparatus of the present invention, while moving the object to be measured on the XY plane, the difference between the height signal of the optical sensor and the value stored in the storage device at a certain time point. The optical sensor is controlled to move in the Z direction so that
The optical sensor output and the Z-direction movement amount when the difference between the two approaches zero are added. Therefore, even if the follow-up movement of the optical sensor does not completely match the irregularities on the surface of the object to be measured, the mismatch is canceled by the addition of the Z-direction movement amount and the optical sensor output.

【0009】[0009]

【実施例】以下、図面に基づいて本発明の一実施例を説
明する。図1〜図5は本発明の実施例を示している。図
において、1は被測定物Wを据え付ける平板状の基台で
あって、この基台1はX方向移動テーブル2上を水平方
向(X軸方向)にパルスモータ3によって移動可能にな
っており、このX方向移動テーブル2はX方向と直交す
るY方向移動テーブル4上を鉛直方向(Y軸方向)にパ
ルスモータ5によって移動可能になっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 5 show an embodiment of the present invention. In the figure, 1 is a flat plate-like base on which the object to be measured W is installed, and this base 1 can be moved on the X-direction moving table 2 in the horizontal direction (X-axis direction) by a pulse motor 3. The X-direction moving table 2 is movable on a Y-direction moving table 4 orthogonal to the X direction in the vertical direction (Y-axis direction) by a pulse motor 5.

【0010】これらの基台1、X方向移動テーブル2、
Y方向移動テーブル4は鉛直に設定されているため、被
測定物Wは基台1の表面に鉛直状態で据え付けられる。
被測定物を鉛直に据え付けるのは、薄板のように水平に
置くと自重によるたわみ変形が生じて、その支持の方法
により表面形状が微妙に変化する場合があるためであ
る。変形の心配がない被測定物の場合には、基台1、テ
ーブル2、4を水平にすることもできる。
These base 1, X-direction moving table 2,
Since the Y-direction moving table 4 is set vertically, the object to be measured W is vertically installed on the surface of the base 1.
The object to be measured is installed vertically because when it is placed horizontally like a thin plate, it is flexibly deformed by its own weight, and the surface shape may change delicately depending on the method of supporting it. In the case of the object to be measured which is not likely to be deformed, the base 1, the tables 2 and 4 may be horizontal.

【0011】基台1の前方には、光センサ6がZ方向移
動テーブル13上をモータ14によってX−Y平面と直
交するZ軸方向に移動可能に設置されている。光センサ
6は、図2に示すように、指向性の良い光束ビームを発
する光源61と、この光束を絞って被測定物Wの表面に
照射する照射レンズ62と、光軸が照射レンズ62の光
軸からある角度をなして、被測定物Wの表面の光点から
の反射光束を絞って受光素子64の受光面64aに反射
光点の像を結像させる結像レンズ63と、反射光点が被
測定物Wの表面のZ方向(X−Y平面に直交する方向)
の変位によって変化する場合の軌跡に受光面64a(第
4図参照)が一致するように配置され、受光面64aに
おける反射光点の像の位置に応じた二つの信号i1 、i
2を出力する受光素子64と、受光素子64の二つの出
力i1 、i2 から被測定物Wの表面の高さの変化Z1を Z1 =K・(i1 −i2 )/(i1 +i2 ) (但し、Kは定数) として演算する演算器65とによって構成されている。
An optical sensor 6 is installed in front of the base 1 so as to be movable on a Z-direction moving table 13 by a motor 14 in the Z-axis direction orthogonal to the XY plane. As shown in FIG. 2, the optical sensor 6 includes a light source 61 that emits a light beam having a good directivity, an irradiation lens 62 that narrows down this light beam and irradiates the surface of the object to be measured W, and an optical axis of the irradiation lens 62. An image forming lens 63 that forms an image of the reflected light spot on the light receiving surface 64a of the light receiving element 64 by forming an angle with the optical axis to narrow the reflected light flux from the light spot on the surface of the object to be measured W, and the reflected light. Points are in the Z direction on the surface of the object to be measured W (direction orthogonal to the XY plane).
Is arranged so that the light receiving surface 64a (see FIG. 4) coincides with the locus when it changes depending on the displacement of the two signals i 1 , i corresponding to the position of the image of the reflected light spot on the light receiving surface 64a.
From the two outputs i 1 and i 2 of the light receiving element 64 which outputs 2 and the light receiving element 64, the change Z 1 of the height of the surface of the object to be measured W is Z 1 = K · (i 1 −i 2 ) / ( i 1 + i 2 ) (where K is a constant).

【0012】図3に示すように、被測定物Wの表面形状
がZ方向(X−Y平面に直交する方向)に変位すると、
照射レンズ62からの光束が表面で反射され、結像レン
ズ63によって結像される反射光点の像QはZ方向の変
位に対応してZ′方向に変位する。
As shown in FIG. 3, when the surface shape of the object W to be measured is displaced in the Z direction (direction orthogonal to the XY plane),
The light beam from the irradiation lens 62 is reflected on the surface, and the image Q of the reflected light spot imaged by the imaging lens 63 is displaced in the Z'direction corresponding to the displacement in the Z direction.

【0013】このZ′方向の反射光点の像Qの変位を検
出するために、前記したように、受光素子64の受光面
64aはZ′方向に即ち、反射光点の像Qの軌跡に一致
させてある。受光素子64としては、例えば第4図に示
すように、Z′方向の変位を電気信号に変換する一次元
の拡散型PINダイオードが用いられる。
In order to detect the displacement of the image Q of the reflected light spot in the Z'direction, as described above, the light receiving surface 64a of the light receiving element 64 is in the Z'direction, that is, the locus of the image Q of the reflected light spot. Matched. As the light receiving element 64, for example, as shown in FIG. 4, a one-dimensional diffusion type PIN diode for converting the displacement in the Z ′ direction into an electric signal is used.

【0014】なお、図3に示された光センサ6は、被測
定物Wが散乱面である場合の測定に用いられるタイプの
光学系を示したものであり、被測定物Wが鏡面の場合に
は、鏡面反射をするので、照射光束と反射光束が、被測
定物Wの表面の法線に対して対称になるようなタイプの
光センサが用いられる。
The optical sensor 6 shown in FIG. 3 shows an optical system of the type used when the object W to be measured is a scattering surface, and the object W to be measured is a mirror surface. For this, an optical sensor of the type in which the irradiation light flux and the reflected light flux are symmetrical with respect to the normal line of the surface of the object to be measured W is used because of the specular reflection.

【0015】X方向移動テーブル2、Y方向移動テーブ
ル4によるX方向、Y方向の各移動量X、Yは、それぞ
れパルスモータ3、5を駆動するXドライバ8、Yドラ
イバ9の駆動出力を受領するX方向移動量検出器10、
Y方向移動量検出器11によって検出される。
The X-direction and Y-direction movement amounts X and Y by the X-direction movement table 2 and the Y-direction movement table 4 respectively receive the drive outputs of the X driver 8 and the Y driver 9 for driving the pulse motors 3 and 5, respectively. X direction movement amount detector 10,
It is detected by the Y-direction movement amount detector 11.

【0016】Z方向移動テーブル13による光センサ6
のZ方向移動量Zは、周波数安定化されていないHe−
Neレーザを使用した干渉測長器から成るZ方向移動量
検出器15によって行なわれる。信号処理器12は、図
5の如く構成されている。
Optical sensor 6 by Z-direction moving table 13
The Z-direction movement amount Z of He- is not frequency-stabilized He-
This is performed by the Z-direction movement amount detector 15 which is an interferometric length measuring device using a Ne laser. The signal processor 12 is configured as shown in FIG.

【0017】図5において、124は、光センサ6から
のある時点での高さ信号出力値を記憶する記憶装置であ
る。125は、記憶装置124に記憶されたこの値と、
光センサ6からの高さ信号とを比較して、両者の差が零
に近づく方向に、前記Z方向移動テーブル13を移動さ
せる制御信号をZドライバ16へ出力するZ方向移動制
御装置である。
In FIG. 5, reference numeral 124 is a storage device for storing the height signal output value from the optical sensor 6 at a certain time. 125 is the value stored in the storage device 124,
The Z-direction movement control device compares the height signal from the optical sensor 6 and outputs a control signal for moving the Z-direction movement table 13 to the Z driver 16 in a direction in which the difference between the two approaches zero.

【0018】126は、記憶装置124に記憶された値
と光センサ6からの高さ信号との差が零に近づいたとき
の、光センサ6からの高さ信号とZ方向移動量検出器1
5からの移動量とを加算した値を表面高さ測定値として
出力する加算装置である。127はこれらの各動作を制
御する制御装置である。
Reference numeral 126 denotes a height signal from the optical sensor 6 and the Z-direction movement amount detector 1 when the difference between the value stored in the storage device 124 and the height signal from the optical sensor 6 approaches zero.
The addition device outputs a value obtained by adding the movement amount from 5 as a surface height measurement value. A control device 127 controls each of these operations.

【0019】従って、被測定物Wを基台1上に据え付
け、X方向移動テーブル2及びY方向移動テーブル4に
よって、基台1をX−Y平面で移動しつつ、光センサ6
の光源61の光ビームを被測定物Wの表面に照射する。
受光素子64からは信号i1 、i2 が出力され、演算器
65は信号i1 、i2を受領して被測定物Wの表面のZ
方向の高さZ1 を演算する。
Therefore, the object to be measured W is installed on the base 1, and the X-direction moving table 2 and the Y-direction moving table 4 move the base 1 in the XY plane, while the optical sensor 6 is used.
The light beam of the light source 61 is applied to the surface of the object W to be measured.
The signals i 1 and i 2 are output from the light receiving element 64, and the calculator 65 receives the signals i 1 and i 2 and receives the Z of the surface of the object to be measured W.
The height Z 1 in the direction is calculated.

【0020】被測定物WのX−Y方向への移動によって
被測定物Wの表面の高さが変化すると、光センサ6の高
さ信号Z1 は変化しようとするが、常に記憶装置124
の出力(ある時点での記憶された出力値)との差が零に
近づくように、光センサ6の高さZがZ方向移動制御装
置125によって制御される。この結果、光センサ6は
表面の凹凸に追随する方向へZテーブル13によって移
動される(このため、図4の受光素子64の受光面64
aの中心線L0 近傍に常に反射光点の像Qが近づくよう
にされる)。
When the height of the surface of the object to be measured W changes due to the movement of the object to be measured W in the XY directions, the height signal Z 1 of the optical sensor 6 tries to change, but the storage device 124 is always present.
The height Z of the optical sensor 6 is controlled by the Z-direction movement control device 125 so that the difference between the output and the output (stored output value at a certain time point) approaches zero. As a result, the optical sensor 6 is moved by the Z table 13 in the direction following the unevenness of the surface (for this reason, the light receiving surface 64 of the light receiving element 64 in FIG.
The image Q of the reflected light spot is always brought close to the center line L 0 of a).

【0021】この零に近づいた時の光センサ6からの高
さ信号と、Z方向移動量検出器15からのZ方向移動量
とが、加算装置126で加算される。被測定物Wの凹凸
に対する光センサ6のZ方向への追随が完全に一致する
ならば光センサ6のZ方向移動制御量そのものを被測定
物Wの表面の高さを表わす測定値とすることができる
が、実際には、X−Y方向の移動速度が極めて遅いか、
あるいは停止させない限り、被測定物表面の凹凸の変化
に光センサ6の移動量を完全に一致させることは不可能
であり、また被測定物Wの表面の凹凸の変化が急な場合
にも、被測定物表面の凹凸の変化に光センサ6の移動量
を完全に一致させることは不可能である。
The height signal from the optical sensor 6 when approaching zero and the Z-direction movement amount from the Z-direction movement amount detector 15 are added by the adding device 126. If the tracking of the optical sensor 6 in the Z direction with respect to the unevenness of the object W to be measured is completely the same, the Z direction movement control amount of the optical sensor 6 itself is used as the measured value representing the height of the surface of the object W to be measured. However, in reality, is the movement speed in the XY direction extremely slow?
Alternatively, unless stopped, it is impossible to perfectly match the movement amount of the optical sensor 6 with the change in the unevenness of the surface of the object to be measured, and also when the unevenness of the surface of the object to be measured W changes suddenly, It is impossible to perfectly match the movement amount of the optical sensor 6 with the change in the unevenness of the surface of the object to be measured.

【0022】しかるに、この凹凸に対するZ方向の追随
の誤差分だけ、光センサ6の高さ信号は偏位し、同一量
だけZ方向移動量検出器15の出力は光センサ6の偏位
と逆向きに偏位しているから、両者の加算装置126に
よる加算によって、追随誤差は相殺される。この結果、
被測定物の表面の凹凸に対する光センサ6のZ方向への
追随が不完全でも常に極めて高精度に測定でき、また、
このように加算で補うからX−Yテーブルを高速に動か
しながらの高精度の測定が可能となる。
However, the height signal of the optical sensor 6 is deviated by an error in the Z direction following the unevenness, and the output of the Z direction movement amount detector 15 is opposite to the deviation of the optical sensor 6 by the same amount. Since they are deviated in the direction, the tracking error is canceled by the addition of both adding devices 126. As a result,
Even if the optical sensor 6 does not follow the unevenness of the surface of the object to be measured in the Z direction, the measurement can always be performed with extremely high accuracy.
In this way, since compensation is performed by addition, it is possible to perform highly accurate measurement while moving the XY table at high speed.

【0023】しかも、光センサ6は被測定物Wの表面の
凹凸に追随してZ方向に移動して、光センサ6の記憶装
置124に記憶されたある時点での出力との差が零に近
づくようにされているので、被測定物Wの表面の凹凸の
変化量が大きくても、常にPINダイオードの中心線L
0 近くへ光像を近づけるように制御しているから、測定
範囲からはみだすことがなく、常に高精度の測定がなさ
れる。なお、被測定物を基台1に固定した場合、その鉛
直固定位置から、ずれる場合がある。
Moreover, the optical sensor 6 moves in the Z direction following the irregularities on the surface of the object to be measured W, and the difference from the output at a certain time stored in the storage device 124 of the optical sensor 6 becomes zero. Since the distance to the measured object W is large, the center line L of the PIN diode is always maintained even if the amount of change in the unevenness of the surface of the object to be measured W is large.
Since the light image is controlled so as to be close to 0, it does not stick out of the measurement range, and high-precision measurement is always performed. When the object to be measured is fixed to the base 1, it may deviate from the vertically fixed position.

【0024】このため、信号処理器12で被測定物Wの
表面の三点のZ方向の高さを光センサ6の出力によって
記憶し、この三点のZ方向の高さが等しい値となるよう
に被測定物Wを仮想的に置き変えた場合の、他の任意の
点のZ方向高さを出力するように構成すれば、被測定物
の固定のしかたに依存せず形状を求めることができる。
なお、Z方向の高さからZ方向の等高線の位置を出力す
るように構成することもできる。
Therefore, the signal processor 12 stores the heights of the three points on the surface of the object W to be measured in the Z direction by the output of the optical sensor 6, and the three points have the same height in the Z direction. When the object W is virtually replaced as described above, if the height of the other arbitrary point in the Z direction is output, the shape can be obtained without depending on the fixing method of the object. You can
It is also possible to output the position of the contour line in the Z direction from the height in the Z direction.

【0025】[0025]

【発明の効果】以上説明したように本発明では、被測定
物の表面の凹凸に追随するように光センサ6をZ方向に
移動させながら光センサ6の出力と記憶装置に記憶され
たある時点での値との差が零に近づくように光センサ6
を進退させて、凹凸の変化が大きくても測定範囲からは
みださないようにすると共に、両者の差が零に近づいた
ときの光センサ6の出力とZ方向移動量を加算して追随
誤差を相殺した値を表面高さ測定値としているため、被
測定物表面の凹凸に対して光センサ6の追随が完全に一
致しなくても高精度の測定が可能であり、しかも、Z方
向への追随が完全に一致しないうちに測定できるので、
極めて高速の連続測定が可能となる。
As described above, according to the present invention, while the optical sensor 6 is moved in the Z direction so as to follow the unevenness of the surface of the object to be measured, the output of the optical sensor 6 and a certain time point stored in the storage device. The optical sensor 6 so that the difference from the value at
To move out of the measurement range even if there is a large change in the unevenness, and to follow the output of the optical sensor 6 and the Z-direction movement amount when the difference between the two approaches zero. Since the surface height measurement value is a value obtained by canceling out the error, high-precision measurement is possible even if the follow-up of the optical sensor 6 does not completely match the unevenness of the surface of the object to be measured, and moreover, the Z direction. Since it can be measured before the following to the perfect match,
It enables extremely high speed continuous measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の表面形状測定装置の機構部
を示す斜視図
FIG. 1 is a perspective view showing a mechanical portion of a surface profile measuring apparatus according to an embodiment of the present invention.

【図2】図1における回路部のブロック図FIG. 2 is a block diagram of a circuit unit in FIG.

【図3】光センサによる測定原理を示す図FIG. 3 is a diagram showing the principle of measurement by an optical sensor.

【図4】受光素子の一例を示す説明図FIG. 4 is an explanatory diagram showing an example of a light receiving element.

【図5】図2の信号処理器の具体的構成を示すブロック
5 is a block diagram showing a specific configuration of the signal processor of FIG.

【符号の説明】[Explanation of symbols]

W 被測定物 1 基台 2 X方向移動テーブル 4 Y方向移動テーブル 6 光センサ 10 X方向移動量検出器 11 Y方向移動量検出器 12 信号処理器 13 Z方向移動テーブル 15 Z方向移動量検出器 124 記憶装置 W DUT 1 Base 2 X-direction movement table 4 Y-direction movement table 6 Optical sensor 10 X-direction movement amount detector 11 Y-direction movement amount detector 12 Signal processor 13 Z-direction movement table 15 Z-direction movement amount detector 124 storage device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−124944(JP,A) 特開 昭50−98864(JP,A) 特開 昭50−1766(JP,A) 特開 昭56−125608(JP,A) 特開 昭50−103366(JP,A) 実開 昭51−57667(JP,U) 特公 平1−23041(JP,B2) 特公 平7−26824(JP,B2) 特公 昭57−52522(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-51-124944 (JP, A) JP-A-50-98864 (JP, A) JP-A-50-1766 (JP, A) JP-A-56- 125608 (JP, A) JP 50-103366 (JP, A) Actually developed 51-57667 (JP, U) JP-B 1-23041 (JP, B2) JP-B 7-26824 (JP, B2) Japanese Patent Publication Sho-57-52222 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物をX方向に移動させるX方向移動
テーブルと、 前記X方向移動テーブルの移動量を検出するX方向移動
量検出器と、 被測定物を前記X方向と直交するY方向に移動させるY
方向移動テーブルと、 前記Y方向移動テーブルの移動量を検出するY方向移動
量検出器と、 被測定物表面に光ビームを照射し、その反射光点の位置
を検出することによって、被測定物表面の高さ信号を出
力する光センサと、 前記光センサを前記X−Y平面に垂直なZ方向に移動さ
せるZ方向移動テーブルと、 前記Z方向移動テーブルの移動量を検出するZ方向移動
量検出器と、 前記光センサからのある時点での高さ信号出力値を記憶
する記憶装置と、 前記記憶装置に記憶されたこの値と、前記光センサから
の高さ信号とを比較して、両者の差が零に近づく方向
に、前記Z方向移動テーブルを移動させる制御信号を出
力するZ方向移動制御装置と、 前記記憶装置に記憶された値と前記光センサからの高さ
信号との差が零に近づいたときの前記光センサからの高
さ信号と前記Z方向移動量検出器からの移動量とを加算
した値を表面高さ測定値として出力する加算装置とを備
えた表面形状測定装置。
1. An X-direction movement table for moving an object to be measured in the X-direction, an X-direction movement amount detector for detecting an amount of movement of the X-direction movement table, and a Y-direction orthogonal to the X-direction. Y to move in the direction
Direction moving table, Y direction moving amount detector for detecting the moving amount of the Y direction moving table, and the object to be measured by irradiating the surface of the object to be measured with a light beam and detecting the position of its reflected light point. An optical sensor that outputs a surface height signal, a Z-direction moving table that moves the optical sensor in the Z direction perpendicular to the XY plane, and a Z-direction moving amount that detects a moving amount of the Z-direction moving table. A detector, a storage device that stores a height signal output value at a certain time from the optical sensor, and this value stored in the storage device, and a height signal from the optical sensor are compared, A Z-direction movement control device that outputs a control signal for moving the Z-direction movement table in a direction in which the difference between the two approaches zero, and the difference between the value stored in the storage device and the height signal from the optical sensor. Before when approaches zero A surface shape measuring device comprising: an addition device that outputs a value obtained by adding the height signal from the photo sensor and the movement amount from the Z direction movement amount detector as a surface height measurement value.
JP28426094A 1994-10-25 1994-10-25 Surface shape measuring device Expired - Lifetime JP2511809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28426094A JP2511809B2 (en) 1994-10-25 1994-10-25 Surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28426094A JP2511809B2 (en) 1994-10-25 1994-10-25 Surface shape measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63246450A Division JPH0726824B2 (en) 1988-09-30 1988-09-30 Surface shape measuring device

Publications (2)

Publication Number Publication Date
JPH0814822A JPH0814822A (en) 1996-01-19
JP2511809B2 true JP2511809B2 (en) 1996-07-03

Family

ID=17676228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28426094A Expired - Lifetime JP2511809B2 (en) 1994-10-25 1994-10-25 Surface shape measuring device

Country Status (1)

Country Link
JP (1) JP2511809B2 (en)

Also Published As

Publication number Publication date
JPH0814822A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
US5467289A (en) Method of and an apparatus for measuring surface contour
CN109141223A (en) A kind of efficiently accurate calibration method of the laser interferometer light path based on PSD
JPH0516954B2 (en)
JP3678915B2 (en) Non-contact 3D measuring device
JP3000819B2 (en) Three-dimensional measurement probe and shape measurement method
JPS5916202B2 (en) Measuring and positioning device using interference fringes
JPH10170243A (en) Method and device for measuring shape
US4589746A (en) Dual-axis, single mirror interferometer measuring system
CN112781529B (en) Straightness interference measuring device insensitive to incident angle
EP0208276A1 (en) Optical measuring device
JP3373367B2 (en) Three-dimensional measuring device and three-dimensional measuring method
JPS62254002A (en) Position measuring and determining device
JPH0123041B2 (en)
JP2001317933A (en) Shape-measuring apparatus
JP2511809B2 (en) Surface shape measuring device
JP3817962B2 (en) Shape measuring method and apparatus
GB2170005A (en) Interferometric multicoordinate measuring device
JPS6320638B2 (en)
JPH0769151B2 (en) Surface shape measuring device
JPH11190616A (en) Surface shape measuring device
JPH0726824B2 (en) Surface shape measuring device
JP3046635B2 (en) Ultra-high-precision CMM
KR100580961B1 (en) A non-contact apparatus and method for measuring a reflect surface form
JPH0216965B2 (en)
Li et al. Error analysis and improvements for using parallel-shift method to test a galvanometer-based laser scanning system