JPH0914921A - Non-contact three-dimensional measuring instrument - Google Patents

Non-contact three-dimensional measuring instrument

Info

Publication number
JPH0914921A
JPH0914921A JP7184800A JP18480095A JPH0914921A JP H0914921 A JPH0914921 A JP H0914921A JP 7184800 A JP7184800 A JP 7184800A JP 18480095 A JP18480095 A JP 18480095A JP H0914921 A JPH0914921 A JP H0914921A
Authority
JP
Japan
Prior art keywords
telescope
contact
measurement
design
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7184800A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
昌弘 中村
Kyoji Nakamura
協司 中村
Naoaki Hamada
直明 濱田
Masaru Horikoshi
勝 堀越
Mitsutaka Kurita
充隆 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7184800A priority Critical patent/JPH0914921A/en
Publication of JPH0914921A publication Critical patent/JPH0914921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE: To provide a non-contact three-dimensional measuring instrument capable of improving automatic collimation accuracy while suppressing cost. CONSTITUTION: A total station 1 is driven on the basis of the design data of a measurement target 13, a telescope of the total station 1 is directed toward the design point of the measurement target 13, and the amount of deviation between the position of the telescope directed toward the design point of the measurement target 13 and the center position of a measurement target 16 mounted on the measurement target 13 is measured, thus automatically performing collimation without adopting any automatic searching means and automatic tracking means and hence suppressing the cost and at the same time, improving automatic collimation accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は非接触三次元測定装置
に関し、特にセオドライトやトータルステーション等の
測量機を利用して工業的量産品の三次元測定を行う非接
触三次元測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact three-dimensional measuring device, and more particularly to a non-contact three-dimensional measuring device for three-dimensionally measuring industrial mass-produced products by using a surveying instrument such as a theodolite or a total station.

【0002】[0002]

【従来の技術】従来の三次元測定装置としては、テーブ
ル上の測定対象物に対してプローブを接触させ、測定対
象物の三次元測定を行うものがある。
2. Description of the Related Art As a conventional three-dimensional measuring apparatus, there is one which makes a three-dimensional measurement of a measuring object by bringing a probe into contact with the measuring object on a table.

【0003】この三次元測定装置では、測定可能な対象
物がテーブル上に載せられるものに限られてしまう。
In this three-dimensional measuring apparatus, measurable objects are limited to those placed on a table.

【0004】これに対し、近年、トータルステーション
等の測量機を利用して、橋梁や航空機等の大型構造物の
三次元測定が行われている。
On the other hand, in recent years, a three-dimensional measurement of a large structure such as a bridge or an aircraft has been performed using a surveying instrument such as a total station.

【0005】ところが、測量機による三次元測定の場
合、作業者自身が測定点を視準する必要があり、測定点
が多いと作業者の負担が著しく大きくなるので、測量機
に例えば測定点の捜索、追尾等の機能を持たせ、視準作
業の自動化が行われている。すなわち、作業者の目視に
よる視準の代わりに、測量機による自動視準を行うため
に、望遠鏡の視野内に測定点が存在しないとき測定点を
発見するまで測量機を駆動する捜索や、望遠鏡の視野内
に測定点が存在するとき測定点の動きに合わせて測量機
を駆動する追尾などの機能を測量機に持たせた。
However, in the case of three-dimensional measurement by a surveying instrument, it is necessary for the operator to collimate the measuring point himself, and if there are many measuring points, the burden on the operator will be significantly increased. It has functions such as searching and tracking, and the collimation work is automated. In other words, in order to perform automatic collimation by the surveying instrument instead of collimation by the operator's visual inspection, when there is no measuring point in the field of view of the telescope, the search or telescope that drives the surveying instrument until the measuring point is found The surveying instrument has functions such as tracking to drive the surveying instrument according to the movement of the measuring point when the measuring point exists in the field of view.

【0006】[0006]

【発明が解決しようとする課題】ところが、測定点の捜
索や追尾による自動視準では、視準精度が5″以上であ
り、三次元測定には精度が足りない。
However, in the automatic collimation by the search or tracking of the measurement point, the collimation precision is 5 ″ or more, and the precision is insufficient for the three-dimensional measurement.

【0007】画像処理を用いて自動視準を行うと視準精
度が1″程度に向上するが、測定点の捜索のために広視
野にすると撮像素子の分解能が相対的に悪化し、追尾の
ために高速性能を優先すれば演算処理が十分に行えなく
なる。これらの問題は高級な撮像素子、演算素子を使用
することにより解決できるが、非常にコストが高くなる
という問題があった。
When the automatic collimation is performed by using image processing, the collimation accuracy is improved to about 1 ″, but when a wide field of view is used to search for a measurement point, the resolution of the image pickup element is relatively deteriorated, and the tracking performance is reduced. Therefore, if high-speed performance is prioritized, calculation processing cannot be performed sufficiently.These problems can be solved by using a high-grade image pickup element and calculation element, but there is a problem that the cost becomes very high.

【0008】この発明はこのような事情に鑑みてなされ
たもので、その課題はコストを抑えつつ自動視準精度を
向上させることができる非接触三次元測定装置を提供す
ることである。
The present invention has been made in view of such circumstances, and an object thereof is to provide a non-contact three-dimensional measuring apparatus capable of improving automatic collimation accuracy while suppressing cost.

【0009】[0009]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明の非接触三次元測定装置は、望遠
鏡を備え、少なくとも測角が可能な測量機を備えた非接
触三次元測定装置において、測定対象物の複数の設計点
からなる設計データを格納する設計データ記憶手段と、
前記設計データ記憶手段から読み出された前記設計デー
タに基づいて前記測量機を駆動させ、前記望遠鏡を前記
測定対象物の前記設計点へ向ける駆動手段と、前記測定
対象物の設計点に向いた前記望遠鏡の位置と前記測定対
象物に取り付けられたターゲットの中心位置とのずれ量
を測定する誤差検出手段とを備えている。
In order to solve the above-mentioned problems, a non-contact three-dimensional measuring apparatus according to a first aspect of the present invention is provided with a telescope and at least a non-contact three-dimensional measuring instrument equipped with a surveying instrument capable of measuring angles. In the measuring device, a design data storage means for storing design data composed of a plurality of design points of the measurement object,
Driving the surveying instrument based on the design data read out from the design data storage means, and driving means for directing the telescope to the design point of the measurement object, and to the design point of the measurement object An error detection unit is provided for measuring the amount of deviation between the position of the telescope and the center position of the target attached to the measurement object.

【0010】請求項2記載の発明の非接触三次元測定装
置は、前記望遠鏡の位置は前記望遠鏡の視野における基
準線の中心位置である。
In the non-contact three-dimensional measuring apparatus according to the second aspect of the invention, the position of the telescope is the center position of the reference line in the field of view of the telescope.

【0011】[0011]

【作用】測定対象物の設計データに基づいて測量機を駆
動させ、測量機の望遠鏡を測定対象物の設計点へ向け、
測定対象物の設計点に向いた望遠鏡の位置と測定対象物
に取り付けられたターゲットの中心位置とのずれ量を測
定するようにしたので、自動捜索手段や自動追尾手段を
採用せずに自動視準を行うことができ、コストを抑えつ
つ自動視準精度を向上させることができる。
[Operation] The surveying instrument is driven based on the design data of the measurement object, and the telescope of the surveying instrument is directed to the design point of the measurement object.
Since the amount of deviation between the position of the telescope facing the design point of the measurement target and the center position of the target attached to the measurement target is measured, it is possible to perform automatic vision without adopting automatic search means or automatic tracking means. The collimation can be performed, and the automatic collimation accuracy can be improved while suppressing the cost.

【0012】[0012]

【実施例】以下この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1はこの発明の一実施例に係る非接触三
次元測定装置を示す斜視図、図2は図1の非接触三次元
測定装置を示すブロック図である。
FIG. 1 is a perspective view showing a non-contact three-dimensional measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the non-contact three-dimensional measuring apparatus of FIG.

【0014】この実施例の非接触三次元測定装置は、図
1に示すように、トータルステーション(測量機)1、
制御・操作用のパーソナルコンピュータ(誤差検出手
段)12及びCADシステム(設計データ記憶手段)3
で構成されてる。
As shown in FIG. 1, the non-contact three-dimensional measuring apparatus of this embodiment has a total station (surveyor) 1,
Control / operation personal computer (error detection means) 12 and CAD system (design data storage means) 3
It consists of

【0015】前記トータルステーション1は、図2に示
すように、測距部4、画像取り込み部5、画像処理部
(誤差検出手段)6、測角部(水平角)7、測角部(垂
直角)8、CNC駆動部(駆動手段)9、自動焦点部2
0及びこれらを制御するCPU10で構成されている。
画像取り込み部5は、図示しない望遠鏡とCCDカメラ
とを備えている。
As shown in FIG. 2, the total station 1 includes a distance measuring unit 4, an image capturing unit 5, an image processing unit (error detecting means) 6, an angle measuring unit (horizontal angle) 7, an angle measuring unit (vertical angle). ) 8, CNC driving unit (driving means) 9, automatic focusing unit 2
0 and a CPU 10 that controls them.
The image capturing section 5 includes a telescope (not shown) and a CCD camera.

【0016】この望遠鏡には、望遠鏡の光軸方向に移動
する合焦レンズを備えている。そして、上記自動焦点部
20は、この合焦レンズを望遠鏡の光軸方向に移動させ
てピント合わせを行なう。
This telescope is provided with a focusing lens that moves in the optical axis direction of the telescope. Then, the autofocus unit 20 moves the focusing lens in the optical axis direction of the telescope to perform focusing.

【0017】前記CADシステム3には、測定対象物
(例えば橋梁ブロック)13の複数の設計点からなる設
計データが格納されている。測定対象物13の一端面に
は、測定座標系を決めるための基準ターゲット15が貼
着されているとともに、トータルステーション1の前方
に設置された測定対象物13の例えばボルト孔の位置が
設計点(設計データ上のボルト孔の位置)からどれだけ
ずれているかを検出するための測定ターゲット(ターゲ
ット)16が貼着されている。
The CAD system 3 stores design data composed of a plurality of design points of a measurement object (for example, a bridge block) 13. A reference target 15 for determining the measurement coordinate system is attached to one end surface of the measurement object 13, and the position of, for example, a bolt hole of the measurement object 13 installed in front of the total station 1 is a design point ( A measurement target (target) 16 for detecting how much it deviates from the position of the bolt hole on the design data) is attached.

【0018】前記制御・操作用のパーソナルコンピュー
タ12は手動視準と自動視準との切り換えを行うための
ものである。
The control / operation personal computer 12 is for switching between manual collimation and automatic collimation.

【0019】前記画像処理部6は、CCDカメラからの
映像信号に基づいて望遠鏡の基準線中心(望遠鏡の十字
線の交点)の座標を計算し(望遠鏡中心検出)、望遠鏡
を測定対象物13の設計点へ向けて測定ターゲット16
を視野内に捕らえたとき、測定ターゲット像を含む映像
信号に基づいて測定ターゲット16の中心の座標を算出
し、設計点と測定ターゲット16の中心とのずれ量を検
出する。
The image processing unit 6 calculates the coordinates of the center of the reference line of the telescope (intersection of the crosshairs of the telescope) based on the video signal from the CCD camera (detection of the center of the telescope), and the telescope is set to the object 13 to be measured. Measurement target 16 toward the design point
When the image is captured within the field of view, the coordinates of the center of the measurement target 16 are calculated based on the video signal including the measurement target image, and the deviation amount between the design point and the center of the measurement target 16 is detected.

【0020】前記望遠鏡中心検出は次のように行われ
る。望遠鏡の基準線を含む画像の映像信号を平滑化して
ノイズの除去などを前処理として行い、この映像信号に
二値化処理を施して二値画像の映像とし、画面中央を含
む約4分の1余りの範囲を処理範囲として指定し、約4
分の1画面の二値画像にエッジ強調などの処理を施すと
ともに、細線化を行って望遠鏡の基準線の映像を明確化
し、このように処理した映像信号から直線の検出を行っ
て水平方向の直線と垂直方向の直線との交点の座標を算
出し、この交点座標を望遠鏡中心の座標とする。
The detection of the center of the telescope is performed as follows. The video signal of the image including the reference line of the telescope is smoothed and noise is removed as pre-processing, and the video signal is binarized to form a binary image. Specify the remaining range of 1 as the processing range, and
While processing such as edge enhancement is applied to the binary image of one-half screen, the image of the reference line of the telescope is clarified by thinning, and the straight line is detected from the image signal thus processed to detect the horizontal direction. The coordinates of the intersection of the straight line and the vertical straight line are calculated, and the coordinates of this intersection are set as the coordinates of the center of the telescope.

【0021】前記測定ターゲット16の中心の座標の検
出は次のように行われる。測定ターゲット像を含む映像
信号を画像強調などの前処理を施し、その後映像信号を
二値化し、二値化した映像信号から孤立点などを除去す
る画像処理を施し、連続点は各グループ毎にラベリング
を施すことにより映像を特定して測定ターゲットの画像
範囲を定めることによりターゲット領域を特定し、この
ターゲット領域について、再度、CCDカメラからの映
像信号を二値化し、孤立点の除去などの画像処理を施
し、細線化を行ってターゲット領域の二値画像からター
ゲットパターンの直線を検出し、この2本の直線のター
ゲット中心の座標を検出する。
The detection of the coordinates of the center of the measurement target 16 is performed as follows. Preprocessing such as image enhancement is applied to the video signal including the measurement target image, then the video signal is binarized, and image processing is performed to remove isolated points from the binarized video signal. The image is specified by labeling and the target area is specified by defining the image range of the measurement target. For this target area, the image signal from the CCD camera is binarized again, and the image of the removal of isolated points etc. By performing processing and thinning, the straight lines of the target pattern are detected from the binary image of the target area, and the coordinates of the target center of these two straight lines are detected.

【0022】図3はこの実施例の非接触三次元測定装置
の使用手順を説明するためのフローチャートである。
FIG. 3 is a flow chart for explaining the procedure of using the non-contact three-dimensional measuring apparatus of this embodiment.

【0023】まず、トータルステーション1を設置する
(S100)。
First, the total station 1 is installed (S100).

【0024】次に、2つの既知点にそれぞれ設置された
既知点ターゲット11,12を測定する(S101)。
Next, the known point targets 11 and 12 installed at the two known points are measured (S101).

【0025】そして、測量の分野で行われる後方交会法
でトータルステーション1の器械点(測量機の回転中
心)を決定する(S102)。
Then, the machine point of the total station 1 (center of rotation of the surveying instrument) is determined by the backward intersection method performed in the field of surveying (S102).

【0026】次に、測定対象物13を床面に描いたライ
ン14に合わせて設置し、位置決めする(S103)。
ライン14の幅を例えば10mmにしておき、この幅を設
置誤差の許容範囲とすればガイドになる。ライン14と
既知点ターゲット11,12との位置関係は既知であ
る。
Next, the measuring object 13 is installed and positioned in accordance with the line 14 drawn on the floor surface (S103).
If the width of the line 14 is set to, for example, 10 mm, and this width is set within the allowable range of installation error, it serves as a guide. The positional relationship between the line 14 and the known point targets 11 and 12 is known.

【0027】その後、測定対象物13の一端面の3箇所
に貼着された基準点ターゲット15を視準する(S10
4)。ここでの視準作業は手動で行ってもよいし、画像
処理による自動視準によって行ってもよい。予め測定対
象物13の大まかな位置合わせを行っているので、設置
誤差10mmと製造誤差15mmとを合わせても30mm程度
には収まるため測定対象物13から10m離れた距離で
角度換算したときに10′くらいになり、画像検出の画
角がこれより大きければ(例えば1゜)画像処理ができ
るので大掛かりな捜索は必要ない。
After that, the reference point targets 15 attached to three points on the one end surface of the measuring object 13 are collimated (S10).
4). The collimation work here may be performed manually or may be performed by automatic collimation by image processing. Since the measurement object 13 is roughly aligned in advance, even if the installation error of 10 mm and the manufacturing error of 15 mm are combined, the error is within about 30 mm. Therefore, when the angle is converted at a distance of 10 m from the measurement object 13, 10 is obtained. If the angle of view for image detection is larger than this (for example, 1 °), image processing can be performed, and thus a large-scale search is not required.

【0028】次に、測定座標系を決定する(S10
5)。基準点ターゲット15の3点から1つの原点Oと
1軸を含む1平面が決まり、この平面内に直交する他の
1軸、更にこの平面に直交する1軸で測定座標系が決定
される。
Next, the measurement coordinate system is determined (S10).
5). One plane including one origin O and one axis is determined from the three points of the reference point target 15, and the measurement coordinate system is determined by another one axis orthogonal to this plane and one axis orthogonal to this plane.

【0029】そして、トータルステーション1の望遠鏡
の位置(望遠鏡の視野における基準線の中心位置)を、
CADシステム3から読み出された設計データに基づい
て、測定対象物13の一端面の複数の設計点へ向ける。
前述のように測定対象物13のボルト孔には測定点ター
ゲット16が貼着されているので、測定対象物13の設
計点にトータルステーション1の望遠鏡を向けたとき、
その視野内に測定点ターゲット16が入る。この時、測
量機の器械点と測定対象物13の設計点との間の距離は
測量機の器械点と設計データとに基づき、合焦データと
して求められる。すなわち、ステップ102で決定され
た測量機の器械点により、測定対象物との位置関係が分
かるので、測量機の器械点から設計点までの距離(合焦
データ)を演算によって算出することができる。そし
て、この合焦データを、CADシステム3から読み出さ
れる設計データに対応させて自動焦点部20に記憶させ
ておく。従って、望遠鏡の中心が測定対象物13の設計
点に向いた時に、その設計点の設計データと合焦データ
とに基づいて、自動焦点部20を動作させ、ピント合わ
せを行う。また、トータルステーション1には、測距部
4を備えているので、望遠鏡の中心が測定対象物13の
設計点に向いた時に、CPU10が測距部10に測距を
行わせるように制御し、その測距データに基づいて自動
焦点部20を動作させて、ピントを合わせることもでき
る。その視野が画像取り込み部5のCCDカメラで取り
込まれる(S106)。
Then, the position of the telescope of the total station 1 (the center position of the reference line in the field of view of the telescope) is
Based on the design data read from the CAD system 3, the measurement object 13 is directed to a plurality of design points on one end surface.
As described above, since the measurement point target 16 is attached to the bolt hole of the measurement object 13, when the telescope of the total station 1 is aimed at the design point of the measurement object 13,
The measurement point target 16 enters the field of view. At this time, the distance between the instrument point of the surveying instrument and the design point of the measuring object 13 is obtained as focusing data based on the instrument point of the surveying instrument and the design data. That is, since the positional relationship with the measurement object is known from the instrument point of the surveying instrument determined in step 102, the distance (focusing data) from the instrument point of the surveying instrument to the design point can be calculated. . Then, this focusing data is stored in the automatic focusing unit 20 in association with the design data read from the CAD system 3. Therefore, when the center of the telescope faces the design point of the measuring object 13, the automatic focusing unit 20 is operated based on the design data and the focus data of the design point to perform focusing. Further, since the total station 1 is provided with the distance measuring unit 4, when the center of the telescope faces the design point of the measuring object 13, the CPU 10 controls the distance measuring unit 10 to perform distance measurement, It is also possible to operate the automatic focusing section 20 based on the distance measurement data to focus. The field of view is captured by the CCD camera of the image capturing unit 5 (S106).

【0030】その後、測定対象物13の設計点に向いた
望遠鏡の位置と測定対象物13のボルト孔に取り付けら
れた測定点ターゲット16の中心位置とのずれ量を算出
する(S107)。器械点の座標と測定点ターゲット1
6の中心の座標とにより映像信号による画像上のずれ量
が画像処理部6で算出される。複数の設計点の全てにつ
いて測定が完了したら、ステップ104に戻り、他の測
定対象物13について同様の測定を繰り返す。
Then, the amount of deviation between the position of the telescope facing the design point of the measuring object 13 and the central position of the measuring point target 16 attached to the bolt hole of the measuring object 13 is calculated (S107). Coordinates of instrument points and measurement point target 1
The image processing unit 6 calculates the amount of deviation on the image due to the video signal based on the coordinates of the center of the image signal 6. When the measurement is completed for all of the plurality of design points, the process returns to step 104 and the same measurement is repeated for the other measurement object 13.

【0031】この実施例の非接触三次元測定装置によれ
ば、自動捜索手段や自動追尾手段を採用せずに自動視準
を行うことができるので、コストを抑えつつ自動視準精
度を向上させることができる。
According to the non-contact three-dimensional measuring apparatus of this embodiment, automatic collimation can be performed without employing automatic search means or automatic tracking means, so that automatic collimation accuracy is improved while suppressing cost. be able to.

【0032】なお、測定対象物13によっては大まかな
位置合わせもできない場合もあるが、この場合は基準タ
ーゲット15を手動で視準すれば自動計測を行うことが
できる。この場合トータルステーション1は任意の位置
に設置すればよく、測定対象物13の基準ターゲット1
5を手動で視準するだけでよいので、1回だけ測定する
場合などには適している。
In some cases, rough alignment may not be possible depending on the measurement target 13, but in this case, automatic measurement can be performed by manually collimating the reference target 15. In this case, the total station 1 may be installed at an arbitrary position, and the reference target 1 of the measuring object 13
Since it suffices to collimate 5 manually, it is suitable when measuring only once.

【0033】また、前述の実施例の変形例として、制御
・操作用のパーソナルコンピュータ2はトータルステー
ション1と一体にしてもよいし、CADシステム3の設
計データだけをパーソナルコンピュータ2又はトータル
ステーション1の記憶部に格納させるようにしてもよ
い。
As a modification of the above-described embodiment, the control / operation personal computer 2 may be integrated with the total station 1, or only the design data of the CAD system 3 may be stored in the personal computer 2 or the storage unit of the total station 1. You may make it store it in.

【0034】[0034]

【発明の効果】以上説明したようにこの発明の非接触三
次元測定装置によれば、自動捜索手段や自動追尾手段を
採用せずに自動視準を行うことができるので、コストを
抑えつつ自動視準精度を向上させることができる。
As described above, according to the non-contact three-dimensional measuring apparatus of the present invention, the automatic collimation can be performed without adopting the automatic search means or the automatic tracking means. The collimation accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の一実施例に係る非接触三次元
測定装置を示す斜視図である。
FIG. 1 is a perspective view showing a non-contact three-dimensional measuring apparatus according to an embodiment of the present invention.

【図2】図2は図1の非接触三次元測定装置を示すブロ
ック図である。
FIG. 2 is a block diagram showing the non-contact three-dimensional measuring apparatus of FIG.

【図3】図3はこの実施例の非接触三次元測定装置の使
用手順を説明するためのフローチャートである。
FIG. 3 is a flow chart for explaining a procedure of using the non-contact three-dimensional measuring apparatus of this embodiment.

【符号の説明】[Explanation of symbols]

1 トータルステーション 2 制御・操作用のパーソナルコンピュータ 3 CADシステム 9 CNC駆動部 13 測定対象物 16 測定点ターゲット 1 Total Station 2 Personal Computer for Control / Operation 3 CAD System 9 CNC Drive Unit 13 Measurement Target 16 Measurement Point Target

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀越 勝 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 栗田 充隆 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masaru Horikoshi 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Nikon (72) Inventor Mitsutaka Kurita 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Company Nikon

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 望遠鏡を備え、少なくとも測角が可能な
測量機を備えた非接触三次元測定装置において、 測定対象物の複数の設計点からなる設計データを格納す
る設計データ記憶手段と、 前記設計データ記憶手段から読み出された前記設計デー
タに基づいて前記測量機を駆動させ、前記望遠鏡を前記
測定対象物の前記設計点へ向ける駆動手段と、 前記測定対象物の設計点に向いた前記望遠鏡の位置と前
記測定対象物に取り付けられたターゲットの中心位置と
のずれ量を測定する誤差検出手段とを備えていることを
特徴とする非接触三次元測定装置。
1. A non-contact three-dimensional measuring device comprising a telescope and at least a surveying instrument capable of measuring angles, design data storage means for storing design data comprising a plurality of design points of an object to be measured, Driving means for driving the surveying instrument on the basis of the design data read from the design data storage means, driving means for directing the telescope to the design point of the measurement object, and the direction toward the design point of the measurement object A non-contact three-dimensional measuring apparatus comprising: an error detecting unit that measures a deviation amount between a position of a telescope and a center position of a target attached to the measurement object.
【請求項2】 前記望遠鏡の位置は前記望遠鏡の視野に
おける基準線の中心位置であることを特徴とする請求項
1記載の非接触三次元測定装置。
2. The non-contact three-dimensional measuring apparatus according to claim 1, wherein the position of the telescope is a center position of a reference line in a field of view of the telescope.
JP7184800A 1995-06-27 1995-06-27 Non-contact three-dimensional measuring instrument Pending JPH0914921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7184800A JPH0914921A (en) 1995-06-27 1995-06-27 Non-contact three-dimensional measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7184800A JPH0914921A (en) 1995-06-27 1995-06-27 Non-contact three-dimensional measuring instrument

Publications (1)

Publication Number Publication Date
JPH0914921A true JPH0914921A (en) 1997-01-17

Family

ID=16159521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7184800A Pending JPH0914921A (en) 1995-06-27 1995-06-27 Non-contact three-dimensional measuring instrument

Country Status (1)

Country Link
JP (1) JPH0914921A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221037A (en) * 1999-01-29 2000-08-11 Topcon Corp Automatic surveying machine and three-dimensional measuring method
KR20010029161A (en) * 1999-09-29 2001-04-06 추호석 Three dimensinal measuring method for pipe center using total station without target
US6559931B2 (en) 2001-02-08 2003-05-06 Nkk Corporation Three-dimensional (3-D) coordinate measuring method, 3-D coordinate measuring apparatus, and large-structure building method
KR100493809B1 (en) * 2002-07-13 2005-06-03 주식회사 아이너스기술 Coordinate Transformation Method of Three-Dimension Image and Data Points Using Reference Coordinate
JP2006090881A (en) * 2004-09-24 2006-04-06 Sokkia Co Ltd Surveying machine and servo processing program for the same
JP2010032282A (en) * 2008-07-28 2010-02-12 Japan Atomic Energy Agency Method and system for measuring three-dimensional position of marker
CN101914881A (en) * 2010-07-27 2010-12-15 唐粮 Method for rapidly measuring foundation pile control net (CPIII) of rapid transit railway
CN105823420A (en) * 2016-05-16 2016-08-03 北京控制工程研究所 Method for precise derivation of light-return energy center coordinates of pyramid combined part
CN107727084A (en) * 2017-09-18 2018-02-23 北京卫星环境工程研究所 Robot high-acruracy survey instrument is to prism square normal direction automatic search method on star
JP2018048509A (en) * 2016-09-23 2018-03-29 清水建設株式会社 Management method and management device for tunnel excavation
WO2018164077A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring position correction amount for bulldozer blade
CN110220457A (en) * 2019-07-05 2019-09-10 沪东中华造船(集团)有限公司 The measurement method of total station detection piping aperture positioning is used in a kind of shipbuilding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221037A (en) * 1999-01-29 2000-08-11 Topcon Corp Automatic surveying machine and three-dimensional measuring method
KR20010029161A (en) * 1999-09-29 2001-04-06 추호석 Three dimensinal measuring method for pipe center using total station without target
US6559931B2 (en) 2001-02-08 2003-05-06 Nkk Corporation Three-dimensional (3-D) coordinate measuring method, 3-D coordinate measuring apparatus, and large-structure building method
KR100493809B1 (en) * 2002-07-13 2005-06-03 주식회사 아이너스기술 Coordinate Transformation Method of Three-Dimension Image and Data Points Using Reference Coordinate
JP2006090881A (en) * 2004-09-24 2006-04-06 Sokkia Co Ltd Surveying machine and servo processing program for the same
JP2010032282A (en) * 2008-07-28 2010-02-12 Japan Atomic Energy Agency Method and system for measuring three-dimensional position of marker
CN101914881A (en) * 2010-07-27 2010-12-15 唐粮 Method for rapidly measuring foundation pile control net (CPIII) of rapid transit railway
CN105823420A (en) * 2016-05-16 2016-08-03 北京控制工程研究所 Method for precise derivation of light-return energy center coordinates of pyramid combined part
JP2018048509A (en) * 2016-09-23 2018-03-29 清水建設株式会社 Management method and management device for tunnel excavation
WO2018164077A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring position correction amount for bulldozer blade
JP2018145693A (en) * 2017-03-06 2018-09-20 株式会社トプコン Method for acquiring earth removing plate position correction amount
CN107727084A (en) * 2017-09-18 2018-02-23 北京卫星环境工程研究所 Robot high-acruracy survey instrument is to prism square normal direction automatic search method on star
CN110220457A (en) * 2019-07-05 2019-09-10 沪东中华造船(集团)有限公司 The measurement method of total station detection piping aperture positioning is used in a kind of shipbuilding

Similar Documents

Publication Publication Date Title
US7502504B2 (en) Three-dimensional visual sensor
JP4791118B2 (en) Image measuring machine offset calculation method
JPS60185108A (en) Method and device for measuring body in noncontacting manner
US6741363B1 (en) Method and an apparatus for the optical detection of a contrast line
US7405388B2 (en) Video centerscope for machine alignment
JPH0914921A (en) Non-contact three-dimensional measuring instrument
US5363185A (en) Method and apparatus for identifying three-dimensional coordinates and orientation to a robot
US6342705B1 (en) System for locating and measuring an index mark on an edge of a wafer
US4760269A (en) Method and apparatus for measuring distance to an object
JP3215193B2 (en) Method and apparatus for measuring blade shape of rotary tool
US4906097A (en) Imaging and inspection apparatus and method
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
JPH0755439A (en) Three-dimensional shape measuring equipment
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
CN113052896A (en) Visual positioning method and device
JP3259462B2 (en) Method and apparatus for detecting focal position of laser beam machine
JP2519445B2 (en) Work line tracking method
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
Chen et al. A simple underwater video system for laser tracking
JP2001091891A (en) Irradiation position control method and device for wedge prism
JP2679236B2 (en) Non-contact type shape measuring device
JP3565293B2 (en) Surveying device and angle measuring method
US20230249284A1 (en) Alignment method
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPH09243304A (en) Shape measuring device, and method of positioning surface to be measured using it

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406