JP4791118B2 - Image measuring machine offset calculation method - Google Patents

Image measuring machine offset calculation method Download PDF

Info

Publication number
JP4791118B2
JP4791118B2 JP2005270303A JP2005270303A JP4791118B2 JP 4791118 B2 JP4791118 B2 JP 4791118B2 JP 2005270303 A JP2005270303 A JP 2005270303A JP 2005270303 A JP2005270303 A JP 2005270303A JP 4791118 B2 JP4791118 B2 JP 4791118B2
Authority
JP
Japan
Prior art keywords
sphere
measurement
image
block
measuring machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005270303A
Other languages
Japanese (ja)
Other versions
JP2007078635A (en
Inventor
光司 久保
剛 八島
Original Assignee
株式会社ミツトヨ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツトヨ filed Critical 株式会社ミツトヨ
Priority to JP2005270303A priority Critical patent/JP4791118B2/en
Publication of JP2007078635A publication Critical patent/JP2007078635A/en
Application granted granted Critical
Publication of JP4791118B2 publication Critical patent/JP4791118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、校正用治具及び画像測定機のオフセット算出方法に関する。   The present invention relates to a calibration jig and an offset calculation method for an image measuring machine.
従来、CCDカメラ等の撮像手段で被測定物(ワーク)を撮像して得られた画像から被測定対象の輪郭形状等を測定する画像測定装置が知られている。また、このような画像測定装置において上下方向すなわちZ方向の測定精度の向上のため、撮像手段に加えレーザプローブ等の非接触式光学プローブを併設した画像測定機が知られている(例えば、特許文献1参照)
このような撮像手段による画像測定機能と、非接触式光学プローブにより非接触変位検出機能との間にオフセットが存在する場合、このオフセットを定量的に特定する必要がある。このオフセット値の算出のため、様々な治具が用いられている。
2. Description of the Related Art Conventionally, there has been known an image measuring apparatus that measures an outline shape or the like of an object to be measured from an image obtained by imaging an object to be measured (workpiece) with an imaging means such as a CCD camera. In addition, in such an image measuring apparatus, an image measuring machine is known that is provided with a non-contact optical probe such as a laser probe in addition to the imaging means in order to improve the measurement accuracy in the vertical direction, that is, the Z direction (for example, patents). Reference 1)
When an offset exists between such an image measurement function by the imaging means and a non-contact displacement detection function by the non-contact optical probe, it is necessary to quantitatively specify the offset. Various jigs are used to calculate the offset value.
例えば特許文献1では、平板状の基板上に、非平行な2つの直線のナイフエッジを有する台形パターンの金属膜が形成された校正用治具が提案されている。その他、図5に示すように、基板51上に、上面が平面で中空の円筒形状のブロック52を形成した校正用治具、或いは図6に示すように、基板51上に4辺のナイフエッジを有する矩形状金属ブロック53を形成し、その周囲をアクリルブロック54で囲うことにより、金属ブロックの4辺の画像測定及び光学プローブによる測定を可能にした校正用治具も知られている。しかし、これらの校正用治具は、オフセット値の算出誤差がブロックの平面度や直角度に依存しているため、部品を組み立てた状態での調整加工が必要になり、治具の価格が高いという問題がある。また、特許文献1や図6の校正用治具の場合、ブロックの各辺を測定機の測定座標に対して位置合わせする必要があり、作業性が悪いという問題がある。   For example, Patent Document 1 proposes a calibration jig in which a trapezoidal pattern metal film having two non-parallel straight knife edges is formed on a flat substrate. In addition, as shown in FIG. 5, a calibration jig in which a hollow cylindrical block 52 having a flat upper surface is formed on a substrate 51, or four-side knife edges on the substrate 51 as shown in FIG. There is also known a calibration jig in which a rectangular metal block 53 having a shape is formed and the periphery thereof is surrounded by an acrylic block 54 to enable image measurement of four sides of the metal block and measurement using an optical probe. However, these calibration jigs require an adjustment process with the assembled parts because the offset calculation error depends on the flatness and squareness of the block, and the jig cost is high. There is a problem. Further, in the case of the calibration jig of Patent Document 1 or FIG. 6, it is necessary to align each side of the block with respect to the measurement coordinates of the measuring machine, and there is a problem that workability is poor.
これに対し、タッチブローブを用いた3次元測定機においては、装置の校正のため予め精密に測定され半径が既知の基準球をオフセット算出のために用いている。基準球は方向性を持たないため、測定座標に対する位置合わせ等は不要であるというメリットがある。しかし、画像測定機においては、基準球はオフセット調整のためには使用することは困難であった。画像測定の場合、落射照明、透過照明、斜め照明等を使用しても基準球のエッジ部分が明確に特定できず、従って基準球の中心位置を正確に算出することができないためである。
特開平11−83438号公報
On the other hand, in a three-dimensional measuring machine using a touch probe, a reference sphere that is precisely measured in advance and has a known radius is used for offset calculation to calibrate the apparatus. Since the reference sphere has no directionality, there is an advantage that alignment with respect to the measurement coordinates is unnecessary. However, in the image measuring machine, the reference sphere is difficult to use for offset adjustment. In the case of image measurement, the edge portion of the reference sphere cannot be clearly identified even when using epi-illumination, transmitted illumination, oblique illumination, etc., and therefore the center position of the reference sphere cannot be accurately calculated.
Japanese Patent Laid-Open No. 11-83438
本発明は、この問題に鑑み、複雑な調整加工が不要で治具の価格を低価格に抑えることが可能になると共に、作業性に優れた画像測定器のオフセット算出方法を提供することを目的とする。 The present invention has been made in view of the problem, together with the complicated adjustment processing becomes the price of unnecessary jig can be suppressed to a low cost, to provide an offset calculation method of images instrument with excellent workability Objective.
発明に係る画像測定器のオフセット算出方法は、画像測定用の撮像手段を備えると共に被測定物に対して照射される光に基づき被測定物の形状を測定する非接触式光学プローブを備えた画像測定機のオフセット算出方法において、予め精密に測定され寸法が既知の基準球を、基板上に形成され且つ所定の表面粗さを有する反射板の上に設置すると共に、前記基板上に表面が平面である基準ブロックを設置し、前記基準球、前記基準ブロック及び前記反射板を設置した前記基板を前記画像測定機の測定テーブル上に載置し、その後、前記撮像手段により前記基準球及び前記基準ブロックを撮像して前記基準球の画像測定を行うと共に前記基準ブロックの表面に対する前記撮像手段の合焦動作を行い、更に非接触式光学プローブによる前記基準球及び前記基準ブロックの測定を実行する工程と、前記画像測定の測定結果と、前記合焦動作の結果と、前記非接触式光学プローブの測定結果とを比較してオフセットを算出する工程とを備えたことを特徴とする。 An offset measuring method for an image measuring instrument according to the present invention includes an image-measuring unit for measuring an image and a non-contact optical probe that measures the shape of the object to be measured based on light irradiated to the object to be measured. In the offset calculation method of the image measuring machine, a reference sphere that has been measured in advance and has a known dimension is placed on a reflecting plate that is formed on the substrate and has a predetermined surface roughness , and the surface is placed on the substrate. established the reference block is a plan, the reference sphere, and placing the substrate placed on the reference blocks and the reflection plate on the machine vision measurement table, after the said reference sphere by the image pickup means and performs a focusing operation of the imaging means relative to the surface of the reference block with by imaging the reference block performing image measurement of said reference sphere, further the value determined by the non-contact optical probe Provided and the step of performing measurements of the reference block, and the measurement result of the image measurement, the result of the focusing operation, and a step of calculating the offset by comparing the measurement result of the non-contact optical probe It is characterized by that.
この発明によれば、基準球の下方に所定の表面粗さを有する反射板が配置され、この反射板により、基準球上方からの照明光が散乱される。このため、画像測定を行う場合であっても、基準球のエッジが明確に特定され、オフセット値を正確に算出することができる。また、この基準球を用いるため複雑な調整加工が不要で治具の価格を低価格に抑えることが可能になると共に、作業性に優れている。   According to the present invention, the reflector having a predetermined surface roughness is disposed below the reference sphere, and the illumination light from above the reference sphere is scattered by the reflector. For this reason, even when image measurement is performed, the edge of the reference sphere is clearly specified, and the offset value can be accurately calculated. Further, since this reference sphere is used, complicated adjustment processing is not required, and the price of the jig can be kept low, and the workability is excellent.
次に、本発明の実施の形態を、図面を参照して詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、この発明の実施の形態に係る校正用治具100の構成を示している。この校正用治具100は、鋼製の基板111と、支柱112と、基準球113と、反射板114と、基準ブロック115とを備えて構成される。支柱112は、基板111に裏面側からネジ止めされて基板111に固定されている。また、基準球113はこの支柱112の上部に固定的に保持されている。基準球113は、予め精密に測定された寸法が既知の鋼製の球であり、ここでは、一例として直径D=25mmのものとする。   FIG. 1 shows the configuration of a calibration jig 100 according to an embodiment of the present invention. The calibration jig 100 includes a steel substrate 111, a support column 112, a reference sphere 113, a reflection plate 114, and a reference block 115. The support column 112 is fixed to the substrate 111 by being screwed to the substrate 111 from the back side. Further, the reference sphere 113 is fixedly held on the upper portion of the support column 112. The reference sphere 113 is a steel sphere whose dimension is precisely measured in advance, and has a diameter D = 25 mm as an example.
反射板114は、この基準球113の下方において、基板111の表面にネジ止めその他の方法により基板111に対し固定的に形成されている。反射板114は、基準球113が上方から落射照明等により照明した場合の照明範囲よりも大なる大きさに形成されている。反射板114の表面は、その照明光が散乱されるよう、所定の表面粗さRa(算術平均粗さ)を与えられている。この表面粗さRaは、基準球113の直径D、及び基準球113の赤道面の反射板114の表面からの高さh(図2参照)を考慮して決定される。一例として、直径D=25mm、高さh=20mmの場合、表面粗さRa=0.4μmとすることができる。例えばhが20mmより大きく設定された場合には、表面粗さRaは0.4μmより小さく設定される。また、基準ブロック115は、表面が平面となるように形成された鋼製の矩形のブロックである。   The reflector 114 is fixed to the substrate 111 below the reference sphere 113 by screwing or other methods on the surface of the substrate 111. The reflector 114 is formed in a size larger than the illumination range when the reference sphere 113 is illuminated from above by epi-illumination or the like. The surface of the reflecting plate 114 is given a predetermined surface roughness Ra (arithmetic mean roughness) so that the illumination light is scattered. This surface roughness Ra is determined in consideration of the diameter D of the reference sphere 113 and the height h (see FIG. 2) of the equator plane of the reference sphere 113 from the surface of the reflector 114. As an example, when the diameter D = 25 mm and the height h = 20 mm, the surface roughness Ra = 0.4 μm can be set. For example, when h is set larger than 20 mm, the surface roughness Ra is set smaller than 0.4 μm. The reference block 115 is a steel rectangular block formed so that the surface thereof is a flat surface.
本実施の形態の校正用治具100は、基準球113の真球度、基準ブロック115の平面度がオフセット値の算出誤差の要因となるが、従来の校正治具のように、部品を組み立てた状態での調整加工が不要となるため、価格を安く抑えることができる。   In the calibration jig 100 according to the present embodiment, the sphericity of the reference sphere 113 and the flatness of the reference block 115 cause an error in calculating the offset value. This eliminates the need for adjustment processing in the above-described state, so that the price can be kept low.
次に、この校正用治具100が用いられる画像測定機の一例を図3を用いて説明する。この画像測定機は、次のように構成されている。即ち、架台11上には、ワークを載置する測定テーブル13が装着されており、この測定テーブル13は、図示しないY軸駆動機構によってY軸方向に駆動される。架台11の両側縁中央部には上方に延びる支持アーム14、15が固定されており、この支持アーム14、15の両上端部を連結するようにX軸ガイド16が固定されている。このX軸ガイド16には、撮像ユニット17が支持されている。撮像ユニット17は、図示しないX軸駆動機構によってX軸ガイド16に沿って駆動される。撮像ユニット17は、X軸ガイド16に沿って移動可能にスライダ31を備えており、このスライダ31に一体にZ軸ガイド32が固定されている。このZ軸ガイド32には、支持板33がZ軸方向に摺動自在に設けられ、この支持板33に、画像測定用の撮像手段であるCCDカメラ34と、非接触変位計であるレーザプローブ35とが併設されている。これにより、CCDカメラ34とレーザプローブ35とは、一定の位置関係を保ってX、Y、Zの3軸方向に同時に移動できるようになっている。CCDカメラ34には、撮像範囲を照明するための照明装置36が付加されている。レーザプローブ35の近傍位置には、レーザプローブ35のレーザビームによるワークの測定位置を確認するために、測定位置の周辺を撮像するCCDカメラ38と、レーザプローブ35の測定位置を照明するための照明装置39とが設けられている。レーザプローブ35は、撮像ユニット17の移動の際にレーザプローブ35を退避するための上下動機構40と、レーザビームの方向性を最適な方向に適合させるための回転機構41とにより支持されている。   Next, an example of an image measuring machine using the calibration jig 100 will be described with reference to FIG. This image measuring machine is configured as follows. That is, a measurement table 13 on which a workpiece is placed is mounted on the gantry 11, and this measurement table 13 is driven in the Y-axis direction by a Y-axis drive mechanism (not shown). Support arms 14 and 15 extending upward are fixed to the center of both side edges of the gantry 11, and an X-axis guide 16 is fixed so as to connect both upper ends of the support arms 14 and 15. An imaging unit 17 is supported on the X-axis guide 16. The imaging unit 17 is driven along the X-axis guide 16 by an X-axis drive mechanism (not shown). The imaging unit 17 includes a slider 31 that can move along the X-axis guide 16. A Z-axis guide 32 is integrally fixed to the slider 31. A support plate 33 is provided on the Z-axis guide 32 so as to be slidable in the Z-axis direction. The support plate 33 is provided with a CCD camera 34 as an imaging means for image measurement, and a laser probe as a non-contact displacement meter. 35. As a result, the CCD camera 34 and the laser probe 35 can move simultaneously in the three axial directions of X, Y, and Z while maintaining a fixed positional relationship. An illumination device 36 for illuminating the imaging range is added to the CCD camera 34. In order to confirm the measurement position of the workpiece by the laser beam of the laser probe 35 in the vicinity of the laser probe 35, a CCD camera 38 for imaging the periphery of the measurement position and illumination for illuminating the measurement position of the laser probe 35 A device 39 is provided. The laser probe 35 is supported by a vertical movement mechanism 40 for retracting the laser probe 35 when the imaging unit 17 is moved, and a rotation mechanism 41 for adapting the directivity of the laser beam to an optimum direction. .
このような画像測定機1のCCDカメラ34とレーザプローブ35との間のオフセットを算出する場合、図1の校正用治具100が測定テーブル13上に載置される。そして、CCDカメラ34による画像測定により、基準球113の中心の座標Pc(x、y)を算出した後、続いてレーザプローブ35による測定により、基準球113の中心の座標Pc’(x’、y’)を算出する。     When calculating such an offset between the CCD camera 34 and the laser probe 35 of the image measuring machine 1, the calibration jig 100 shown in FIG. 1 is placed on the measurement table 13. Then, after calculating the center coordinates Pc (x, y) of the reference sphere 113 by image measurement with the CCD camera 34, the coordinates Pc ′ (x ′, x ′, center coordinates of the reference sphere 113 are subsequently measured by the laser probe 35. y ′) is calculated.
CCDカメラ34の測定の際には、照明装置36により基準球113が照明される。この照明光は、基準球113を落射照明すると共に、その下方に存在する反射板114を照明する。反射板114は所定の表面粗さRaを有しており、反射板114に照射された光は、図4に示すように照明光は様々な方向に散乱される。この散乱光により、基準球113の周囲即ち赤道面付近が若干暗くなる一方、その周囲の反射板114が散乱により明るくなり、この明暗の差により、基準球113の輪郭は明確にCCDカメラ34の撮像画像において認識可能とされる。この撮像された画像に対しエッジ検出等の画像処理を施すことにより、基準球113の中心座標Pcが正確に特定され得る。基準球113は、従来技術の矩形ブロック等の校正用治具と異なり、方向性を持たないため、校正用治具100を画像測定機の測定座標系に平行に設置する必要がない。このため、作業性が従来の校正用治具に比べ向上されている。   At the time of measurement by the CCD camera 34, the reference sphere 113 is illuminated by the illumination device 36. The illumination light illuminates the reference sphere 113 and illuminates the reflector 114 existing below the reference sphere 113. The reflecting plate 114 has a predetermined surface roughness Ra, and the light irradiated on the reflecting plate 114 is scattered in various directions as shown in FIG. The scattered light slightly darkens the periphery of the reference sphere 113, that is, the vicinity of the equator plane, while the surrounding reflector 114 becomes brighter due to scattering. Due to this difference in brightness, the outline of the reference sphere 113 is clearly defined by the CCD camera 34. Recognition is possible in the captured image. By performing image processing such as edge detection on the captured image, the center coordinate Pc of the reference sphere 113 can be accurately specified. Unlike the calibration jig such as a rectangular block of the prior art, the reference sphere 113 does not have directionality, and therefore it is not necessary to install the calibration jig 100 in parallel with the measurement coordinate system of the image measuring machine. For this reason, workability | operativity is improved compared with the conventional calibration jig | tool.
一方、レーザプローブ35による測定では、受光光学系のNA等によって決まる測定範囲にレーザ光を照射しその反射光を受光して、基準球113の表面上を複数点測定し、その複数の座標値を算出することにより、基準球113の中心座標Pc’を算出することができる。この画像測定及びレーザプローブ測定の2通りの方法により算出された中心座標PcとPc’の差を取ることにより、X方向、Y方向のオフセットを求めることができる。   On the other hand, in the measurement by the laser probe 35, a laser beam is irradiated to the measurement range determined by the NA of the light receiving optical system, the reflected light is received, a plurality of points are measured on the surface of the reference sphere 113, and the plurality of coordinate values are measured. By calculating the center coordinate Pc ′ of the reference sphere 113. By taking the difference between the center coordinates Pc and Pc ′ calculated by the two methods of image measurement and laser probe measurement, offsets in the X direction and the Y direction can be obtained.
また、CCDカメラ34をオートフォーカスにより基準ブロック115の上面に合焦させ、その合焦位置を図示しないエンコーダの計数値に基いて特定することにより、基準ブロック115の上面の高さを測定する。それと共に、レーザプローブ35により、この基準ブロック115の上面の高さを複数点、例えば20点程度測定し、その平均値を測定する。この2つの測定値を比較することにより、Z方向のオフセットも求めることができる。   The CCD camera 34 is focused on the upper surface of the reference block 115 by autofocus, and the height of the upper surface of the reference block 115 is measured by specifying the in-focus position based on the count value of an encoder (not shown). At the same time, the laser probe 35 measures the height of the upper surface of the reference block 115 at a plurality of points, for example, about 20 points, and measures the average value. By comparing these two measured values, an offset in the Z direction can also be obtained.
以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、様々な置換、追加、削除等が可能である。例えば、上記実施の形態では、Z方向のオフセット値の算出のため基準ブロック115を備えているが、基準球113の頂点へのCCDカメラのオートフォーカスが精度良く行うことができる場合には基準ブロック115は省略してもよい。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various substitutions, additions, deletions, and the like are possible without departing from the spirit of the invention. For example, in the above-described embodiment, the reference block 115 is provided for calculating the offset value in the Z direction. However, when the CCD camera autofocus to the apex of the reference sphere 113 can be performed with high accuracy, the reference block 115 is provided. 115 may be omitted.
本発明の実施の形態に係る校正用治具100の構成を示している。The structure of the calibration jig | tool 100 which concerns on embodiment of this invention is shown. 校正用治具100の構成を示している。The structure of the calibration jig 100 is shown. 図1の校正用治具100が使用され得る画像測定機の構成例を示している。1 shows a configuration example of an image measuring machine in which the calibration jig 100 of FIG. 1 can be used. 図1の校正用治具100の作用を説明している。The operation of the calibration jig 100 of FIG. 1 will be described. 従来の校正用治具の一例を示す。An example of a conventional calibration jig is shown. 従来の校正用治具の一例を示す。An example of a conventional calibration jig is shown.
符号の説明Explanation of symbols
100・・・校正用治具、 111・・・基板、 112・・・支柱、 113・・・基準球、 114・・・反射板、 115・・・基準ブロック、 11・・・架台、 13・・・測定テーブル、 14、15・・・支持アーム、 16・・・X軸ガイド、 17・・・撮像ユニット、 34、38・・・CCDカメラ、 35・・・レーザプローブ、36、39・・・照明装置、 40・・・上下動機構、 41・・・回転機構。   DESCRIPTION OF SYMBOLS 100 ... Calibration jig | tool, 111 ... Board | substrate, 112 ... Support | pillar, 113 ... Reference sphere, 114 ... Reflector plate, 115 ... Reference block, 11 ... Mounting stand, 13. .... Measurement table 14, 15 ... Support arm, 16 ... X-axis guide, 17 ... Imaging unit, 34, 38 ... CCD camera, 35 ... Laser probe, 36, 39 ... -Illumination device, 40 ... vertical movement mechanism, 41 ... rotation mechanism.

Claims (1)

  1. 画像測定用の撮像手段を備えると共に被測定物に対して照射される光に基づき被測定物の形状を測定する非接触式光学プローブを備えた画像測定機のオフセット算出方法において、
    予め精密に測定され寸法が既知の基準球を、基板上に形成され且つ所定の表面粗さを有する反射板の上に設置すると共に、前記基板上に表面が平面である基準ブロックを設置し、前記基準球、前記基準ブロック及び前記反射板を設置した前記基板を前記画像測定機の測定テーブル上に載置し、その後、前記撮像手段により前記基準球及び前記基準ブロックを撮像して前記基準球の画像測定を行うと共に前記基準ブロックの表面に対する前記撮像手段の合焦動作を行い、更に非接触式光学プローブによる前記基準球及び前記基準ブロックの測定を実行する工程と、
    前記画像測定の測定結果と、前記合焦動作の結果と、前記非接触式光学プローブの測定結果とを比較してオフセットを算出する工程と
    を備えたことを特徴とする画像測定機のオフセット算出方法。
    In an offset calculation method for an image measuring machine provided with an imaging means for image measurement and provided with a non-contact optical probe for measuring the shape of the object to be measured based on the light irradiated to the object to be measured.
    A reference sphere that is precisely measured in advance and has a known size is placed on a reflecting plate that is formed on a substrate and has a predetermined surface roughness , and a reference block that has a flat surface is placed on the substrate. the reference sphere, the reference block and by placing the substrate placed the reflecting plate on the measuring table of the image measuring machine, after the said reference by imaging the reference sphere and the reference block by the image pickup means Performing the image measurement of the sphere and performing the focusing operation of the imaging means with respect to the surface of the reference block, and further performing the measurement of the reference sphere and the reference block with a non-contact optical probe;
    An offset calculation of an image measuring machine comprising: a step of calculating an offset by comparing a measurement result of the image measurement, a result of the focusing operation, and a measurement result of the non-contact optical probe. Method.
JP2005270303A 2005-09-16 2005-09-16 Image measuring machine offset calculation method Active JP4791118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270303A JP4791118B2 (en) 2005-09-16 2005-09-16 Image measuring machine offset calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270303A JP4791118B2 (en) 2005-09-16 2005-09-16 Image measuring machine offset calculation method

Publications (2)

Publication Number Publication Date
JP2007078635A JP2007078635A (en) 2007-03-29
JP4791118B2 true JP4791118B2 (en) 2011-10-12

Family

ID=37939109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270303A Active JP4791118B2 (en) 2005-09-16 2005-09-16 Image measuring machine offset calculation method

Country Status (1)

Country Link
JP (1) JP4791118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906354A (en) * 2016-09-01 2019-06-18 海克斯康测量技术有限公司 Uniformity test artifact for coordinate measuring machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623009B2 (en) 2008-07-10 2014-11-12 株式会社ミツトヨ Calibration jig, shape measuring device, and offset calculation method
JP5113030B2 (en) * 2008-12-22 2013-01-09 株式会社成宗製作所 Three-dimensional shape measuring method and reference member therefor
JP5193101B2 (en) * 2009-03-10 2013-05-08 株式会社浅沼技研 Reference member for inspection master of optical 3D measuring machine
JP5297906B2 (en) * 2009-06-18 2013-09-25 株式会社ミツトヨ Image probe calibration method and shape measuring machine
CN103076038A (en) * 2013-02-04 2013-05-01 上海市计量测试技术研究院 Standard device for calibrating three-dimensional non-contact measurement system
JP6331587B2 (en) * 2014-03-31 2018-05-30 株式会社東京精密 Three-dimensional coordinate measuring apparatus and method, and calibration apparatus
CN104999325B (en) * 2014-04-18 2018-05-18 苏州汉扬精密电子有限公司 Ball fast replacing structure in point
JP6767045B2 (en) * 2016-11-02 2020-10-14 株式会社ミツトヨ Coordinate matching jig between X-ray CT device for measurement and coordinate measuring machine
CN108801165B (en) * 2018-07-27 2020-09-18 中国航发沈阳发动机研究所 Device and method for monitoring and adjusting gap between grates of engine test piece

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077348B2 (en) * 1992-01-29 2000-08-14 松下電器産業株式会社 Electronic component mounting apparatus and electronic component mounting method
JP3189557B2 (en) * 1994-03-08 2001-07-16 松下電器産業株式会社 Three-dimensional shape measurement method and device
JP3575165B2 (en) * 1996-04-11 2004-10-13 ソニー株式会社 Calibration jig for image recognition device and calibration method for image recognition device
JP3511450B2 (en) * 1997-09-12 2004-03-29 株式会社ミツトヨ Position calibration method for optical measuring device
JP3005681B1 (en) * 1998-12-17 2000-01-31 工業技術院長 CMM calibration gauge and CMM calibration method
JP4291178B2 (en) * 2004-03-01 2009-07-08 パルステック工業株式会社 3D shape measuring system, measuring method, and 3D shape measuring stage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906354A (en) * 2016-09-01 2019-06-18 海克斯康测量技术有限公司 Uniformity test artifact for coordinate measuring machine

Also Published As

Publication number Publication date
JP2007078635A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US20190360795A1 (en) Device and method for measuring workpieces
US9488472B2 (en) Apparatus and method for measuring a three dimensional shape
US6094269A (en) Apparatus and method for optically measuring an object surface contour
KR100869110B1 (en) Profilometer and method for measuring, and method for manufacturing object of surface profiling
US8422127B2 (en) Microscopic image capturing device
US8885040B2 (en) Method and apparatus for 3-dimensional vision and inspection of ball and like protrusions of electronic components
JP2779242B2 (en) Optoelectronic angle measurement system
KR20100097048A (en) Shape measurement of specular reflective surface
JP2005514606A (en) Three-dimensional three-dimensional measurement system and method
EP1887315B1 (en) Multi-range non-contact probe
JP2012047743A (en) Two-beam assembly and operation method of chromatic point sensor apparatus
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
US9106807B2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object
JP2005201656A (en) Method for measuring noncontact surface shape
WO2017107777A1 (en) Method for measuring surface shape error of rotary symmetrical unknown aspheric surface, and measurement device thereof
KR100722102B1 (en) Visual inspection apparatus and method
KR100951221B1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
KR20100119526A (en) Method and apparatus for measuring relative positions of a specular reflection surface
CN1287643A (en) Method and apparatus for three-dimensional inspection of electronic components
US7440089B2 (en) Method of measuring decentering of lens
US20120262724A1 (en) Shape measurement device
JPH09273910A (en) Optical measuring apparatus
JP3511450B2 (en) Position calibration method for optical measuring device
JP2007205724A (en) Shape measuring device and measuring method of glass substrate
US8363904B2 (en) Offset amount calibrating method and surface texture measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

R150 Certificate of patent or registration of utility model

Ref document number: 4791118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250