JP3189557B2 - Three-dimensional shape measurement method and device - Google Patents

Three-dimensional shape measurement method and device

Info

Publication number
JP3189557B2
JP3189557B2 JP03696694A JP3696694A JP3189557B2 JP 3189557 B2 JP3189557 B2 JP 3189557B2 JP 03696694 A JP03696694 A JP 03696694A JP 3696694 A JP3696694 A JP 3696694A JP 3189557 B2 JP3189557 B2 JP 3189557B2
Authority
JP
Japan
Prior art keywords
measuring
measured
measurement
measuring means
spherical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03696694A
Other languages
Japanese (ja)
Other versions
JPH07243822A (en
Inventor
剛 野村
高畤 一柳
公平 浜村
誠司 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03696694A priority Critical patent/JP3189557B2/en
Publication of JPH07243822A publication Critical patent/JPH07243822A/en
Application granted granted Critical
Publication of JP3189557B2 publication Critical patent/JP3189557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、三次元形状計測方法に
関し、詳しくは、各種物体の三次元形状を計測する方法
であって、スポット光などによる非接触式の測定手段
で、被測定物の表面上の各点の位置を測定し、これら各
点の位置情報を総合して被測定物の三次元形状を計測す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a three-dimensional shape, and more particularly to a method for measuring the three-dimensional shape of various objects. The present invention relates to a method of measuring the position of each point on the surface of the object, and measuring the three-dimensional shape of the measured object by integrating the position information of each point.

【0002】[0002]

【従来の技術】非接触式測定手段で被測定物の三次元形
状を計測する方法は、被測定物の三次元形状を正確かつ
迅速に計測できる方法として、各種技術分野で利用され
ている。また、このような三次元形状の計測方法が適用
できる計測装置も各種提案されている。
2. Description of the Related Art A method for measuring a three-dimensional shape of an object to be measured by a non-contact type measuring means is used in various technical fields as a method for accurately and quickly measuring the three-dimensional shape of an object to be measured. Also, various measuring devices to which such a three-dimensional shape measuring method can be applied have been proposed.

【0003】例えば、被測定物を載置する定盤の上方
に、非接触式測定手段の測定器が、定盤と平行な面に沿
って移動自在に設置された計測装置がある。測定器を前
後左右に移動させながら、それぞれの位置で、測定器の
真下に位置する被測定物上の点の位置を測定する。非接
触式測定手段の具体例としては、例えば、測定器から真
下に向けてスポット光を照射し、被測定物の表面で反射
された反射光を再び測定器で受光して、その受光位置か
ら、三角測量の原理で、測定器から被測定物までの距離
を測定するものがある。測定器から被測定物までの距離
を、測定器から定盤面までの距離から差し引けば、被測
定物のその点における高さが求められる。被測定物の高
さを被測定物上の多数の点について求めれば、被測定物
全体の三次元形状が計測できることになる。
For example, there is a measuring device in which a measuring instrument of non-contact type measuring means is movably installed along a plane parallel to the surface plate above a surface plate on which an object to be measured is placed. While moving the measuring instrument back and forth and right and left, the position of a point on the DUT located immediately below the measuring instrument is measured at each position. As a specific example of the non-contact type measuring means, for example, irradiate a spot light from directly below the measuring instrument, receive the reflected light reflected on the surface of the object to be measured again by the measuring instrument, from the light receiving position There is a method of measuring a distance from a measuring instrument to an object to be measured by the principle of triangulation. By subtracting the distance from the measuring instrument to the object to be measured from the distance from the measuring instrument to the surface of the surface plate, the height of the object to be measured at that point can be obtained. If the height of the measured object is obtained for many points on the measured object, the three-dimensional shape of the entire measured object can be measured.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
な従来における三次元形状の計測方法および装置では、
計測を開始するまでの準備に手間がかかるとともに、三
次元形状の計測精度も十分ではないという問題があっ
た。
However, in the conventional method and apparatus for measuring a three-dimensional shape as described above,
There is a problem that it takes time to prepare for starting the measurement, and the measurement accuracy of the three-dimensional shape is not sufficient.

【0005】すなわち、前記のような従来の計測装置で
は、被測定物を載置した定盤の面と、測定器が移動する
移動面とが正確な平行面になっていないと、被測定物の
各点における高さの測定値が不正確になり、その結果、
三次元形状の計測精度が悪くなる。また、測定器から照
射するスポット光の方向も、正確に真下方向になってい
ないと、測定器から被測定物までの距離に誤差が生じ
る。
That is, in the conventional measuring apparatus as described above, if the surface of the surface plate on which the object to be measured is mounted and the moving surface on which the measuring instrument moves are not exactly parallel surfaces, the object to be measured is The height measurement at each point in is inaccurate,
The measurement accuracy of the three-dimensional shape deteriorates. In addition, if the direction of the spot light emitted from the measuring instrument is not exactly right below, an error occurs in the distance from the measuring instrument to the object to be measured.

【0006】そのため、従来の計測装置では、定盤上
に、測定器とその移動機構を据え付ける際に、水準器な
どを用いて、定盤と測定器の移動面が正確な平行面にな
るように、慎重な作業を行う必要があり、大変に手間の
かかる作業であった。また、測定装置を使用しているう
ちに、振動や衝撃などの外力あるいは環境変化などで、
測定器や移動機構に位置や姿勢のずれが生じて、測定結
果が不正確になることもあった。そのため、定期的に、
測定器および移動機構の取付位置や姿勢を点検したり修
正したりする作業が必要になる場合もあった。
For this reason, in the conventional measuring apparatus, when the measuring instrument and its moving mechanism are mounted on the surface plate, the moving surface of the surface plate and the measuring instrument is made to be an accurate parallel plane by using a level or the like. In addition, it was necessary to carry out careful work, which was a very laborious work. In addition, while using the measuring device, due to external force such as vibration or impact or environmental change,
In some cases, the measurement results may be inaccurate due to the displacement of the position or posture of the measuring device or the moving mechanism. Therefore, on a regular basis,
In some cases, it was necessary to check or correct the mounting positions and postures of the measuring instrument and the moving mechanism.

【0007】さらに、被測定物の測定面が、測定器から
の照射光に正対している場合には問題はないが、被測定
物の測定面が、測定からの照射光に対して傾斜している
と、測定面からの反射光を測定器で捉えられず、測定が
出来なくなる。そこで、被測定物の測定面に、測定器か
らの照射光が正対するように、測定器の姿勢を変えられ
るようにしたり、測定器を首振り自在にしたりして、被
測定物の測定面の形状に合わせて、光の照射方向を変え
ることが考えられた。
[0007] Further, there is no problem when the measurement surface of the measurement object faces the irradiation light from the measuring instrument, but the measurement surface of the measurement object is inclined with respect to the irradiation light from the measurement. In this case, the reflected light from the measurement surface cannot be captured by the measuring instrument, and the measurement cannot be performed. Therefore, the position of the measuring instrument can be changed so that the irradiation light from the measuring instrument faces the measuring surface of the measuring object, or the measuring instrument can be swung freely, so that the measuring surface of the measuring object can be measured. It was conceived to change the direction of light irradiation in accordance with the shape of.

【0008】ところが、光の照射方向を変えるために測
定器を傾ければ、当然、定盤面に対する測定器の傾きが
変わってしまうので、測定器が定盤面に正対していた元
の状態での測定結果とは連続性がなくなってしまう。測
定器から測定点までの距離が同じであっても、測定器の
傾きによって、測定点の高さは違ってくるのである。そ
のために、ひとつの被測定物を、場所によって測定器の
傾きを変えて測定を行うことは出来なかった。
However, if the measuring instrument is tilted to change the direction of light irradiation, the inclination of the measuring instrument with respect to the surface of the surface plate naturally changes. There is no continuity with the measurement result. Even if the distance from the measuring device to the measuring point is the same, the height of the measuring point varies depending on the inclination of the measuring device. For this reason, it has not been possible to measure one object by changing the inclination of the measuring instrument depending on the location.

【0009】そこで、本発明の課題は、前記した従来技
術の問題点を解消し、測定器すなち測定手段の位置や姿
勢を正確に知ることで三次元形状の計測精度を高め得る
とともに、被測定物の形状に合わせて、測定手段を傾け
たり姿勢を変えたりしても問題なく測定が行え、しか
も、測定手段の据え付けや取付調整に面倒がなく作業が
行い易い三次元形状の計測方法および装置を提供するこ
とにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to improve the measurement accuracy of a three-dimensional shape by accurately knowing the position and orientation of a measuring instrument, that is, a measuring means. Even if the measuring means is tilted or the posture is changed according to the shape of the object to be measured, the measurement can be performed without any problem, and the installation and adjustment of the measuring means is easy and the three-dimensional shape is easy to work. And to provide a device.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する、本
発明にかかる三次元形状の計測装置は、定置された被測
定物に対して移動自在な非接触式測定手段で、被測定物
上の各点の位置を測定して、被測定物の三次元形状を計
測する方法において、前記被測定物の定置面に、基準球
面体および基準平面体を配置しておき、この基準球面体
および基準平面体のそれぞれの表面上の少なくとも3点
について、前記測定手段で測定手段に対する相対位置を
測定し、ここで測定された基準球面体上の各点の位置か
ら測定手段に対する基準球面体の中心の相対位置を求
め、かつ、基準平面体上の各点の位置から測定手段に対
する基準平面体の相対姿勢を求め、これらの結果をもと
にして、前記被測定物の定置面に対する測定手段の位置
および姿勢を知る。
A three-dimensional shape measuring apparatus according to the present invention, which solves the above-mentioned problems, is a non-contact type measuring means which is movable with respect to a fixed object to be measured. In the method of measuring the position of each point of the three-dimensional shape of the object to be measured, a reference spherical body and a reference plane are arranged on the stationary surface of the object to be measured, and the reference spherical body and At least three points on each surface of the reference plane are measured relative to the measurement means by the measurement means, and the position of each point on the reference sphere measured here is used as the center of the reference sphere relative to the measurement means. And the relative attitude of the reference plane relative to the measurement means is determined from the position of each point on the reference plane, and based on these results, the measurement means with respect to the stationary surface of the object is measured. Know your position and posture.

【0011】被測定物は、通常、表面が正確な平面に仕
上げられた定盤などの定置面に置かれた状態で計測が行
われる。但し、定盤の上に載置されていなくても、何ら
かの手段で、挟持されたり吊り下げられたりして、決ま
った位置に支持されていればよい。このようにして、被
測定物が定まった位置に配置された状態で、その基準と
なる面を定置面と呼ぶ。
An object to be measured is usually measured on a stationary surface such as a surface plate whose surface is finished to an accurate flat surface. However, even if it is not placed on the surface plate, it is sufficient that it is supported at a fixed position by being pinched or suspended by some means. In this way, the surface serving as a reference when the object to be measured is arranged at a fixed position is referred to as a stationary surface.

【0012】非接触式測定手段は、レーザ等のスポット
光で三角測量による距離測定を行う測定器など、既知の
各種測定手段が用いられる。測定原理や内部機構は、既
知の技術を自由に組み合わせることができる。光の代わ
りに、各種放射線や電磁波、磁気、超音波などを利用す
る非接触式測定手段も採用できる。
As the non-contact measuring means, various known measuring means such as a measuring instrument for performing distance measurement by triangulation with a spot light such as a laser are used. The measurement principle and internal mechanism can be freely combined with known techniques. Non-contact type measurement means using various radiations, electromagnetic waves, magnetism, ultrasonic waves, etc. instead of light can also be adopted.

【0013】非接触式測定手段の移動機構も、既知の三
次元形状計測装置における移動機構と同様の構造が採用
できる。測定手段の移動は、前後左右あるいは垂直方向
への直線運動、水平面あるいは垂直面での旋回運動など
を、必要に応じて自由に組み合わせればよい。移動機構
としては、測定手段の測定方向を傾ける動きができるこ
とが好ましい。測定手段の測定方向とは、前記スポット
光であればその照射方向であり、測定する測定点を配置
すべき方向である。
The moving mechanism of the non-contact type measuring means can adopt the same structure as the moving mechanism in the known three-dimensional shape measuring apparatus. The movement of the measuring means may be any combination of a linear motion in the front / rear, left / right or vertical directions, a turning motion in a horizontal or vertical plane, and the like, as necessary. As the moving mechanism, it is preferable that the movement mechanism can perform a movement of inclining the measuring direction of the measuring means. The measuring direction of the measuring means is the irradiation direction of the spot light, and is the direction in which the measuring point to be measured is to be arranged.

【0014】基準球面体は、完全な球体のほか、球体の
一部から支柱が突出するものや、半球、あるいは、直方
体などの立体と球面を組み合わせたものなど、部分的な
球面体でも構わない。前記測定手段による位置測定がで
きる測定点が、少なくとも3点以上取れるだけの球面を
備えていればよいのである。基準球面体の径や球面の面
積は、測定手段の測定原理や精度、球面の加工精度など
を考慮して設定すればよい。例えば、スポット光による
三角測量を行う測定手段の場合、スポット光の口径の1
0〜100倍程度の球径を有するものが好ましい。基準
球面体は、測定に影響を与えるような凹凸や歪みのない
正確で滑らかな球面に形成できる材料からなるものが好
ましく、具体的には、セラミックが好ましい材料であ
る。硬質の金属や合成樹脂、ガラス質材料も使用可能で
ある。
The reference spherical body may be a complete spherical body, or a partial spherical body such as a body in which a pillar protrudes from a part of the spherical body, a hemisphere, or a combination of a solid and a sphere such as a rectangular parallelepiped. . It is only necessary that the measuring means has a spherical surface capable of taking at least three or more measurement points at which position measurement can be performed. The diameter of the reference spherical body and the area of the spherical surface may be set in consideration of the measurement principle and accuracy of the measuring means, the processing accuracy of the spherical surface, and the like. For example, in the case of a measuring unit that performs triangulation using a spot light, the diameter of the spot light is 1
Those having a sphere diameter of about 0 to 100 times are preferred. The reference spherical body is preferably made of a material that can be formed into an accurate and smooth spherical surface without unevenness or distortion that affects the measurement. Specifically, ceramic is a preferred material. Hard metals, synthetic resins, and vitreous materials can also be used.

【0015】基準球面体は、測定手段とは別に、予め定
置しておく。具体的には、定盤などの定置面に対して、
適当な位置に取り付けておけばよく、定盤に一体形成し
ておいたり、ねじや金具で固定しておいてもよい。基準
球面体を定盤の上に立てられた支柱の先端に設けるな
ど、定置面から離れた位置に基準球面体があっても構わ
ない。また、基準球面体が、定盤などの定置面上で複数
位置に着脱自在に取り付けられるようになっていてもよ
い。基準球面体の取付位置を変更できれば、被測定物の
形状などに合わせて、測定の邪魔にならない場所に、基
準球面体を取り付けることができる。本発明では、連続
した一連の測定作業中に、測定手段の位置の基準となる
基準球面体の位置が移動しないように定置されていれば
よいのである。
The reference spherical body is set in advance separately from the measuring means. Specifically, for a stationary surface such as a surface plate,
It may be attached at an appropriate position, and may be formed integrally with the surface plate, or may be fixed with screws or metal fittings. The reference spherical body may be located at a position away from the stationary surface, for example, by providing the reference spherical body at the tip of a support standing on the surface plate. Further, the reference spherical body may be detachably attached to a plurality of positions on a stationary surface such as a surface plate. If the mounting position of the reference spherical body can be changed, the reference spherical body can be mounted in a place that does not hinder the measurement according to the shape of the object to be measured. In the present invention, it is only necessary that the position of the reference spherical body serving as the reference of the position of the measuring means is fixed so as not to move during a continuous series of measuring operations.

【0016】基準平面体は、基準球面体と同様に、前記
測定手段による位置測定ができる測定点が、少なくとも
3点以上取れるだけの平面を備えていれば、その平面形
状および面積は自由に設定できる。基準平面体は、基準
球面体と同様の材料で形成される。基準平面体は、被測
定物の定置面に対して、一定の位置および姿勢で配置さ
れていれば、定置面と同じ面にあっても、定置面から離
れた位置にあっても構わない。基準平面体は、定置面に
対して、平行に配置されていてもよいし、傾斜していて
もよく、その傾斜角度も任意に設定することができる。
基準平面体も、基準球面体と同様に、定盤などの定置面
上で複数位置に着脱自在に取り付けられるようになって
いてもよい。基準平面体と基準球面体とを一体的に作製
しておいて、両者を一緒に取り扱えるようにすることも
できる。
In the same manner as the reference spherical body, if the reference plane has a plane capable of taking at least three or more measurement points at which the position can be measured by the measuring means, its planar shape and area can be freely set. it can. The reference plane body is formed of the same material as the reference spherical body. The reference plane body may be located on the same plane as the stationary plane or at a position apart from the stationary plane as long as it is arranged at a fixed position and posture with respect to the stationary plane of the device under test. The reference plane body may be arranged parallel to the stationary surface, or may be inclined, and the inclination angle can be set arbitrarily.
Like the reference spherical body, the reference plane body may be detachably attached to a plurality of positions on a stationary surface such as a surface plate. The reference plane body and the reference spherical body may be integrally formed so that both can be handled together.

【0017】上記基準平面体の表面で表す基準平面と、
基準球面体の球中心で表す原点とを基準にして、ひとつ
の座標系が決定される。この座標系は、測定手段の移動
位置や姿勢の変動によっては変わることのない、絶対的
な座標系である。
A reference plane represented by the surface of the reference plane,
One coordinate system is determined based on the origin represented by the spherical center of the reference spherical body. This coordinate system is an absolute coordinate system that does not change depending on the movement position or the posture of the measuring means.

【0018】本発明では、前記測定手段で、基準球面体
と基準平面体に対する測定を行うことで、測定手段自身
の位置と姿勢を知る。
In the present invention, the position and orientation of the measuring means are known by measuring the reference spherical body and the reference plane by the measuring means.

【0019】すなわち、測定手段で、基準球面体および
基準平面体のそれぞれの表面上の少なくとも3点の測定
点について、その位置を測定する。ここで、測定される
のは、測定手段の位置および姿勢を基準にした相対的な
位置である。
That is, the measuring means measures the positions of at least three measurement points on the surfaces of the reference spherical body and the reference plane body. Here, what is measured is a relative position based on the position and orientation of the measuring means.

【0020】ここで測定された基準球面体上の少なくと
も3点の位置から、幾何学上の法則にしたがって適切な
演算処理を行うことで、測定手段に対する基準球面体の
球中心の相対位置が求められる。このような演算処理
は、測定手段の制御装置に組み込まれたマイクロコンピ
ュータなどの演算処理装置と演算処理プログラムを用い
て行えばよい。なお、基準球面体の球中心を求めるに
は、理論的には少なくとも3点の位置と基準球面体の半
径が判っていればよいが、4点の位置データがあれば半
径が判らなくても球中心は求まる。また、理論的に必要
な数を超える位置の測定を行うことで、測定位置の誤差
を少なくすることもできる。基準平面体上の3点の位置
から測定手段に対する基準平面体の相対姿勢が求められ
る。この際の演算処理も、基準球面体の場合と同様に行
われる。
From the measured positions of at least three points on the reference spherical body, the relative position of the center of the spherical surface of the reference spherical body with respect to the measuring means is determined by performing appropriate arithmetic processing in accordance with the law of geometry. Can be Such arithmetic processing may be performed using an arithmetic processing device such as a microcomputer incorporated in the control device of the measuring means and an arithmetic processing program. Note that in order to find the center of the sphere of the reference sphere, it is theoretically sufficient to know the positions of at least three points and the radius of the reference sphere. The center of the sphere is found. In addition, by measuring the number of positions exceeding the theoretically necessary number, errors in the measured positions can be reduced. From the positions of the three points on the reference plane, the relative attitude of the reference plane to the measuring means is determined. The calculation process at this time is performed in the same manner as in the case of the reference spherical body.

【0021】測定手段に対する基準球面体の球中心の相
対位置と、測定手段に対する基準平面体の相対姿勢の情
報をもとにして、基準球面体および基準平面体で決定さ
れる絶対座標系における、測定手段の位置と姿勢が求め
られる。
Based on the relative position of the spherical center of the reference spherical body with respect to the measuring means and the relative attitude of the reference plane with respect to the measuring means, in the absolute coordinate system determined by the reference spherical body and the reference plane, The position and orientation of the measuring means are determined.

【0022】得られた測定手段の位置と姿勢の情報をも
とに、測定手段の移動制御系における測定手段の位置お
よび姿勢の情報を修正したり、測定データの補正を行
う。
Based on the obtained information on the position and orientation of the measuring means, the information on the position and attitude of the measuring means in the movement control system of the measuring means is corrected, and the measurement data is corrected.

【0023】[0023]

【作用】座標の原点位置と座標軸の方向を示す平面とを
決めれば、ひとつの座標系が決定できる。したがって、
定置された基準球面体の球中心を原点とし、基準平面体
の表面を基準平面とする座標系が決定できる。
The coordinate system can be determined by determining the origin position of the coordinates and the plane indicating the direction of the coordinate axes. Therefore,
A coordinate system can be determined in which the center of the fixed reference spherical body is the origin and the surface of the reference plane is the reference plane.

【0024】つぎに、球面上で少なくとも3点の位置が
判れば、その球中心の位置が求められる。すなわち、球
面上の3点の位置と球の半径、あるいは、球面上の4点
の位置が決まれば、球中心は確定する。また、平面上で
3点の位置が判れば、その平面の傾きすなわち姿勢が求
められる。
Next, if the positions of at least three points on the spherical surface are known, the position of the center of the sphere is obtained. That is, if the positions of three points on the spherical surface and the radius of the sphere or the positions of four points on the spherical surface are determined, the center of the sphere is determined. If the positions of the three points on the plane are known, the inclination of the plane, that is, the posture, is obtained.

【0025】そこで、測定手段とは別に定置された基準
球面体と基準平面体に対して、測定手段で、それぞれの
表面の少なくとも3点の位置を測定すれば、測定手段に
対する、基準球面体の球中心の相対位置と基準平面体の
平面の相対姿勢とが求められる。ここで、基準球面体の
球中心と基準平面体の平面とで決定される絶対座標系を
基準にすれば、この座標系での、測定手段の位置と姿勢
が求められることになる。
Therefore, the position of at least three points on each surface of the reference spherical body and the reference plane body, which are fixed separately from the measuring means, is measured. The relative position of the center of the sphere and the relative posture of the plane of the reference plane are determined. Here, based on an absolute coordinate system determined by the center of the reference spherical body and the plane of the reference plane, the position and orientation of the measuring means in this coordinate system can be obtained.

【0026】なお、絶対座標系の原点を求める際に、基
準球面体上の点の位置を測定する方法を採用すれば、原
点そのものを設けておいて、測定手段でその位置を測定
するのに比べて、はるかに操作が容易で、しかも、正確
である。これは、例えば、定盤などの表面に原点表示を
設けていても、測定手段を正確に原点表示位置に合わせ
て測定を行うのは難しく、しかも、物理的に形成された
原点表示には、一定の広がりがあるため、厳密な意味で
の原点を測定することは困難である。しかし、一定の大
きさのある基準球面体上の任意の点について、その位置
を測定するのは容易である。また、複数の測定点の位置
をどこに選んでも、それらの測定点の位置から演算され
る球中心の位置は、数学的に厳密に決められるのであ
る。
If the method of measuring the position of a point on the reference spherical body is used to determine the origin of the absolute coordinate system, the origin itself is provided and the position can be measured by the measuring means. It is much easier to operate and more accurate. This is because, for example, even if the origin display is provided on the surface of a surface plate or the like, it is difficult to measure the measurement means accurately at the origin display position, and moreover, the physically formed origin display has Due to the constant extent, it is difficult to measure the origin in a strict sense. However, it is easy to measure the position of an arbitrary point on a reference spherical body having a certain size. In addition, no matter where the positions of the plurality of measurement points are selected, the position of the center of the sphere calculated from the positions of the measurement points is mathematically strictly determined.

【0027】このようにして、測定手段の正確な位置と
姿勢が求められれば、測定手段の据え付け時に、据え付
け誤差があったり、測定手段とその移動機構を構成する
部材に製作誤差や取付誤差があったり、移動機構内部で
の測定手段の位置決定あるいはと制御に誤差やばらつき
があったりしても、これらの誤差やばらつきによる測定
結果への影響を、容易に修正することができる。
If the accurate position and orientation of the measuring means are determined in this way, there is an installation error when the measuring means is installed, or a manufacturing error or an installation error occurs in the members constituting the measuring means and its moving mechanism. Even if there is an error or variation in the position determination and / or control of the measuring means inside the moving mechanism, the influence of the error or variation on the measurement result can be easily corrected.

【0028】すなわち、測定手段の据え付けなどを、物
理的に正確に調整したり修正したりする作業を行わなく
ても、測定手段の位置および姿勢に関する情報を、測定
時の演算要素に加えるなどの情報の処理を行うだけで、
測定手段の位置および姿勢のずれが修正されて、測定精
度の向上が果たせることになる。
That is, information on the position and orientation of the measuring means can be added to the calculation elements at the time of measurement without performing the work of physically adjusting or correcting the installation of the measuring means physically and accurately. Just process the information,
The displacement of the position and orientation of the measuring means is corrected, and the measurement accuracy can be improved.

【0029】また、連続した測定を行って、測定手段の
移動に伴う位置誤差が累積したりしても、適当な段階
で、前記した基準球面体と基準平面体を利用した、測定
手段の位置および姿勢の測定を行って、測定手段の位置
および姿勢の情報を修正しておけば、誤差が累積して測
定精度に大きな影響を与えることがない。
Further, even if the position error due to the movement of the measuring means is accumulated by performing continuous measurement, the position of the measuring means using the reference spherical body and the reference plane body at an appropriate stage. If the information on the position and orientation of the measuring means is corrected by measuring the position and orientation of the measuring means, errors do not accumulate and do not greatly affect the measurement accuracy.

【0030】被測定物の形状に合わせて、測定手段の測
定方向を傾けるような操作を行ったときにも、前記した
基準球面体と基準平面体を利用した、測定手段の位置お
よび姿勢の測定を行って、測定方向の傾きに伴う位置お
よび姿勢の情報を修正しておけば、測定方向を傾けた状
態でも正確な測定が可能になる。しかも、ひとつの被測
定物に対して、測定方向を傾けない状態と傾けた状態あ
るいは傾き角度が異なる状態を混在させて測定を行って
も、それらの異なる状態での測定結果を、それぞれの状
態での測定手段の位置および姿勢による修正を加えるこ
とで、全ての測定結果を同じように処理することが可能
になる。
When the operation of tilting the measuring direction of the measuring means is performed in accordance with the shape of the object to be measured, the position and orientation of the measuring means can be measured using the reference spherical body and the reference plane body. Is performed to correct the information on the position and orientation associated with the inclination in the measurement direction, accurate measurement can be performed even when the measurement direction is inclined. In addition, even if a single DUT is measured in a state where the measurement direction is not tilted and in a state where the measurement direction is tilted or a state where the tilt angle is different, the measurement results in those different states are converted to the respective states. By making corrections based on the position and orientation of the measuring means in (1), all the measurement results can be processed in the same manner.

【0031】[0031]

【実施例】ついで、本発明の実施例について、図面を参
照しながら以下に説明する。
Next, an embodiment of the present invention will be described below with reference to the drawings.

【0032】図1は三次元形状計測装置の全体構造を表
している。硬質金属やセラミックスその他の剛性の大き
な材料で作製された厚板状をなす定盤10の上に、門型
の支持構造22、走行支柱24、旋回部25、回転腕2
6などを介して、非接触式測定手段である測定器20が
取り付けられている。支持構造22は、定盤10の中央
を横断して両端まで水平方向に梁状に設けられており、
支持構造22に沿って走行支柱24が自由に水平移動す
るようになっている。走行支柱24の下部で、旋回部2
5が水平旋回する。旋回部25に対して水平方向に延び
る回転腕26は先端の測定器20とともに、垂直方向に
回転する。これら、走行支柱24、旋回部25、回転腕
26の運動を組み合わせることで、測定器20は、定盤
10上の任意の場所に移動でき、また、測定器20の傾
きも自由に変更できるようになっている。
FIG. 1 shows the entire structure of the three-dimensional shape measuring apparatus. A gate-shaped support structure 22, a traveling support post 24, a turning portion 25, and a rotating arm 2 are placed on a platen 10 made of a hard plate made of hard metal, ceramics, or other highly rigid material.
6 and the like, a measuring instrument 20 as a non-contact type measuring means is attached. The support structure 22 is provided in a beam shape in the horizontal direction to both ends across the center of the surface plate 10,
The traveling support 24 can freely move horizontally along the support structure 22. In the lower part of the traveling support 24, the turning part 2
5 turns horizontally. The rotating arm 26 extending in the horizontal direction with respect to the turning portion 25 rotates in the vertical direction together with the measuring instrument 20 at the tip. By combining the movements of the traveling support 24, the turning portion 25, and the rotating arm 26, the measuring device 20 can be moved to an arbitrary position on the surface plate 10 and the inclination of the measuring device 20 can be freely changed. It has become.

【0033】定盤10の上には、三次元形状を計測する
被測定物Xが置かれている。被測定物Xの側方で、定盤
10の上には、基準球面体40と基準平面体30が取り
付けられている。基準平面体30は、薄い矩形のセラミ
ック板からなり、表面が正確な平面に仕上げられてい
る。基準平面体30の寸法の1例を記載すると、5×1
0cm程度のものであり、その平面度は約2μm程度に仕
上げられている。基準平面体30の表面は、定盤10の
表面に対して平行状態に取り付けられている。
An object X for measuring a three-dimensional shape is placed on the surface plate 10. A reference spherical body 40 and a reference plane body 30 are mounted on the surface plate 10 on the side of the object X. The reference plane 30 is made of a thin rectangular ceramic plate, and the surface is finished to an accurate plane. An example of the dimensions of the reference plane 30 is 5 × 1
It is about 0 cm and has a flatness of about 2 μm. The surface of the reference plane 30 is attached in parallel with the surface of the surface plate 10.

【0034】基準球面体40は、セラミックからなる球
体であり、底部に接合された垂直な支持軸42で、定盤
10の表面よりも少し高い位置に取り付けられている。
The reference spherical body 40 is a spherical body made of ceramic, and is attached to a position slightly higher than the surface of the surface plate 10 by a vertical support shaft 42 joined to the bottom.

【0035】上記のような構造の測定装置を用いて、被
測定物Xの三次元形状を計測する方法を説明する。
A method for measuring the three-dimensional shape of the object X using the measuring device having the above structure will be described.

【0036】まず、測定器20で、基準平面体30の表
面上の3点S1 〜S3 に対する位置測定を行う。平面上
の3点の位置が決まれば、その平面の姿勢あるいは傾き
が判るから、測定器20に対する基準平面体30の相対
的な姿勢あるいは傾きが求められる。実際には、基準平
面体30は定盤10に固定されているから、測定器20
に対する基準平面体30の相対的な姿勢や傾きとは、基
準平面体30あるいは定盤10に対する測定器20の姿
勢あるいは傾きを表すことになる。
First, the measuring device 20 measures the positions of three points S 1 to S 3 on the surface of the reference plane 30. When the positions of the three points on the plane are determined, the posture or inclination of the plane is known, so that the relative posture or inclination of the reference plane 30 with respect to the measuring instrument 20 is obtained. In practice, since the reference plane 30 is fixed to the surface plate 10, the measuring device 20
The relative posture or inclination of the reference plane 30 with respect to the reference plane represents the posture or inclination of the measuring device 20 with respect to the reference plane 30 or the surface plate 10.

【0037】つぎに、測定器20で、基準球面体40の
表面上の3点P1 〜P3 に対する位置測定を行う。球面
上の3点の位置が決まれば、基準球面体40の半径は予
め判っているので、基準球面体40の球中心の位置が判
る。この状態を、図2に詳しく説明しているおり、3点
1 〜P3 にスポット光Rを当てて、それぞれの位置を
求めれば、それらの3点P1 〜P3 が表面に存在する特
定半径の球は一義的に確定することになる。このように
して、測定器20に対する基準球面体40の球中心Cの
位置が求められる。このことは、基準球面体40の球中
心Cを原点とすれば、この原点Cに対する測定器20の
位置が求められることになる。
Next, the measuring device 20 measures the positions of three points P 1 to P 3 on the surface of the reference spherical body 40. When the positions of the three points on the spherical surface are determined, the radius of the reference spherical body 40 is known in advance, so that the position of the center of the reference spherical body 40 is known. This state is described in detail in FIG. 2. When the spot light R is applied to the three points P 1 to P 3 to determine the respective positions, the three points P 1 to P 3 are present on the surface. A sphere with a specific radius is uniquely determined. Thus, the position of the spherical center C of the reference spherical body 40 with respect to the measuring device 20 is obtained. This means that, if the center C of the spherical surface of the reference spherical body 40 is set as the origin, the position of the measuring device 20 with respect to the origin C is obtained.

【0038】以上の結果、定盤10すなわち定置面に固
定された基準平面に対する測定器20の正確な姿勢ある
いは傾きと、基準球面体40の球中心Cを原点とする測
定器20の正確な位置が決定される。言い換えると、定
置面側に固定された基準平面と原点で決定される絶対座
標系での測定器20の位置と姿勢が決定される。
As a result, the accurate attitude or inclination of the measuring device 20 with respect to the base 10, ie, the reference plane fixed to the stationary surface, and the accurate position of the measuring device 20 with the center C of the reference spherical body 40 as the origin. Is determined. In other words, the position and orientation of the measuring device 20 in the absolute coordinate system determined by the reference plane fixed to the stationary surface and the origin are determined.

【0039】測定器20は、その移動機構である走行支
柱24や旋回部25の走行量や旋回量をもとにして、移
動機構内部での位置や姿勢が制御されたり、移動機構の
内部に備えた各種センサで測定器20の位置を検知した
りしている。この移動機構の内部の座標系すなわち制御
座標系での測定器20の位置および姿勢の情報と、前記
した基準平面や原点を基準とした絶対座標系での位置や
姿勢とのずれを求めて、移動機構側の制御座標系を修正
する。すなわち、制御座標系の原点や軸方向の情報を修
正するのである。移動機構自体の据え付けを物理的ある
いは機械的に調整したりするのではなく、移動機構の制
御装置に組み込まれている制御プログラムなどの内部情
報としての制御座標系の修正だけを行えばよいのであ
る。移動機構側の制御座標系が正確に修正されれば、そ
の後は、移動機構側の制御座標系のみを用いて、測定器
20の移動制御や位置、姿勢の決定を行うことができ
る。
The measuring device 20 controls the position and orientation of the inside of the moving mechanism based on the traveling amount and the turning amount of the traveling support 24 and the turning portion 25 as the moving mechanism. The position of the measuring device 20 is detected by various sensors provided. The deviation between the information on the position and orientation of the measuring device 20 in the coordinate system inside the moving mechanism, that is, the control coordinate system, and the position and orientation in the absolute coordinate system based on the reference plane and the origin are obtained, Correct the control coordinate system on the moving mechanism side. That is, the information of the origin and the axial direction of the control coordinate system is corrected. Instead of physically or mechanically adjusting the installation of the moving mechanism itself, it is only necessary to modify the control coordinate system as internal information such as a control program incorporated in the control device of the moving mechanism. . If the control coordinate system on the moving mechanism side is accurately corrected, the movement control of the measuring device 20 and the determination of the position and orientation can be performed using only the control coordinate system on the moving mechanism side.

【0040】測定器20による被測定物Xに対する測定
作業は、通常の三次元形状の計測方法と同様に行う。具
体的には、被測定物X上の測定点Qに対して、測定器2
0からスポット光を照射し、その反射光を捉えること
で、測定器20から測定点Qまでの距離すなわち測定器
20からの相対位置が判る。このときの測定器20の位
置および姿勢は、上記測定点Qでの測定値に、前記した
移動機構内部での制御座標系での測定器20の移動量
と、制御座標系と絶対座標系とのずれによる修正を加え
られているので、常に正確な測定結果が得られることに
なる。
The measuring operation on the object X to be measured by the measuring device 20 is performed in the same manner as in a normal three-dimensional shape measuring method. Specifically, the measuring device 2
By irradiating the spot light from 0 and catching the reflected light, the distance from the measuring device 20 to the measuring point Q, that is, the relative position from the measuring device 20 can be determined. At this time, the position and orientation of the measuring device 20 are obtained by adding the measured value at the measuring point Q to the moving amount of the measuring device 20 in the control coordinate system inside the moving mechanism, the control coordinate system and the absolute coordinate system. Since the correction is made by the deviation, accurate measurement results can always be obtained.

【0041】なお、測定器20を移動させながら測定を
行っているうちに、移動機構内部での移動量の誤差など
が累積して、正確な位置および姿勢との間にずれが生じ
る場合がある。そのような場合には、一定時間の測定を
行う毎に、前記した基準球面体40および基準平面体3
0の測定による座標系の修正を行えば、測定器20の移
動に伴う誤差の累積を解消することができる。
During the measurement while moving the measuring device 20, errors in the amount of movement inside the moving mechanism may accumulate, causing a deviation from an accurate position and posture. . In such a case, every time measurement is performed for a certain period of time, the reference spherical body 40 and the reference plane
If the coordinate system is corrected by the measurement of 0, the accumulation of errors due to the movement of the measuring device 20 can be eliminated.

【0042】被測定物Xが、平坦な面のみからなる物体
であれば、測定器20から垂直下方に照射されたスポッ
ト光Rの反射光を確実に測定器20で捉えることができ
るが、被測定物Xが、複雑な曲面や傾斜面を有している
場合には、垂直下方を向いた測定器20では反射光が捉
え難くなる。
If the object X is an object consisting of only a flat surface, the reflected light of the spot light R radiated vertically downward from the measuring device 20 can be reliably captured by the measuring device 20. When the measurement object X has a complicated curved surface or inclined surface, it is difficult for the measuring device 20 facing vertically downward to catch the reflected light.

【0043】そこで、被測定物Xの形状に合わせて、回
転腕26を旋回させ、測定器20を傾けて、スポット光
Rの照射方向を変えれば、被測定物Xの傾斜面や垂直面
の測定点Qについても、正確な位置の測定が行える。こ
のように、測定器20を傾けたときには、前記した基準
球面体40および基準平面体30の測定による座標系の
修正を行っておけば、測定器20を傾けない状態と同じ
ように、正確な測定が行える。ひとつの被測定物Xに対
して、場所によって、測定器20の傾きを変えながら、
被測定物X全体の三次元形状を正確に測定することがで
きる。
Therefore, if the rotating arm 26 is turned in accordance with the shape of the object X and the measuring device 20 is tilted to change the irradiation direction of the spot light R, the inclined surface and the vertical surface of the object X can be measured. As for the measurement point Q, accurate position measurement can be performed. As described above, when the measuring device 20 is tilted, if the coordinate system is corrected by the measurement of the reference spherical body 40 and the reference plane 30 as described above, accurate measurement can be performed in the same manner as when the measuring device 20 is not tilted. Measurement can be performed. While changing the inclination of the measuring device 20 with respect to one object X depending on the location,
The three-dimensional shape of the whole object X can be accurately measured.

【0044】[0044]

【発明の効果】以上に述べた、本発明にかかる三次元形
状の計測方法および装置によれば、前記した基準球面体
および基準平面体を利用することで、非接触式測定手段
の位置および姿勢を正確に知ることができる。
According to the method and the apparatus for measuring a three-dimensional shape according to the present invention described above, the position and orientation of the non-contact type measuring means are obtained by utilizing the above-mentioned reference spherical body and reference plane body. Can be known exactly.

【0045】その結果、測定手段およびその移動機構の
据え付け誤差などに起因する測定の誤差を容易に修正す
ることが可能である。測定手段や移動機構の位置や姿勢
を物理的に直すのではなく、単に、位置や姿勢を決める
座標系の情報を修正するだけであるから、修正作業は簡
単で、しかも、精度の高い修正が可能である。
As a result, it is possible to easily correct a measurement error caused by an installation error of the measuring means and its moving mechanism. Rather than physically correcting the position and orientation of the measuring means and moving mechanism, it simply corrects information in the coordinate system that determines the position and orientation. It is possible.

【0046】特に、被測定物の形状に合わせて、測定手
段を傾けたりしたときでも、その傾きに伴う位置や姿勢
の修正を容易に行うことができるので、測定器を被測定
物上の各測定点にとって最も好ましい位置および姿勢に
移動させて、正確な測定を行うことが可能になる。
In particular, even when the measuring means is tilted in accordance with the shape of the object to be measured, the position and orientation associated with the inclination can be easily corrected. It is possible to perform accurate measurement by moving to the position and orientation most preferable for the measurement point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を表す斜視図FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】基準球面体の位置測定方法を説明する斜視図FIG. 2 is a perspective view illustrating a method for measuring the position of a reference spherical body.

【符号の説明】[Explanation of symbols]

10 定盤(定置面) 20 測定器(非接触式測定手段) 22〜26 移動機構 30 基準平面体 40 基準球面体 C 球中心 Q 被測定物上の測定点 P1 〜P3 基準球面体上の測定点 S1 〜S3 基準平面体上の測定点 X 被測定物10 plate (stationary surface) 20 meter (non-contact measurement means) 22 to 26 moving mechanism 30 reference flat body 40 reference measurement points on the sphere body C ball center Q DUT P 1 to P 3 a reference sphere bodies on Measurement points S 1 to S 3 Measurement points on the reference plane X X DUT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 誠司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭60−205311(JP,A) 特開 昭63−96504(JP,A) 特開 平1−202611(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 G01B 21/00 - 21/32 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiji Hamano 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-60-205311 (JP, A) JP-A-63- 96504 (JP, A) JP-A-1-202611 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 G01B 21/00-21/32

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移動自在な非接触式測定手段で、被測定
物上の各点の位置を測定して、被測定物の三次元形状を
計測する方法において、予め定置された基準球面体およ
び基準平面体のそれぞれの表面上の少なくとも3点につ
いて、前記測定手段で測定手段に対する相対位置を測定
し、ここで測定された基準球面体上の各点の位置から測
定手段に対する基準球面体の球中心の相対位置を求め、
かつ、基準平面体上の各点の位置から測定手段に対する
基準平面体の相対姿勢を求め、これらの結果をもとにし
て、測定手段の位置および姿勢に関する情報を得ること
を特徴とする三次元形状計測方法。
In a method for measuring the position of each point on an object to be measured by a movable non-contact type measuring means and measuring the three-dimensional shape of the object to be measured, a reference spherical body fixed in advance is provided. At least three points on each surface of the reference plane are measured by the measurement means relative to the measurement means, and the position of each point on the reference sphere measured here is used to measure the sphere of the reference sphere relative to the measurement means. Find the relative position of the center,
And determining the relative orientation of the reference plane relative to the measuring means from the position of each point on the reference plane, and obtaining information on the position and orientation of the measuring means based on these results. Shape measurement method.
【請求項2】 請求項1の方法において、基準球面体お
よび/または基準平面体の定置位置が変更できるように
なっている三次元形状計測方法。
2. The three-dimensional shape measuring method according to claim 1, wherein a fixed position of the reference spherical body and / or the reference plane body can be changed.
【請求項3】 請求項1または2の方法において、非接
触式測定手段が、レーザを用いた手段である三次元形状
計測方法。
3. The three-dimensional shape measuring method according to claim 1, wherein the non-contact measuring means is a means using a laser.
【請求項4】 被測定物を定置する定置面と、定置面お
よび被測定物に対して移動自在で、被測定物上の各点の
位置を測定する非接触式測定手段とを備えた三次元形状
計測装置において、前記定置面側に、前記非接触式測定
手段でその表面上の少なくとも3点の位置を測定できる
基準球面体および基準平面体を備えていることを特徴と
する三次元形状計測装置。
4. A tertiary system comprising: a stationary surface on which an object to be measured is fixed; and a non-contact type measuring means which is movable with respect to the stationary surface and the object to be measured and measures the position of each point on the object to be measured. In the original shape measuring device, a three-dimensional shape is provided on the stationary surface side with a reference spherical body and a reference plane body capable of measuring positions of at least three points on the surface by the non-contact type measuring means. Measuring device.
JP03696694A 1994-03-08 1994-03-08 Three-dimensional shape measurement method and device Expired - Fee Related JP3189557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03696694A JP3189557B2 (en) 1994-03-08 1994-03-08 Three-dimensional shape measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03696694A JP3189557B2 (en) 1994-03-08 1994-03-08 Three-dimensional shape measurement method and device

Publications (2)

Publication Number Publication Date
JPH07243822A JPH07243822A (en) 1995-09-19
JP3189557B2 true JP3189557B2 (en) 2001-07-16

Family

ID=12484485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03696694A Expired - Fee Related JP3189557B2 (en) 1994-03-08 1994-03-08 Three-dimensional shape measurement method and device

Country Status (1)

Country Link
JP (1) JP3189557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213527B2 (en) * 2003-06-25 2009-01-21 株式会社日立製作所 3D shape measuring device
JP4791118B2 (en) * 2005-09-16 2011-10-12 株式会社ミツトヨ Image measuring machine offset calculation method
JP6440696B2 (en) * 2013-06-13 2018-12-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting the orientation of at least one object

Also Published As

Publication number Publication date
JPH07243822A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US6067165A (en) Position calibrating method for optical measuring apparatus
JP5539865B2 (en) Scan head calibration apparatus and method
JP4504818B2 (en) Workpiece inspection method
US20050154548A1 (en) Method for calibration of a 3D measuring device
JP2004518123A (en) Method and apparatus for calibrating a non-contact shape measurement sensor with respect to an external coordinate system
JPH08500460A (en) Method and apparatus for determining the three-dimensional position of a movable object such as a sensor or tool carried by a robot
JP4992078B2 (en) Inclination angle measuring device, machine tool equipped with the same, and inclination angle calibration method for machine tool
US20140180620A1 (en) Calibration Artifact and Method of Calibrating a Coordinate Measuring Machine
US7415775B2 (en) Orientable probe
JP7120723B2 (en) laser scanner system
US7199881B2 (en) Apparatus for and method of measurements of components
JPH04504469A (en) Device for forming or defining the location of measurement points
JPS6232302A (en) Three-dimensional measuring method and device
JP3189557B2 (en) Three-dimensional shape measurement method and device
US20210116241A1 (en) Tilt Detecting Device And Surveying Instrument
CN114018174B (en) Complex curved surface contour measuring system
JPH07260452A (en) Three dimensional shape measuring method
JP2933187B2 (en) Three-dimensional measuring devices
JP3548506B2 (en) Electronic level and horizontal stage using the same
JP4494189B2 (en) Accuracy measurement method and calibration method of non-contact image measuring machine
JP5051567B2 (en) Surface shape displacement measuring device and measuring method
JP2504561B2 (en) Shape measuring device
JP3478387B2 (en) Edge position detecting method and device, and edge distance measuring method and device
JPH0557642U (en) Center of gravity position measuring device
JP3536020B2 (en) Straightness error calibration method and measuring jig

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees