JPH07260452A - Three dimensional shape measuring method - Google Patents

Three dimensional shape measuring method

Info

Publication number
JPH07260452A
JPH07260452A JP4734594A JP4734594A JPH07260452A JP H07260452 A JPH07260452 A JP H07260452A JP 4734594 A JP4734594 A JP 4734594A JP 4734594 A JP4734594 A JP 4734594A JP H07260452 A JPH07260452 A JP H07260452A
Authority
JP
Japan
Prior art keywords
measured
measuring
measurement
dimensional shape
spherical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4734594A
Other languages
Japanese (ja)
Other versions
JP3307060B2 (en
Inventor
Takeshi Nomura
剛 野村
Seiji Hamano
誠司 濱野
Kohei Hamamura
公平 浜村
Takashi Ichiyanagi
高畤 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04734594A priority Critical patent/JP3307060B2/en
Publication of JPH07260452A publication Critical patent/JPH07260452A/en
Application granted granted Critical
Publication of JP3307060B2 publication Critical patent/JP3307060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide a method in which the three dimensional shape of an object to be measured can be measured precisely by a method wherein, when one object to be measured is measured by being divided into a plurality of times of measuring operations and pieces of measured data obtained by the respective measuring operations are composed, both pieces of measured data are composed precisely and simply. CONSTITUTION:Out of a plurality of regions which are set on the surface of an object 30 to be measured, a partially overlapped range D is formed in adjacent regions A, B, criterion spherical bodies 40 are arranged in at least three places in the overlapped range D, positions of at least three points on the surface of every criterion spherical body 40 are measured by a measuring means 22 in measurements in the individual regions A, B, the sphere center of every criterion spherical body 40 is found, and measured results of the object 30 to be measured in the individual regions A, B are composed by making use of the sphere center of every criterion spherical body 40 as a criterion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三次元形状計測方法に
関し、詳しくは、各種物体の三次元形状を計測する方法
であって、スポット光などによる非接触式の測定手段
で、被測定物の表面上の各点の位置を測定し、これら各
点の位置情報を総合して被測定物の三次元形状を計測す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring method, and more particularly to a method for measuring the three-dimensional shape of various objects, which is a non-contact type measuring means such as spot light. The present invention relates to a method of measuring the position of each point on the surface of the, and integrating the position information of these points to measure the three-dimensional shape of the measured object.

【0002】[0002]

【従来の技術】非接触式測定手段で被測定物の三次元形
状を計測する方法は、被測定物の三次元形状を正確かつ
迅速に計測できる方法として、各種技術分野で利用され
ている。また、このような三次元形状の計測方法が適用
できる計測装置も各種提案されている。
2. Description of the Related Art A method of measuring a three-dimensional shape of an object to be measured by a non-contact type measuring means is used in various technical fields as a method of accurately and quickly measuring the three-dimensional shape of the object to be measured. In addition, various measuring devices to which such a three-dimensional shape measuring method can be applied have been proposed.

【0003】例えば、被測定物を載置する定盤の上方
に、非接触式測定手段の測定器が、定盤と平行な面に沿
って移動自在に設置された計測装置がある。測定器を前
後左右に移動させながら、それぞれの位置で、測定器の
真下に位置する被測定物上の点の位置を測定する。非接
触式測定手段の具体例としては、例えば、測定器から真
下に向けてスポット光を照射し、被測定物の表面で反射
された反射光を再び測定器で受光して、その受光位置か
ら、三角測量の原理で、測定器から被測定物までの距離
を測定するものがある。測定器から被測定物までの距離
を、測定器から定盤面までの距離から差し引けば、被測
定物のその点における高さが求められる。被測定物の高
さを被測定物上の多数の点について求めれば、被測定物
全体の三次元形状が計測できることになる。
For example, there is a measuring device in which a measuring device of non-contact type measuring means is installed above a surface plate on which an object to be measured is placed so as to be movable along a plane parallel to the surface plate. While moving the measuring instrument forward, backward, leftward and rightward, at each position, the position of a point on the object to be measured which is located directly under the measuring instrument is measured. As a specific example of the non-contact type measuring means, for example, a spot light is emitted from the measuring device to a position directly below, and the reflected light reflected by the surface of the object to be measured is received again by the measuring device, and from the light receiving position. , There is one that measures the distance from the measuring device to the object to be measured based on the principle of triangulation. By subtracting the distance from the measuring device to the object to be measured from the distance from the measuring device to the surface of the surface plate, the height of the object to be measured at that point can be obtained. If the height of the object to be measured is obtained at many points on the object to be measured, the three-dimensional shape of the entire object to be measured can be measured.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記した従
来における三次元形状計測装置では、被測定物の寸法が
大きくなると、計測が全く出来なかったり、計測結果が
不正確になるという問題があった。
However, the above-described conventional three-dimensional shape measuring apparatus has a problem that when the size of the object to be measured becomes large, the measurement cannot be performed at all or the measurement result becomes inaccurate. .

【0005】まず、被測定物は、定盤の上に載せられる
程度の大きさでなければならない。定盤の上に載って
も、測定器による測定が可能な範囲内に存在していなけ
ればならない。測定器は、レールや梁に沿って移動自在
に取り付けられていたり、伸縮あるいは回転自在な腕や
支柱に取り付けてあったりして、ある程度の範囲を移動
できるようにはなっているが、その移動範囲には限界が
ある。また、測定器の移動範囲を広くするほど、正確に
移動制御するのが難しく、測定器の位置や移動量の誤差
が増えるので、計測精度が低下するという問題が発生す
る。
First, the object to be measured must be large enough to be placed on a surface plate. Even if it is placed on the surface plate, it must be within the range that can be measured by the measuring instrument. The measuring instrument is attached so that it can be moved along the rails or beams, or is attached to the arm or support that can be expanded or contracted or rotated, so that it can be moved within a certain range. There is a limit to the range. Further, the wider the moving range of the measuring device, the more difficult it is to accurately control the movement, and the error in the position or the moving amount of the measuring device increases, so that the measurement accuracy deteriorates.

【0006】そのため、ひとつの被測定物を、2回に分
けて測定する方法が考えられた。まず、被測定物の半分
が、測定器の測定範囲に入るようにして、定盤の上に配
置し、測定器で測定できる範囲だけの計測を行う。つぎ
に、被測定物の残りの半分が、測定範囲に入るように、
被測定物を移動させて、残りの半分の測定を行うのであ
る。被測定物の半分づつの測定データを、互いの境界部
分でつなぎ合わせれば、被測定物の全体の三次元形状が
測定できるという方法である。
Therefore, a method of measuring one object to be measured in two times has been considered. First, half of the object to be measured is placed on the surface plate so that half of the object to be measured falls within the measuring range of the measuring instrument, and measurement is performed only within the range that can be measured by the measuring instrument. Next, so that the other half of the measured object is in the measurement range,
The object to be measured is moved and the other half is measured. This is a method in which the measurement data of each half of the object to be measured are connected at the boundary portions thereof so that the three-dimensional shape of the entire object to be measured can be measured.

【0007】ところが、この方法では、被測定物の半分
づつの測定データをつなぎ合わせるのが難しく、両者の
境界部分がスムーズにつながらないという問題があり、
改善が要望されていた。
However, this method has a problem that it is difficult to connect the measurement data for each half of the object to be measured, and the boundary between the two is not smoothly connected.
Improvement was requested.

【0008】そこで、本発明の課題は、上記した従来技
術の問題点を解消し、ひとつの被測定物を複数回に分け
て測定を行い、それぞれの測定で得られた測定データを
合成する際に、両方の測定データを正確かつ簡単に合成
して、被測定物の三次元形状を正確に測定できる方法を
提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to measure one object by dividing it into a plurality of times, and combine the measurement data obtained in each measurement. Another object of the present invention is to provide a method capable of accurately and easily synthesizing both measurement data and accurately measuring the three-dimensional shape of an object to be measured.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する、本
発明にかかる三次元形状計測方法は、移動自在な非接触
式測定手段で、被測定物上の各点の位置を測定して、被
測定物の三次元形状を計測する際に、被測定物の表面を
複数領域に分けて、各領域毎に別々に測定を行い、それ
ぞれの測定結果を合成して被測定物全体の三次元形状を
得る方法において、前記被測定物の表面に設定する複数
領域のうち、隣接する領域同士に一部重なる範囲を設
け、この重なり範囲の少なくとも3個所に基準球面体を
配置しておき、各領域における測定時に、各基準球面体
のそれぞれの表面の少なくとも3点に対して前記測定手
段で位置を測定することで各基準球面体の球中心を求
め、各領域における被測定物の測定結果を、各基準球面
体の球中心を基準にして合成する。
The three-dimensional shape measuring method according to the present invention, which solves the above-mentioned problems, is a movable non-contact measuring means for measuring the position of each point on an object to be measured, When measuring the three-dimensional shape of the DUT, divide the surface of the DUT into multiple areas, measure each area separately, and combine the measurement results to obtain the three-dimensional shape of the entire DUT. In the method for obtaining a shape, of a plurality of areas set on the surface of the object to be measured, a range is provided in which adjacent areas partially overlap each other, and reference spherical bodies are arranged at least at three positions in the overlapping range. When measuring in a region, the spherical center of each reference spherical body is obtained by measuring the position of at least three points on each surface of each reference spherical body by the measuring means, and the measurement result of the measured object in each region is obtained. , Based on the sphere center of each reference sphere Synthesized.

【0010】被測定物は、通常、表面が正確な平面に仕
上げられた定盤などの定置面に置かれた状態で計測が行
われる。但し、定盤の上に載置されていなくても、何ら
かの手段で、挟持されたり吊り下げられたりして、決ま
った位置に支持されていればよい。このようにして、被
測定物が定まった位置に配置された状態で、その基準と
なる面を定置面と呼ぶ。
The object to be measured is usually measured in a state where it is placed on a stationary surface such as a surface plate whose surface is finished to be an accurate flat surface. However, even if it is not placed on the surface plate, it may be clamped or hung by some means and supported at a predetermined position. In this way, the surface serving as the reference in the state where the object to be measured is arranged at the fixed position is called the stationary surface.

【0011】非接触式測定手段は、レーザ等のスポット
光で三角測量による距離測定を行う測定器など、既知の
各種測定手段が用いられる。測定原理や内部機構は、既
知の技術を自由に組み合わせることができる。光の代わ
りに、各種放射線や電磁波、磁気、超音波などを利用す
る非接触式測定手段も採用できる。
As the non-contact type measuring means, various known measuring means such as a measuring device for measuring a distance by triangulation with a spot light such as a laser are used. The measurement principle and internal mechanism can be freely combined with known techniques. Instead of light, non-contact measurement means using various radiations, electromagnetic waves, magnetism, ultrasonic waves, etc. can also be adopted.

【0012】非接触式測定手段の移動機構も、既知の三
次元形状計測装置における移動機構と同様の構造が採用
できる。測定手段の移動は、前後左右あるいは垂直方向
への直線運動、水平面あるいは垂直面での旋回運動など
を、必要に応じて自由に組み合わせればよい。移動機構
としては、測定手段の測定方向を傾ける動きができるこ
とが好ましい。測定手段の測定方向とは、前記スポット
光であればその照射方向であり、測定する測定点を配置
すべき方向である。
The moving mechanism of the non-contact type measuring means may have the same structure as the moving mechanism in the known three-dimensional shape measuring apparatus. The movement of the measuring means may be performed by freely combining linear movement in the front-rear, left-right, or vertical directions, and a turning movement in a horizontal plane or a vertical plane, as required. As the moving mechanism, it is preferable that the moving mechanism is capable of tilting the measuring direction of the measuring means. The measuring direction of the measuring means is the irradiation direction of the spot light, and is the direction in which the measuring point to be measured should be arranged.

【0013】基準球面体は、完全な球体のほか、球体の
一部から支柱が突出するものや、半球、あるいは、直方
体などの立体と球面を組み合わせたものなど、部分的な
球面体でも構わない。前記測定手段による位置測定がで
きる測定点が、少なくとも3点以上取れるだけの球面を
備えていればよいのである。基準球面体の径や球面の面
積は、測定手段の測定原理や精度、球面の加工精度など
を考慮して設定すればよい。例えば、スポット光による
三角測量を行う測定手段の場合、スポット光の口径の1
0〜100倍程度の球径を有するものが好ましい。基準
球面体は、測定に影響を与えるような凹凸や歪みのない
正確で滑らかな球面に形成できる材料からなるものが好
ましく、具体的には、セラミックが好ましい材料であ
る。硬質の金属や合成樹脂、ガラス質材料も使用可能で
ある。
The reference spherical body may be a complete spherical body, or a partial spherical body such as one in which a support pillar projects from a part of the spherical body, a hemisphere, or a combination of a solid body and a spherical body such as a rectangular parallelepiped. . It suffices that the measuring points at which the position can be measured by the measuring means have spherical surfaces capable of taking at least three points. The diameter of the reference spherical body and the area of the spherical surface may be set in consideration of the measuring principle and accuracy of the measuring means, the processing accuracy of the spherical surface, and the like. For example, in the case of a measuring device that performs triangulation using spot light, the spot light diameter is 1
Those having a spherical diameter of about 0 to 100 times are preferable. The reference spherical body is preferably made of a material that can be formed into an accurate and smooth spherical surface having no unevenness or distortion that may affect the measurement, and specifically, ceramic is a preferable material. Hard metals, synthetic resins, and glassy materials can also be used.

【0014】基準球面体は、被測定物に一時的に固定で
きるようにしておく。具体的には、接着剤や接着テー
プ、粘着テープ、ピン、ねじ金具などの各種止着手段を
採用すればよい。基準球面体にピンや金具を一体形成し
ておいてもよい。基準球面体は、被測定物の表面に密着
して取り付けられてもよいし、被測定物の表面から突出
して離れた位置に取り付けられてもよい。基準球面体を
被測定物に取り付ける際には、測定手段で測定可能な場
所に球面部分が配置され、3点以上の測定が可能になる
ような姿勢で取り付ける必要がある。基準球面体が完全
な球体であれば、どのような姿勢で取り付けても、確実
に測定が行えるので便利である。
The reference spherical body can be temporarily fixed to the object to be measured. Specifically, various fastening means such as an adhesive, an adhesive tape, an adhesive tape, a pin, and a screw fitting may be adopted. A pin or a metal fitting may be integrally formed on the reference spherical body. The reference spherical body may be attached in close contact with the surface of the object to be measured, or may be attached to a position protruding from the surface of the object to be measured. When the reference spherical body is attached to the object to be measured, it is necessary to attach the spherical portion at a position where measurement can be performed by a measuring means so that measurement can be performed at three or more points. If the reference spherical body is a perfect spherical body, it is convenient because the measurement can be surely performed regardless of the posture in which the spherical body is mounted.

【0015】被測定物に対する三次元形状の計測は、被
測定物の表面を複数領域に分けて、各領域毎に別々に測
定を行い、それぞれの測定結果を合成して被測定物全体
の三次元形状を得る。各領域の設定の仕方や分割する領
域の数は、被測定物の形状と寸法、計測装置の構造など
の条件を考慮して、自由に設定できる。通常の条件で
は、領域の数は2個で十分であるが、3個以上の領域に
分割することも可能である。
To measure a three-dimensional shape of an object to be measured, the surface of the object to be measured is divided into a plurality of areas, the measurement is performed separately for each area, and the respective measurement results are combined to form a three-dimensional shape of the entire object to be measured. Get the original shape. The setting method of each area and the number of divided areas can be freely set in consideration of conditions such as the shape and size of the object to be measured and the structure of the measuring device. Under normal conditions, the number of regions is sufficient to be two, but it is also possible to divide into three or more regions.

【0016】分割された複数の領域のうち、隣接する領
域同士に一部重なる範囲を設け、この重なり範囲の少な
くとも3個所に基準球面体を配置しておく。この重なり
範囲の幅や大きさは、3個の基準球面体が、互いにある
程度の間隔をあけて配置できる程度に設定しておく。3
個の基準球面体を頂点とする範囲が広いほど、測定精度
が高くなるので、要求される測定精度に合わせて、前記
重なり範囲の大きさ、および、3個の基準球面体の位置
を決めればよい。
Among a plurality of divided areas, adjacent areas are provided with a partial overlapping area, and the reference spherical body is arranged at least at three positions in the overlapping area. The width and size of this overlapping range are set to such an extent that the three reference spherical bodies can be arranged with a certain distance therebetween. Three
The wider the range having the reference spherical bodies as vertices becomes, the higher the measurement accuracy becomes. Therefore, if the size of the overlapping range and the positions of the three reference spherical bodies are determined according to the required measurement accuracy. Good.

【0017】このような状態で、各領域について、通常
の方法で三次元形状の計測を行う。各領域の測定を行う
ときには、被測定物を移動させたり、姿勢を変えたりし
て、それぞれの領域における測定が出来るだけ良好に行
えるようにすればよい。この各領域に測定時に、被測定
物そのものの測定とは別に、各基準球面体のそれぞれの
表面の少なくとも3点に対して前記測定手段で位置を測
定する。
In such a state, the three-dimensional shape of each region is measured by a usual method. When measuring each area, the object to be measured may be moved or the posture thereof may be changed so that the measurement in each area can be performed as well as possible. At the time of measurement in each of these regions, the position of at least three points on each surface of each reference spherical body is measured by the measuring means separately from the measurement of the measured object itself.

【0018】ひとつの基準球面体に対して、表面の少な
くとも3点の位置が判れば、幾何学的な演算処理によっ
て、その基準球面体の球中心の位置が求められる。例え
ば、球面の3点の位置と球の半径が判れば球中心は確定
し、同じ円上にない4点の位置が判れば半径が判らなく
ても球中心は確定できる。このような演算処理は、測定
手段の制御装置に組み込まれたマイクロコンピュータな
どの演算処理装置と演算処理プログラムを用いて行えば
よい。なお、基準球面体の球中心を求めるには、理論的
には少なくとも3点の位置が判ればよいが、理論的に必
要な数を超える位置の測定を行って、測定誤差の影響を
少なくすることもできる。
When the positions of at least three points on the surface of one reference spherical body are known, the position of the sphere center of the reference spherical body can be obtained by geometrical arithmetic processing. For example, if the positions of three points on the spherical surface and the radius of the sphere are known, the center of the sphere can be determined, and if the positions of four points that are not on the same circle are known, the center of the sphere can be determined without knowing the radius. Such arithmetic processing may be performed using an arithmetic processing device such as a microcomputer and an arithmetic processing program incorporated in the control device of the measuring means. It should be noted that in order to obtain the spherical center of the reference spherical body, it is theoretically necessary to know the positions of at least three points, but the number of positions exceeding the theoretically necessary number is measured to reduce the influence of the measurement error. You can also

【0019】各領域について測定された、被測定物の三
次元形状に関する測定データを合成して、被測定物全体
の三次元形状を求める。それぞれの領域について、3個
の基準球面体の球中心位置が求められているので、この
球中心位置を互いに重ね合わせるようにして、各領域の
測定データを合成すればよい。なお、重なり範囲につい
ては、何れの領域の測定データを用いても同じであるか
ら、一方の測定データのみを用いてもよいし、両方の測
定データの平均値を取るようにしてもよい。このよう
な、測定データの合成は、コンピュータなどの演算処理
装置を用いて、迅速かつ正確に行うことができる。
The measurement data relating to the three-dimensional shape of the measured object measured in each region is combined to obtain the three-dimensional shape of the entire measured object. Since the sphere center positions of the three reference spherical bodies are obtained for each region, the measurement data of each region may be synthesized by superimposing the sphere center positions on each other. Note that the overlapping range is the same regardless of which measurement data is used, and thus only one measurement data may be used or an average value of both measurement data may be taken. Such combination of measurement data can be performed quickly and accurately by using an arithmetic processing device such as a computer.

【0020】[0020]

【作用】被測定物の表面を複数の領域に分割するととも
に、隣接する領域に重なり範囲を設けておけば、この重
なり範囲における測定データは、両方の領域で同じ対象
を表すことになる。
If the surface of the object to be measured is divided into a plurality of areas and the overlapping areas are provided in the adjacent areas, the measurement data in this overlapping area will represent the same object in both areas.

【0021】そこで、重なり範囲に、基準点を設けてお
き、両方の領域での測定データにおける基準点の位置
を、互いに合致させるようにして、両方の測定データを
合成すれば、正確な合成が行えることになる。三次元形
状では、通常、3点の位置が決定すれば、その姿勢は確
定するから、重なり範囲に設ける基準点は、少なくとも
3点あればよいことになる。
Therefore, if a reference point is provided in the overlapping range and the positions of the reference points in the measurement data in both areas are made to coincide with each other and both measurement data are combined, accurate combination is achieved. You can do it. In the case of a three-dimensional shape, normally, when the positions of three points are determined, the posture thereof is determined, so that at least three reference points should be provided in the overlapping range.

【0022】但し、被測定物の表面に、基準点の表示を
描いておいたりしても、測定手段を正確に基準点表示位
置に合わせて測定を行うのは難しく、しかも、描線や
溝、突起などで、物理的に形成された基準点表示には、
一定の広がりがあるため、厳密な意味での基準点を測定
することができない。基準点の測定位置に誤差やばらつ
きがあれば、そのような基準点をもとにして測定データ
を合成しても、正確な合成はできない。
However, even if the display of the reference point is drawn on the surface of the object to be measured, it is difficult to perform the measurement accurately by aligning the measuring means with the reference point display position, and in addition, the drawing line, the groove, On the display of the reference point physically formed by the protrusion,
Due to the constant spread, it is not possible to measure the reference point in the strict sense. If the measurement position of the reference point has an error or variation, even if the measurement data is combined based on such a reference point, accurate combination cannot be achieved.

【0023】そこで、一定の大きさのある基準球面体
を、前記重なり範囲に配置しておけば、この基準球面体
上の任意の測定点について、その位置を測定するのは容
易であり、所定数の測定点の位置をどこに選んでも、こ
れらの測定点の位置から演算される球中心の位置は、数
学的に厳密に決められる。このようにして求められた球
中心の位置を、前記した測定データを合成する際の基準
点とすれば、何れの領域で測定された基準点の位置も、
常に正確な位置を示しており、このような正確な基準点
の位置を元にして測定データの合成を行えば、被測定物
全体の正確な三次元形状を得ることができる。
Therefore, if a reference spherical body having a certain size is arranged in the overlapping range, it is easy to measure the position of an arbitrary measurement point on the reference spherical body, and the position of the measurement point is predetermined. No matter where the positions of the several measuring points are chosen, the position of the sphere center calculated from the positions of these measuring points is mathematically determined exactly. If the position of the sphere center obtained in this way is used as a reference point when synthesizing the above-mentioned measurement data, the position of the reference point measured in any region,
An accurate position is always shown, and if the measurement data is synthesized based on the position of such an accurate reference point, an accurate three-dimensional shape of the entire measured object can be obtained.

【0024】[0024]

【実施例】ついで、本発明の実施例について、図面を参
照しながら以下に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は三次元形状計測装置の全体構造を表
している。硬質金属やセラミックスその他の剛性の大き
な材料で作製された厚板状をなす定盤10の上に、門型
の支持構造20と、支持構造20に支持された測定器2
2が取り付けられている。測定器20は、その下面から
スポット光Rを照射し、測定点で反射した反射光を再び
測定器20で捉え、三角測量の原理によって、測定点の
位置を測定するようになっている。測定器22は、支持
構造20上で、水平走行したり、旋回したりして移動で
きるように取り付けられている。
FIG. 1 shows the overall structure of the three-dimensional shape measuring apparatus. A gate-shaped support structure 20 and a measuring device 2 supported by the support structure 20 on a surface plate 10 made of a hard metal, ceramics, or other material having high rigidity
2 is attached. The measuring instrument 20 irradiates the spot light R from its lower surface, captures the reflected light reflected at the measuring point again by the measuring instrument 20, and measures the position of the measuring point by the principle of triangulation. The measuring instrument 22 is mounted on the support structure 20 so as to be able to horizontally move or turn to move.

【0026】定盤10の上には、三次元形状を計測する
被測定物30が置かれている。被測定物30は、矢印A
−Aの示す側の領域Aと、矢印B−Bの示す側の領域B
との、2つの領域に分けて、三次元形状の計測を行う。
領域Aと領域Bは、その隣接部分が互いに重なってお
り、重なり範囲Dとなっている。重なり範囲Dにおい
て、被測定物30の表面の3個所に、基準球面体となる
小球40が取り付けられている。
An object to be measured 30 for measuring a three-dimensional shape is placed on the surface plate 10. The device under test 30 has an arrow A
Area A on the side indicated by −A and area B on the side indicated by arrow BB
And, the three-dimensional shape is measured in two areas.
Regions A and B are adjacent to each other and overlap each other to form an overlapping range D. In the overlapping range D, small balls 40 serving as reference spherical bodies are attached to three positions on the surface of the DUT 30.

【0027】上記のような計測装置を用いて、被測定物
30の三次元形状を計測する手順を説明する。
A procedure for measuring the three-dimensional shape of the object 30 to be measured using the above measuring device will be described.

【0028】領域AおよびBのそれぞれについて、通常
の手順で、三次元形状の計測を行う。それぞれの領域
A、Bについて、測定器20による測定が行い易いよう
に、被測定物30の位置を動かしたり姿勢を変えたりし
て、計測を行えばよい。
For each of the areas A and B, the three-dimensional shape is measured by the usual procedure. For each of the areas A and B, the measurement may be performed by moving the position of the object to be measured 30 or changing the posture thereof so that the measurement device 20 can easily perform the measurement.

【0029】各領域A、Bでの計測の際に、重なり範囲
Dに配置された3個の小球40に対して、それぞれの小
球40の表面の3点についても、測定器20による位置
測定を行う。各小球40の測定点は、任意に設定すれば
よい。領域AとBで、小球40の測定点を同じにする必
要はない。
At the time of measurement in each of the areas A and B, with respect to the three small spheres 40 arranged in the overlapping range D, the position of the measuring device 20 is also set at three points on the surface of each small sphere 40. Take a measurement. The measurement point of each small ball 40 may be set arbitrarily. In the areas A and B, it is not necessary to make the measurement points of the small balls 40 the same.

【0030】各小球40の3点の測定位置データから、
各小球40の球中心Cが求められる。例えば、図2に示
すように、スポット光Rを当てて、3点P1 〜P3 の位
置を測定すれば、点P1 〜P3 の位置と球の半径の値と
から、球中心Cの位置がもとめられるのである。
From the measurement position data of three points of each small ball 40,
The ball center C of each small ball 40 is obtained. For example, as shown in FIG. 2, if the spot light R is applied and the positions of the three points P 1 to P 3 are measured, the sphere center C is calculated from the positions of the points P 1 to P 3 and the value of the radius of the sphere. The position of is required.

【0031】このようにして、領域Aと領域Bのそれぞ
れについて、測定データが得られた後、両方の測定デー
タを合成する。このとき、小球40の球中心Cについて
は、何れの測定データにも存在するから、この3個所の
球中心Cの位置が、両方の測定データで合致するよう
に、それぞれの測定データで表される三次元形状を移動
させれば、両方の測定データを正確に合成して、被測定
物30の全体の正確な三次元形状を得ることができる。
In this way, after the measurement data is obtained for each of the area A and the area B, both measurement data are combined. At this time, since the sphere center C of the small sphere 40 exists in all the measurement data, the positions of the three sphere centers C are represented by the respective measurement data so that both the measurement data match. By moving the three-dimensional shape described above, it is possible to accurately combine both measurement data and obtain an accurate three-dimensional shape of the entire measured object 30.

【0032】[0032]

【発明の効果】以上に述べた、本発明にかかる三次元形
状の計測方法によれば、前記した基準球面体を利用する
ことで、別々に計測された複数の領域の測定データを、
正確に合致させて合成することが可能になる。
As described above, according to the three-dimensional shape measuring method of the present invention, by using the above-mentioned reference spherical body, the measurement data of a plurality of separately measured regions can be obtained.
It is possible to accurately match and synthesize.

【0033】その結果、被測定物を複数の領域に分割し
て計測を行うことで、一度には計測が困難な大きさある
いは形状の被測定物であっても、何ら問題なく正確な三
次元形状の計測を行うことができ、各種物品の三次元形
状計測の能率化や作業性向上に大きく貢献することがで
きる。
As a result, by dividing an object to be measured into a plurality of regions for measurement, even if the object to be measured has a size or a shape that is difficult to measure at once, there is no problem in accurate three-dimensional measurement. The shape can be measured, which can greatly contribute to the efficiency of the three-dimensional shape measurement of various articles and the improvement of workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す斜視図FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】基準球面体の測定状態を表す斜視図FIG. 2 is a perspective view showing a measurement state of a reference spherical body.

【符号の説明】[Explanation of symbols]

10 定盤 20 支持構造 22 測定器 30 被測定物 40 小球(基準球面体) A、B 測定領域 C 球中心 D 重なり範囲 P1 〜P3 基準球面上の測定点 R スポット光10 surface plate 20 support structure 22 measuring device 30 object to be measured 40 small sphere (reference spherical body) A, B measurement area C sphere center D overlapping range P 1 to P 3 measurement point on reference sphere R spot light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一柳 高畤 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahata Ichiyanagi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 移動自在な非接触式測定手段で、被測定
物上の各点の位置を測定して、被測定物の三次元形状を
計測する際に、被測定物の表面を複数領域に分けて、各
領域毎に別々に測定を行い、それぞれの測定結果を合成
して被測定物全体の三次元形状を得る方法において、前
記被測定物の表面に設定する複数領域のうち、隣接する
領域同士に一部重なる範囲を設け、この重なり範囲の少
なくとも3個所に基準球面体を配置しておき、各領域に
おける測定時に、各基準球面体のそれぞれの表面の少な
くとも3点に対して前記測定手段で位置を測定すること
で各基準球面体の球中心を求め、各領域における被測定
物の測定結果を、各基準球面体の球中心を基準にして合
成することを特徴とする三次元形状計測方法。
1. When measuring the three-dimensional shape of an object to be measured by measuring the position of each point on the object to be measured by a movable non-contact type measuring means, a plurality of areas are formed on the surface of the object to be measured. In the method of obtaining the three-dimensional shape of the entire DUT by combining the respective measurement results, the measurement is performed separately for each region, and among the plurality of regions set on the surface of the DUT, The regions to be partially overlapped with each other are provided, and the reference spherical bodies are arranged in at least three places of the overlapping regions, and at the time of measurement in each region, at least three points on each surface of each reference spherical body are described above. Three-dimensional, characterized in that the sphere center of each reference spherical body is obtained by measuring the position with a measuring means, and the measurement result of the object to be measured in each region is synthesized with reference to the sphere center of each reference spherical body. Shape measurement method.
JP04734594A 1994-03-17 1994-03-17 3D shape measurement method Expired - Fee Related JP3307060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04734594A JP3307060B2 (en) 1994-03-17 1994-03-17 3D shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04734594A JP3307060B2 (en) 1994-03-17 1994-03-17 3D shape measurement method

Publications (2)

Publication Number Publication Date
JPH07260452A true JPH07260452A (en) 1995-10-13
JP3307060B2 JP3307060B2 (en) 2002-07-24

Family

ID=12772577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04734594A Expired - Fee Related JP3307060B2 (en) 1994-03-17 1994-03-17 3D shape measurement method

Country Status (1)

Country Link
JP (1) JP3307060B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2009518628A (en) * 2005-12-02 2009-05-07 スペシャルティ ミネラルズ (ミシガン) インク. Wear measurement method for fireproof lining of metallurgical melting furnace
JP2010145383A (en) * 2008-12-22 2010-07-01 Narimune Manufacture Co Ltd Three-dimensional shape measurement method and reference member therefor
US7812969B2 (en) 2006-06-23 2010-10-12 Konica Minolta Sensing, Inc. Three-dimensional shape measuring apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613406B1 (en) 1996-08-13 2003-09-02 Neocork Technologies, Llc Multilayer synthetic stopper
JP2008209244A (en) * 2007-02-27 2008-09-11 Nagoya Institute Of Technology Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2009518628A (en) * 2005-12-02 2009-05-07 スペシャルティ ミネラルズ (ミシガン) インク. Wear measurement method for fireproof lining of metallurgical melting furnace
US7812969B2 (en) 2006-06-23 2010-10-12 Konica Minolta Sensing, Inc. Three-dimensional shape measuring apparatus
JP2010145383A (en) * 2008-12-22 2010-07-01 Narimune Manufacture Co Ltd Three-dimensional shape measurement method and reference member therefor

Also Published As

Publication number Publication date
JP3307060B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US5805287A (en) Method and system for geometry measurements
US6067165A (en) Position calibrating method for optical measuring apparatus
US20030066202A1 (en) Self-loading spatial reference point array
JPH08500460A (en) Method and apparatus for determining the three-dimensional position of a movable object such as a sensor or tool carried by a robot
JPH07260452A (en) Three dimensional shape measuring method
GB2314621A (en) Calibrating camera image fields
EP0497813B1 (en) Calibration of measuring apparatus
JP3189557B2 (en) Three-dimensional shape measurement method and device
JP2023067797A (en) Inspection gauge for three-dimensional measuring device, method for inspecting three-dimensional measuring device, and three-dimensional measuring device
JP4053156B2 (en) Holder for holding an optical element used in an apparatus for measuring the positional relationship between surfaces of the optical element
US5806199A (en) Three-dimensional part measurement system
JPS6125003A (en) Configuration measuring method
JPH0522814Y2 (en)
JPS6129710A (en) Measuring method
JP2586633Y2 (en) Flatness measuring machine
JP2000298011A (en) Method and apparatus for measuring shape
JP3136453B2 (en) 2-point target for rail displacement measuring device
JPH09329417A (en) Light projector-receiver inter-calibration method for three-dimensional measurement
JPS6281512A (en) Solid shape measuring gauge
JPH0626828A (en) Apparatus and method for measuring shape
JP2931770B2 (en) Three-dimensional position detection method using laser displacement sensor
JPH0413616Y2 (en)
JPH0612483Y2 (en) Measuring device for all angles of prism
JPH05180642A (en) Straightness measuring apparatus for planar body
JPH0727557A (en) Three-dimensional measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees