JP2008209244A - Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object - Google Patents

Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object Download PDF

Info

Publication number
JP2008209244A
JP2008209244A JP2007046380A JP2007046380A JP2008209244A JP 2008209244 A JP2008209244 A JP 2008209244A JP 2007046380 A JP2007046380 A JP 2007046380A JP 2007046380 A JP2007046380 A JP 2007046380A JP 2008209244 A JP2008209244 A JP 2008209244A
Authority
JP
Japan
Prior art keywords
sphere
data
measurement
reference point
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007046380A
Other languages
Japanese (ja)
Inventor
Yoshiaki Goto
芳顯 後藤
Hideyuki Fujiwara
英之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2007046380A priority Critical patent/JP2008209244A/en
Publication of JP2008209244A publication Critical patent/JP2008209244A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of constructing a three-dimensional shape of high-accuracy measured surface data by a three-dimensional surface shape measuring instrument, and to provide a method of measuring thickness of a plate-like object. <P>SOLUTION: A sphere is used as a tool for positioning. A center coordinate of the sphere to serve as a reference point is identified from a plurality of measured surface position coordinates. Center coordinates of three or more identified spheres having different diameters are used as different reference points. Respective data are combined by numerical computation, from a condition where the reference points are common in the respective surface data to construct the three-dimensional shape. In addition, position data of a front surface and a rear surface expressed by common coordinates for the platelike object are used and the thickness is evaluated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、3次元表面形状計測器による表面データからの立体形状の構築方法と板状物体の板厚計測法に関するものである。
The present invention relates to a method for constructing a three-dimensional shape from surface data by a three-dimensional surface shape measuring instrument and a method for measuring the thickness of a plate-like object.

近年,レーザー変位センサーなど非接触型の計測器の精度が向上したため,表面の立体形状測定には二軸移動装置と組み合わせた測定装置が良く用いられる.なかでも,小型物体の表面形状計測には電動の二軸ステージとレーザー変位センサーを組み合わせた市販の高精度の表面形状計測器(図1)が多く利用されている.
一般的にこれらの機器では,水平にセットされたステージ上に被計測物を置き,ステージを水平面内であらかじめ設定した計測ピッチで移動させて,水平面(x-y)の座標をステージに取り付けられたエンコーダーで,鉛直面(z)の座標をステージ上部に独立で固定されたレーザー変位センサーで測定する構造をとっている.従って,一度に計測できる範囲はステージ上のレーザー変位センサーが対面する表面に限られ,また計測データは計測ピッチごとの離散的なものとなる.こうした制約から,おもて面とうら面など、二面以上の個別の表面形状計測データを結合して三次元形状を構築することは容易ではない.
このような問題点を解決するために,複数の個別データを結合するための基準点が必要となる.基準点はひとつの被計測物に対して3点以上必要で,複数回おこなう個別に計測各時において視準できなくてはならない.また,基準点の計測精度が最終的な結合データに大きく影響するため,どこから視準しても正確な点(ポイント)を示すことが要求される.
こうした条件を勘案し,従来用いられた方法は,(a)被計測物の角部を基準点とする方法(非特許文献1),(b)回転ステージ上に規則正しく配置した2個以上の基準球による方法(非特許文献2),(c)板状物体について,被計測物の厚みが既知点の表面や裏面に的 (ターゲット)を設定し,表裏の個別の計測データを結合する方法,(d)被計測物体を載せる基準平面板に描いた色を変えた4本の基線の交点を基準点とし,画像計測で統合する方法(非特許文献3)などがある.また,一度に計測できる範囲を超える被計測物を分割して計測する方法として, (e) 基準点として球体を使用しその中心座標を用いる手法などが考えられている.(特許文献1)
(a)の方法では基準点とする角部は任意の方向から視準が難しいことと,一定ピッチで計測するシステムでは角点を精度良く測定することが難しい.さらに,3個以上の基準点となる角点を各面の計測時に簡単に同定できない.(b)の方法ではステージの形状に制限があることと,ステージ上においた被計測物体の底面の画像を得ることができない.(c)の方法では,板にそりがあるような場合に精度が低下する.板厚の測定にも誤差が入りやすい.(d)の方法では,基線には或る程度の太さが避けられず,交点として求められる基準点はある大きさを持つことになる.基線の色を変えて基準点を識別する方法は画像計測でしか用いることができない.また,(e) の方法では,その対象を被計測物の一側面についての統合手法を提案するもので,三次元空間の座標を統合する手法とは言えない.また,具体的に中心座標を求める方法や径の異なる3個以上の基準点自動識別し,これを用いて個別の表面データから立体形状を構築する方法を示していない.
倉敷紡績株式会社エレクトロニクス事業部:三次元写真計測システムKraves-k製品説明,http://www.kurabo.co.jp/el/3d/kuraves_01.html パルステック工業株式会社:3D SCANNER TDS SERIESカタログ 慶応義塾大学佐藤研究室:三次元計測多視点距離画像統合説明,http://www.ozawa.ics.keio.ac.jp/sato/research/3D_measurement/system.htm 特許公報 特許第3307060
In recent years, the accuracy of non-contact type measuring instruments such as laser displacement sensors has improved, so measuring devices combined with biaxial moving devices are often used for measuring the three-dimensional shape of surfaces. In particular, a commercially available high-precision surface shape measuring instrument (Fig. 1) that combines an electric two-axis stage and a laser displacement sensor is often used to measure the surface shape of small objects.
In general, these devices place an object to be measured on a horizontally set stage, move the stage at a preset measurement pitch in a horizontal plane, and an encoder with the horizontal plane (xy) coordinates attached to the stage. In the structure, the coordinates of the vertical plane (z) are measured by a laser displacement sensor fixed independently on the upper part of the stage. Therefore, the range that can be measured at one time is limited to the surface facing the laser displacement sensor on the stage, and the measurement data is discrete for each measurement pitch. Because of these restrictions, it is not easy to construct a 3D shape by combining two or more individual surface shape measurement data such as the front and back surfaces.
In order to solve such problems, a reference point for combining multiple individual data is required. Three or more reference points are required for one object to be measured, and it must be collimated at each measurement separately. In addition, since the measurement accuracy of the reference point greatly affects the final combined data, it is required to show an accurate point (point) from any location.
Taking these conditions into consideration, the conventional methods are (a) a method using the corner of the object to be measured as a reference point (Non-Patent Document 1), and (b) two or more references arranged regularly on a rotating stage. A method using a sphere (Non-Patent Document 2), (c) For a plate-like object, the target (target) is set on the front and back of the point where the thickness of the object to be measured is known, and individual measurement data on the front and back sides are combined. (d) There is a method that uses the intersection of four baselines with different colors drawn on the reference plane plate on which the object to be measured is placed as the reference point and integrates them by image measurement (Non-patent Document 3). In addition, as a method of dividing and measuring objects to be measured that exceed the range that can be measured at once, (e) a method using a sphere as a reference point and using its center coordinates is considered. (Patent Document 1)
In the method (a), it is difficult to collimate the corner as a reference point from any direction, and it is difficult to accurately measure the corner point in a system that measures at a constant pitch. In addition, it is not possible to easily identify the corner points that are three or more reference points when measuring each surface. In method (b), the shape of the stage is limited, and an image of the bottom surface of the measurement object placed on the stage cannot be obtained. In the method (c), the accuracy decreases when the plate is warped. There is also an error in measuring the plate thickness. In the method (d), a certain amount of thickness is unavoidable in the base line, and the reference point obtained as the intersection has a certain size. The method of identifying the reference point by changing the baseline color can only be used for image measurement. The method (e) proposes an integration method for one aspect of the object to be measured, and cannot be said to be a method for integrating coordinates in a three-dimensional space. In addition, there is no specific method for obtaining the center coordinates or automatic identification of three or more reference points with different diameters, and using this to construct a solid shape from individual surface data.
Kurashiki Spinning Electronics Co., Ltd .: 3D photo measurement system Kraves-k product description, http://www.kurabo.co.jp/el/3d/kuraves_01.html Pulstec Industrial Co., Ltd .: 3D SCANNER TDS SERIES catalog Keio University Sato Laboratory: 3D measurement multi-view distance image integration explanation, http://www.ozawa.ics.keio.ac.jp/sato/research/3D_measurement/system.htm Patent Gazette Patent No. 3307060

(1)基準点の計測精度を確保する上での課題
基準点となる的は点であることが理想である.しかしながら,上述した表面形状計測器の機構では,設定した一定のピッチで水平面内を碁盤目状に非計測物の表面形状(鉛直座標)を計測するため,測定データは離散的なものである.このことから,的を小さく設定したために計測点に一致せず,計測値が得られない場合(図2)や,的に対して複数の計測値が存在し,的の値が特定できない場合(図3)が,理論上,また実用上も生じる.したがって,計測時に間違いなく基準点となる的を測定するためには,測定ピッチを極力小さく設定した上で,的を許容できる範囲で大きくするなどの配慮が必要となる.測定ピッチを小さく設定することは計測時間のデータ数の増大を招き,基準点となる的を大きくすることは立体形状の構築時の精度を低下させる.なお,個別の表面計測におけるいずれのケースにおいても視準できる小さな的を設定するのは困難な場合が多い.
以上のように,本発明で解決しようとする問題点は,従来の方法では基準点となる的が大きくならざるを得ず,高精度の表面形状計測器の測定データを立体形状の構築時に確保できない点である.
(2)表面形状計測器による三次元形状の計測における課題
表面形状計測器は容易に表面形状を計測することが可能であるが,反面,平面形状しか計測できないため,例えば(図4)に示すようにレーザー変位センサから見て影になる面がある場合などでは,図4で太く表された面しか計測できない.
(3)板状物体の板厚計測における課題
板状物体の計測では、ノギスやマイクロメータ、また超音波板厚計などを用いるが、ノギスやマイクロメータでは図5に示すように計測器の構造上、板端面からオフセット距離以上の位置も板厚が計測できない。また、超音波板厚計では図6に示すように探触子幅以下の板表面の凸凹に対して正確な計測ができない。
(4)基準点の識別作業が必要
ここで提案する三次元形状作成のための座標統合に限らず,複数回の三次元座標計測データを統合するためには少なくとも各計測時に共通する3点以上の基準点が必要となる.言い換えれば,この3つの基準点を合致させることで,複数の座標データを統合できる.従って,3つの基準点はすべての計測回においてそれぞれ識別されなければならない.
この識別の手段として一般には,基準点に識別番号(あるいは記号)を用いるが,ここで対象とする三次元表面計測器では,位置座標データのみを扱うものであり,識別番号などを認識することはできない.また,非特許文献3に示すように,色彩による識別も簡便ではあるが,同じ理由で三次元表面計測器では識別できない.
本発明は、上記従来の実情に鑑みてなされたものであって、個別に計測した表面形状計測データから立体形状を構築する方法を提供することを目的とする。
(1) Challenges in ensuring the measurement accuracy of the reference point Ideally, the reference point is the point. However, the above-mentioned surface shape measuring instrument mechanism measures the surface shape (vertical coordinates) of non-measurement objects in a grid pattern in the horizontal plane at a set fixed pitch, so the measurement data is discrete. Therefore, when the target is set small, it does not match the measurement point and the measurement value cannot be obtained (Fig. 2), or there are multiple measurement values for the target and the target value cannot be identified ( Figure 3) occurs both theoretically and practically. Therefore, in order to measure the target that is definitely the reference point during measurement, it is necessary to consider setting the measurement pitch as small as possible and increasing the target within an allowable range. Setting the measurement pitch to a small value will increase the number of data for the measurement time, and increasing the reference point will reduce the accuracy when constructing the solid shape. It is often difficult to set a small target that can be collimated in any case of individual surface measurement.
As described above, the problem to be solved by the present invention is that the reference point in the conventional method must be large, and high-precision surface shape measuring instrument measurement data is secured at the time of construction of the three-dimensional shape. This is not possible.
(2) Problems in measuring three-dimensional shapes with surface shape measuring instruments Although surface shape measuring instruments can easily measure surface shapes, on the other hand, only planar shapes can be measured. For example, as shown in (Fig. 4) For example, when there is a shadowed surface as seen from the laser displacement sensor, only the surface shown thick in Fig. 4 can be measured.
(3) Problems in measuring plate thickness of plate-like objects In measuring plate-like objects, calipers, micrometers, ultrasonic plate thickness gauges, etc. are used. In calipers and micrometers, the structure of the measuring instrument is as shown in FIG. In addition, the plate thickness cannot be measured even at positions beyond the offset distance from the plate end face. Further, as shown in FIG. 6, the ultrasonic thickness gauge cannot accurately measure unevenness on the surface of the plate that is equal to or smaller than the probe width.
(4) Reference point identification work required Not only the coordinate integration for creating the 3D shape proposed here, but also 3 or more points common to each measurement in order to integrate multiple 3D coordinate measurement data The reference point is required. In other words, multiple coordinate data can be integrated by matching these three reference points. Therefore, the three reference points must be identified at every measurement time.
In general, an identification number (or symbol) is used as a reference point as a means of identification. However, the target 3D surface measuring instrument deals only with position coordinate data and recognizes the identification number. Cannot. In addition, as shown in Non-Patent Document 3, although identification by color is simple, it cannot be identified by a three-dimensional surface measuring instrument for the same reason.
The present invention has been made in view of the above-described conventional situation, and an object thereof is to provide a method for constructing a three-dimensional shape from individually measured surface shape measurement data.

本発明の3次元表面形状計測器による表面データからの立体形状の構築方法は、位置合せ用の治具として球体を使用し、計測される複数の表面の位置座標から基準点となる球体の中心座標を同定し、該同定された3個以上の直径の異なる球体の中心座標を異なる基準点として使用し、該基準点が個別の表面データにおいて共有される条件から数値演算により各個別データを結合し,立体形状を構築することを特徴とする.
また、前記球体として略真球の球体を用い,該球体の直径が計測ピッチに対して十分に大きくとり(好ましくは球体の直径を計測ピッチに対して5倍程度以上にとる),計測された複数の表面データから基準点となる球体の中心座標を最小自乗法で同定することを特徴とする。
的として球体を用いることにより,的は大きく設定でき,的として真球に近い高精度の球体を用い,球体のサイズを計測ピッチに対して十分に大きく(球体の直径が計測ピッチの5倍程度以上)することで,球体表面はどの角度からも視準できるとともに,表面形状計測器により複数の球体表面の位置座標を逃すことなく計測することが可能となる.さらに,計測された複数の表面データから基準点となる球体の中心点を最小自乗法で精度良く求める.球体の中心座標を計算するためには,球体表面座標の計測値も3点以上必要である.実際には精度を確保するために,10点〜数百点が好ましい. 球体は異なった半径のものを用いることにより,各基準点を明確に区別できる.
球体の中心座標を基準点として用いることで,基準点の精度も確保できる.複数の球体(3個以上)の中心座標を基準点として,この基準点が個別の表面データにおいて共有される条件から数値演算により各個別データを結合し,立体(三次元)形状を構築できる.また,球体の径からそれぞれの基準点を識別することにより,データの結合作業の効率化を図ることができる.
直径の異なる球体を用いることで,計測データから球体の径を求めることでそれぞれの球体を認識することが可能となり基準点の識別を自動化が可能となるのである.
The method of constructing a three-dimensional shape from surface data by the three-dimensional surface shape measuring instrument of the present invention uses a sphere as a positioning jig, and the center of the sphere serving as a reference point from the position coordinates of a plurality of measured surfaces Identify the coordinates, use the center coordinates of the three or more identified spheres with different diameters as different reference points, and combine each individual data by numerical calculation from the condition that the reference point is shared in individual surface data However, it is characterized by constructing a solid shape.
In addition, an approximately true sphere was used as the sphere, and the diameter of the sphere was sufficiently large with respect to the measurement pitch (preferably the diameter of the sphere was set to about 5 times the measurement pitch or more). The center coordinate of a sphere serving as a reference point is identified by a least square method from a plurality of surface data.
By using a sphere as a target, the target can be set large, and as a target, a highly accurate sphere close to a true sphere is used, and the size of the sphere is sufficiently larger than the measurement pitch (the diameter of the sphere is about 5 times the measurement pitch). By doing so, the surface of the sphere can be collimated from any angle, and it can be measured without missing the position coordinates of multiple sphere surfaces using a surface shape measuring instrument. Furthermore, the center point of the sphere, which is the reference point, is obtained from the measured surface data with the least squares method. In order to calculate the center coordinates of the sphere, three or more measurements of the sphere surface coordinates are required. In practice, 10 to several hundred points are preferred to ensure accuracy. Each reference point can be clearly distinguished by using spheres of different radii.
The accuracy of the reference point can be ensured by using the center coordinates of the sphere as the reference point. Using the center coordinates of multiple spheres (three or more) as a reference point, each individual data can be combined by numerical calculation based on the condition that this reference point is shared in individual surface data, and a solid (three-dimensional) shape can be constructed. In addition, by identifying each reference point from the diameter of the sphere, it is possible to improve the efficiency of data combination work.
By using spheres with different diameters, it is possible to recognize each sphere by obtaining the diameter of the sphere from the measurement data, and it is possible to automate the identification of the reference point.

従来の方法では測定ピッチを極力小さく設定した上で,的を許容できる範囲で大きくするなどの配慮が必要となる.測定ピッチを小さく設定することは計測時間やデータ数の増大を招き,基準点となる的を大きくすることは立体形状の構築時の精度を低下させる.なお,個別の表面計測におけるいずれのケースにおいても視準できる小さな的を設定するのは困難な場合が多い.
本発明のごとく的として球体を用いることにより,的は大きく設定でき,いずれの方向からの視準もできるようになる.さらに,球体の中心座標を基準点として用いることで,基準点の精度も確保できるとともに球体の径を変化させることで基準点の識別を容易にする.本発明により,従来の方法のように,測定ピッチを小さくすることなく,さらに基準点となる的を大きくすることによる精度低下もなく,表面形状計測器の高精度の測定データを立体形状の構築時や板状物体の板厚計測時に確保できる効果がある.
In the conventional method, it is necessary to consider setting the measurement pitch as small as possible and increasing the target within an allowable range. Setting the measurement pitch to a small value increases the measurement time and the number of data, and increasing the target as the reference point decreases the accuracy when constructing the solid shape. It is often difficult to set a small target that can be collimated in any case of individual surface measurement.
By using a sphere as the target as in the present invention, the target can be set large and collimation can be performed from any direction. Furthermore, by using the center coordinates of the sphere as the reference point, the accuracy of the reference point can be ensured and the reference point can be easily identified by changing the diameter of the sphere. According to the present invention, it is possible to construct a high-precision measurement data of a surface shape measuring instrument without reducing the measurement pitch as in the conventional method and without reducing the accuracy by increasing the target as a reference point. This can be ensured at the time of measuring the thickness of a plate-like object.

以下,本発明を具体化した実施例について図面を参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

(a)的としての球体治具
的として略真球の球体を用い,中心点を各表面データ統合のための基準点とする.球体は異なった半径のものを用いることにより,各基準点を明確に区別できる.用いる球体は被計測物体に接着固定されるが,磁石による接着が可能な被計測物体であれば着脱が容易な図7に示す治具が考えられる.これは,磁石に球体を固定し,磁石により被計測物体に接着する.なお,図7では一つの接着用治具に2つの球体を固定しているが,球体を1つずつ固定してもよい.
b)測定要領と立体化手法
使用例として,図8に示す表面に×,裏面に四角形状の浮き彫りがある円盤を,表面形状計測器で計測したそれぞれの面のデータを統合して立体化したり、板厚を計測する事例で解説する.
なお,ここでは側面が平坦であることを前提条件として,表裏2面の計測データの外縁を結ぶ面を形成して擬似的な3次元形状を作成する例を示すが,側面の計測を含め3面以上の計測データを統合する場合でも本手法が適用可能である.
まず,被計測物の側面に図9に示すように的となる径の異なる3つの球体(1,2,3)を接着し,球体を含めたおもて面の表面形状を計測する.なお,球体の位置は任意の位置で構わない.基準点となる各球体の中心座標は対応する複数の表面位置データより最小2剰法で求める.数1で示す球体iの中心座標と半径rを未知量として,数4で示す式で表される球体面の位置計測データ(数2で示す)に関する2剰誤差が最小になるように未知量の最適化を行うことにより中心座標(数3で示す)と半径rを求める.
(A) Spherical jig as a target A substantially spherical sphere is used as a target, and the center point is used as a reference point for integrating each surface data. Each reference point can be clearly distinguished by using spheres of different radii. The sphere to be used is bonded and fixed to the object to be measured. However, if the object to be measured can be bonded with a magnet, the jig shown in FIG. In this method, a sphere is fixed to a magnet and adhered to the object to be measured by the magnet. In FIG. 7, two spheres are fixed to one bonding jig. However, the spheres may be fixed one by one.
b) Measurement procedure and 3D method As an example of use, a disk with a square relief on the front side and a square relief on the back side as shown in Fig. 8 is integrated into 3D by integrating the data of each surface measured by the surface shape measuring instrument. An example of measuring plate thickness will be explained.
In this example, assuming that the side surface is flat, a pseudo three-dimensional shape is created by forming a surface connecting the outer edges of the measurement data on the two front and back surfaces. This method can be applied even when integrating measurement data of planes or more.
First, three spheres (1, 2, 3) with different target diameters are bonded to the side of the object to be measured, and the surface shape of the front surface including the spheres is measured. The position of the sphere can be any position. The center coordinates of each sphere serving as the reference point are obtained from the corresponding surface position data using the minimum two-modulus method. Using the center coordinates and radius r i of sphere i shown in Equation 1 as unknown quantities, the unknown is such that the binary error associated with the position measurement data (shown in Equation 2) of the sphere surface expressed by Equation 4 is minimized. The center coordinates (shown in Equation 3) and the radius r i are obtained by optimizing the quantity.

ここに,nは球体iの表面データ数,Iはおもて面計測時の諸量を意味する.
次に, 3つの球体(1,2,3)を接着したまま被計測物体を反転して(図10)おもて面と同様にしてうら面IIを計測し,3つ球体の中心座標(数5で示す)を求める.
Here, n means the number of surface data of the sphere i, and I means various quantities when measuring the front surface.
Next, the object to be measured is reversed with the three spheres (1, 2, 3) adhered (FIG. 10), and the back surface II is measured in the same manner as the front surface, and the center coordinates of the three spheres ( (Shown in equation 5).

次に,おもてとうらの計測データを3個の基準点が共有されるという条件から統合して立体形状を再現する(図11).以下に,統合のための定式化を示す.
おもて面(α=I)とうら面(α=II)の計測時で用いられるそれぞれの空間固定右手系直交直線座標(数6で示す)の基底ベクトルを数7で示すものとし、得られた表面の位置データを数8で示すものとし、また,各面の計測で得られた3個の共通の基準点(i=1,2,3)の位置座標を数9で示すものとする.
Next, the three-dimensional shape is reproduced by integrating the measurement data of Ototora from the condition that three reference points are shared (FIG. 11). The formulation for integration is shown below.
The basis vectors of the space-fixed right-handed orthogonal linear coordinates (shown in Equation 6) used when measuring the front surface (α = I) and the back surface (α = II) are shown in Equation 7, The position data of the obtained surface is expressed by Equation 8, and the position coordinates of three common reference points (i = 1, 2, 3) obtained by measurement of each surface are expressed by Equation 9. Do it.

ここで,各面計測時には被計測物体あるいは計測器の位置が変化するのでの空間固定の位置座標(α=I,II)はそれぞれ異なったものになる.
α=I,IIの2面の位置データを統合するための座標系として,被計測物体に固定された共通の基準点の位置座標より,原点を基準点1にもち,基底ベクトル(数10で示す)が次式(数12で示す)で規定される右手系直交直線座標系(数11で示す)を定義する.
Here, since the position of the object to be measured or the measuring instrument changes during each surface measurement, the position coordinates (α = I, II) fixed in space are different.
As a coordinate system for integrating the position data of the two surfaces α = I and II, based on the position coordinates of the common reference point fixed to the object to be measured, the origin is the reference point 1 and the basis vector (Equation 10 Defines a right-handed orthogonal linear coordinate system (shown in Equation 11) defined by the following equation (shown in Equation 12).

ここに here

各表面計測時の表面位置データ(数14で示す)を被計測物体固定座標系(数16で示す)による値(数15で示す)に変換すると,この物体固定座標を介して,おもて,うら2面(α=I,II)の表面位置データの統合を図ることができる. When the surface position data (shown in Equation 14) at the time of each surface measurement is converted into a value (shown in Equation 15) in the measured object fixed coordinate system (shown in Equation 16), , The surface position data of the two back surfaces (α = I, II) can be integrated.


具体的に,計測器で測定される空間固定の位置データ(数17で示す)を被計測物体固定の移動座標(数18で示す)の値(数19で示す)へ変換する方法を示す.この変換は前記被計測物体固定の移動座標(数18で示す)の原点が基準点1で有ることから,基準点1に関する表面位置データ点(数17で示す)の位置ベクトル(数20で示す)を求めると数21で示す式のようになる.
さらに,数12で示される数22と数23の基底ベクトルの関係を数21に代入すると,数24のように数17は数19へ変換される.
結果,数24より変換される各表面(α=I,II)の位置データ数19は物体固定座標系,数18に関して統合されたことになる.
Specifically, a method of converting space-fixed position data (shown in Equation 17) measured by a measuring instrument into values (shown in Equation 19) of moving coordinates (shown in Equation 18) fixed to the object to be measured is shown. In this conversion, since the origin of the moving coordinates (indicated by Expression 18) fixed to the object to be measured is the reference point 1, the position vector (indicated by Expression 20) of the surface position data point relating to the reference point 1 (indicated by Expression 17). ) Is as shown in Equation 21.
Further, when the relationship between the basis vectors of Equations 22 and 23 shown in Equation 12 is substituted into Equation 21, Equation 17 is converted into Equation 19 as shown in Equation 24.
As a result, the position data number 19 of each surface (α = I, II) converted from Expression 24 is integrated with respect to the object fixed coordinate system, Expression 18.

つぎに,うら面(α=II)のデータをおもて面(α=I)の計測時に定義される空間固定の座標系(数25で示す)に統合する場合について説明する.すなわち,空間固定の座標系(数26で示す)で表したα=IIの面における数27で示される点mの位置座標を空間固定座標系,数25に変換する.このように変換された位置座標(数28で示す)を,α=II面上の点mの空間固定座標(数25で示す)に関する位置ベクトルを数29とすると,これらは数30(α=II)を用いて数31のように表される.   Next, the case where the data of the back surface (α = II) is integrated into the space fixed coordinate system (shown by Equation 25) defined when measuring the front surface (α = I) will be described. That is, the position coordinate of the point m shown by the equation 27 on the surface of α = II expressed by the space fixed coordinate system (shown by the equation 26) is converted into the space fixed coordinate system, the equation 25. When the position coordinates (indicated by Expression 28) converted in this way are represented by Expression 29, the position vector regarding the space fixed coordinates (indicated by Expression 25) of the point m on the α = II plane is represented by Expression 30. II) is used to express as shown in Equation 31.

数31の最右辺に数24の右辺を代入し,物体固定座標系の基底ベクトル(数32で示す)を数12により空間固定座標系(数33で示す)の基底ベクトル(数34で示す)で表すと,最終的に数35は数36のように数37に変換される.
このようにα=IIの表面データはα=Iの表面データに統合される.
Substituting the right side of Equation 24 into the rightmost side of Equation 31, the basis vector (indicated by Equation 32) of the object fixed coordinate system is represented by Equation 12 and the basis vector (indicated by Equation 34) of the space fixed coordinate system In the end, equation 35 is finally converted into equation 37 as equation 36.
Thus, the surface data of α = II is integrated into the surface data of α = I.


c)板状物体の板厚計算手法
板状物体の板厚計算では、板状物体のおもて面とうら面をそれぞれα=I、IIとすると、数38で表されるα=I面上の位置の板厚は、数39で示すα=II面の位置データの中から数40で表される距離が最小となる点を探索することにより求めることができる。
c) Plate Thickness Calculation Method for Plate Object In plate thickness calculation of a plate object, if the front and back surfaces of the plate object are respectively α = I and II, α = I surface represented by Equation 38 The plate thickness at the upper position can be obtained by searching for the point at which the distance represented by Equation 40 is minimum from the position data of the α = II plane shown by Equation 39.

なお,基準点を3点以上設ける場合には,可能な3点の組み合わせ全てについて,前記数37で示す位置座標を計算し平均値を求めるなどして,精度の向上を図ることができる.
In the case where three or more reference points are provided, the accuracy can be improved by calculating the position coordinates shown in the above formula 37 and obtaining the average value for all possible combinations of the three points.

本発明は、3次元表面形状計測器による表面データから立体形状の構築方法ならびに板状物体の板厚計測として利用可能である。
INDUSTRIAL APPLICABILITY The present invention can be used as a method for constructing a three-dimensional shape from surface data by a three-dimensional surface shape measuring instrument and a plate thickness measurement of a plate-like object.

電動の二軸ステージとレーザー変位センサーを組み合わせた市販の高精度の小型物体の表面形状計測器を示した図である。It is the figure which showed the surface shape measuring device of the commercially available high precision small object which combined the electric biaxial stage and the laser displacement sensor. 従来の表面形状計測器の機構では,設定した一定のピッチで水平面内を碁盤目状に非計測物の表面形状(鉛直座標)を計測するため,測定データは離散的なものであることから,的が小さく計測点と不一致で計測値が得られない場合を示す説明図である。Since the conventional surface shape measuring instrument mechanism measures the surface shape (vertical coordinates) of non-measurement objects in a grid pattern in a horizontal plane at a set fixed pitch, the measurement data is discrete. It is explanatory drawing which shows the case where a target is small and a measurement value does not correspond and a measurement value cannot be obtained. 従来の表面形状計測器の機構では,設定した一定のピッチで水平面内を碁盤目状に非計測物の表面形状(鉛直座標)を計測するため,測定データは離散的なものであることから,的に対して計測値が複数あり正確な基準点が不明の場合を示す説明図である。Since the conventional surface shape measuring instrument mechanism measures the surface shape (vertical coordinates) of non-measurement objects in a grid pattern in a horizontal plane at a set fixed pitch, the measurement data is discrete. It is explanatory drawing which shows the case where there are a plurality of measured values with respect to the target and the accurate reference point is unknown. 表面形状計測器による三次元形状の計測における課題、すなわち、平面形状しか計測できないため,レーザー変位センサから見て影になる面がある場合などを示す説明図である。It is explanatory drawing which shows the subject in the measurement of the three-dimensional shape by a surface shape measuring device, ie, the case where there exists a surface which becomes a shadow seeing from a laser displacement sensor, since only a plane shape can be measured. ノギス、マイクロメータでは機器の形状に依存するオフセット量があるため,板状物体の端部以外(板端部からオフセット距離以上内側の位置)の部分で板厚計測が不可能であることを示す説明図である。In case of calipers and micrometers, there is an offset amount that depends on the shape of the device, so it is impossible to measure the thickness at the part other than the edge of the plate-like object (the position within the offset distance from the edge of the plate) It is explanatory drawing. 超音波板厚計では板表面の凸凹具合によっては、探触子がうまく接地せず正確に板厚の計測が出来ないことを示す説明図である。It is explanatory drawing which shows that an ultrasonic plate thickness meter cannot measure a plate | board thickness correctly according to the unevenness | corrugation state of a plate | board surface, and a probe does not contact | ground well. 本発明実施例の球体治具の構造を示す説明図である。It is explanatory drawing which shows the structure of the spherical jig | tool of this invention Example. 本発明実施例の被計測物体例を示す説明図である。It is explanatory drawing which shows the example of a to-be-measured object of this invention Example. 被計測物の側面に的となる径の異なる3つの球体(1,2,3)を接着し,球体を含めたおもて面の表面形状を計測することを示す説明図である。FIG. 3 is an explanatory diagram showing that three spheres (1, 2, 3) having different diameters are bonded to the side surface of an object to be measured and the surface shape of the front surface including the sphere is measured. 3つの球体(1,2,3)を接着したまま被計測物体を反転しておもて面と同様にしてうら面を計測することを示す説明図である。It is explanatory drawing which shows measuring a back surface like a front surface by reversing a to-be-measured object, bonding three spherical bodies (1,2,3). おもてとうらの計測データを3個の基準点が共有されるという条件からデータを統合して立体形状を再現することを示す説明図である。It is explanatory drawing which shows that data are integrated and the three-dimensional shape is reproduced from the condition that three reference points are shared with Otomeura measurement data.

Claims (4)

位置合せ用の治具として球体を使用し、計測される複数の表面の位置座標から基準点となる球体の中心座標を同定し、該同定された3個以上の直径の異なる球体の中心座標を異なる基準点として使用し、該基準点が個別の表面データにおいて共有される条件から数値演算により各個別データを結合し,立体形状を構築することを特徴とする3次元表面形状計測器による表面データからの立体形状の構築方法。   Using a sphere as an alignment jig, identify the center coordinates of the sphere that is the reference point from the position coordinates of the measured surfaces, and determine the center coordinates of the three or more identified spheres with different diameters. Surface data from a three-dimensional surface shape measuring instrument characterized in that it is used as different reference points, and each individual data is combined by numerical calculation from the condition that the reference points are shared in the individual surface data, and a three-dimensional shape is constructed. To build a solid shape from 位置合せ用の治具として球体を使用し、計測される板状物体のおもて面とうら面の表面の位置座標から基準点となる球体の中心座標を同定し、該同定された3個以上の直径の異なる球体の中心座標を異なる基準点として使用し、該基準点が各計測データにおいて共有される条件から数値演算により板状物体の板厚を計測する方法。   Using a sphere as a positioning jig, the center coordinates of the sphere serving as the reference point are identified from the position coordinates of the front and back surfaces of the plate-like object to be measured, and the three identified A method of measuring the plate thickness of a plate-like object by numerical calculation using the above-mentioned center coordinates of spheres having different diameters as different reference points and using the condition that the reference points are shared in each measurement data. 請求項1記載の球体として略真球の球体を用い,該球体の直径が計測ピッチに対して十分に大きくとり(好ましくは球体の直径を計測ピッチに対して5倍程度以上にとる),計測された複数の表面データから基準点となる球体の中心座標を最小自乗法で同定することを特徴とする請求項1の立体形状の構築方法。   A substantially true sphere is used as the sphere according to claim 1, and the diameter of the sphere is sufficiently large with respect to the measurement pitch (preferably, the diameter of the sphere is set to about 5 times the measurement pitch or more). The method for constructing a three-dimensional shape according to claim 1, wherein center coordinates of a sphere serving as a reference point are identified from a plurality of surface data obtained by a least square method. 請求項2記載の球体として略真球の球体を用い,該球体の直径が計測ピッチに対して十分に大きくとり(好ましくは球体の直径を計測ピッチに対して5倍程度以上にとる),計測されたおもて面とうら面の表面データから基準点となる球体の中心座標を最小自乗法で同定することを特徴とする請求項2の板厚計測法。   A substantially true sphere is used as the sphere according to claim 2, and the diameter of the sphere is sufficiently large with respect to the measurement pitch (preferably, the diameter of the sphere is set to about 5 times the measurement pitch or more). 3. The plate thickness measurement method according to claim 2, wherein center coordinates of a sphere serving as a reference point are identified from the surface data of the front and back surfaces by a least square method.
JP2007046380A 2007-02-27 2007-02-27 Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object Pending JP2008209244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046380A JP2008209244A (en) 2007-02-27 2007-02-27 Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046380A JP2008209244A (en) 2007-02-27 2007-02-27 Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object

Publications (1)

Publication Number Publication Date
JP2008209244A true JP2008209244A (en) 2008-09-11

Family

ID=39785674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046380A Pending JP2008209244A (en) 2007-02-27 2007-02-27 Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object

Country Status (1)

Country Link
JP (1) JP2008209244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096808A (en) * 2013-11-15 2015-05-21 Jfeスチール株式会社 Method of measuring plate thickness
CN113654497A (en) * 2020-05-12 2021-11-16 广州汽车集团股份有限公司 Measuring device and measuring method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097684A (en) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd Measurement method for position relation between faces of optical devices and holding device holding optical device used for it
JP2001324309A (en) * 2000-05-15 2001-11-22 Canon Inc Three-dimensional shape measuring instrument
JP3307060B2 (en) * 1994-03-17 2002-07-24 松下電器産業株式会社 3D shape measurement method
JP2004325143A (en) * 2003-04-22 2004-11-18 Canon Inc Face shape measuring device and face shape measuring method
JP2006329694A (en) * 2005-05-24 2006-12-07 Matsushita Electric Ind Co Ltd Calibration jig and calibration method of three-dimensional measuring machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307060B2 (en) * 1994-03-17 2002-07-24 松下電器産業株式会社 3D shape measurement method
JP2000097684A (en) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd Measurement method for position relation between faces of optical devices and holding device holding optical device used for it
JP2001324309A (en) * 2000-05-15 2001-11-22 Canon Inc Three-dimensional shape measuring instrument
JP2004325143A (en) * 2003-04-22 2004-11-18 Canon Inc Face shape measuring device and face shape measuring method
JP2006329694A (en) * 2005-05-24 2006-12-07 Matsushita Electric Ind Co Ltd Calibration jig and calibration method of three-dimensional measuring machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096808A (en) * 2013-11-15 2015-05-21 Jfeスチール株式会社 Method of measuring plate thickness
CN113654497A (en) * 2020-05-12 2021-11-16 广州汽车集团股份有限公司 Measuring device and measuring method using the same

Similar Documents

Publication Publication Date Title
CN107042528B (en) A kind of Kinematic Calibration system and method for industrial robot
EP2381214A1 (en) Optical measurement system
CN102252637B (en) Method for detecting flatness of large-scale flange
CN108827187B (en) A kind of measuring three-dimensional profile system
González-Jorge et al. Standard artifact for the geometric verification of terrestrial laser scanning systems
US20050154548A1 (en) Method for calibration of a 3D measuring device
CN103697824A (en) System calibration method for measuring head of coordinate measuring machine
CN110806571B (en) Multi-structure optical sensor space attitude calibration piece and calibration method thereof
CN105046715B (en) A kind of line-scan digital camera scaling method based on interspace analytic geometry
CN102589430A (en) Calibrating method for multi-instrument coordinate unification device
CN106813600B (en) Non-contact discontinuous plane flatness measuring system
CN101900531B (en) Method for measuring and calculating binocular vision displacement measurement errors and measuring system
CN104019745A (en) Method for measuring size of free plane based on monocular vision indirect calibration method
US20080123110A1 (en) Multifaceted digitizer adapter
CN105115407A (en) Portable multifunctional planeness detection device and application method therefor
JP2006258612A (en) Inter-shaft angle correction method
JP2008209244A (en) Method of constructing three-dimensional shape from surface data by three-dimensional surface shape measuring instrument, and method of measuring thickness of plate-like object
JP2008089541A (en) Reference for measuring motion error and motion error measuring device
CN111256592B (en) External parameter calibration device and method for structured light sensor
TW200841981A (en) Laser array measurement system for testing three dimensional positioning performance, measuring three dimensional orbit and straightness of arbitrary axis
CN113513986B (en) Geometric tolerance measuring device and measuring method thereof
JP2012008114A (en) Measurement apparatus, position determination system, measurement method, calibration method and program
JP5030917B2 (en) Attitude measurement method and grinding apparatus
TW523579B (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
JP2020139848A (en) Calibration apparatus for three-dimensional measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Effective date: 20111114

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20120424

Free format text: JAPANESE INTERMEDIATE CODE: A02