JPS6129710A - Measuring method - Google Patents

Measuring method

Info

Publication number
JPS6129710A
JPS6129710A JP15185184A JP15185184A JPS6129710A JP S6129710 A JPS6129710 A JP S6129710A JP 15185184 A JP15185184 A JP 15185184A JP 15185184 A JP15185184 A JP 15185184A JP S6129710 A JPS6129710 A JP S6129710A
Authority
JP
Japan
Prior art keywords
irradiation point
imaging means
moved
measured
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15185184A
Other languages
Japanese (ja)
Inventor
Mitsuo Iso
三男 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP15185184A priority Critical patent/JPS6129710A/en
Publication of JPS6129710A publication Critical patent/JPS6129710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape and position of a work precisely in a short time by deriving positions of respective points on the surfaces of a work continuously. CONSTITUTION:The 2nd moving body 7 rotates by a specific angle and moves to the right and left together with the 1st moving body 6. Image pickup means 9a and 9b are movable to the right and left and a light source 10 is supported rotatably in the 1st moving body 6. A point P on a line L parallel to the X axis of the work 8 within the overlap visual field of the image pickup means 9a and 9b is irradiated to derive image pickup surfaces and an actual position by an image processing means. Then, the light source 10 is rotated to irradiate a next point, and the image pickup range is moved in the X-axial direction to irradiate respective points on the line L. Further, the 1st and the 2nd moving bodies 6 and 7 are moved in the X-axial direction to derive the positions of the respective points on the line L. Then, said operation is repeated every time the 2nd guide body 3 is moved in the Z-axial direction to derive the shape and position continuously. Further, the spot diameter is reduced and the image pickup means 9a and 9b are increased in magnification to measure even a fine shape and a surface form.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、被測定体表面の各点の位置を導出して被測
定体の形状等を測定する測定方法に関する。 〔従来技術〕 従来、被測定体表面の各点の位置を導出して被測定体の
形状等を測定する手法として、センシングプローブを被
測定体に接触させて被測定体の形状を計測する接触法や
、2台のカメラにより同一対象物を同時に撮像しその両
画像の共通点を求めて被測定体の形状を測定するステレ
オ写真法、基準面におけるモアレ縞および被測定体表面
におけるモアレ縞にもとづき被測定体の形状を測定する
モアレトポグラフィ法、および縦長のスリット光を被測
定体に照射して当該照射個所をテレビヵメラにより撮像
し、当該画像の特徴的な点を求めて被測定体の形状を測
定する光切断法などの非接触法があり、これらの各手法
が産業用ロボットの物体認識技術として、あるいは各種
の検査装置等における物体認識技術として広く応用され
ている。 ところが、前記した接触法では測定に長時間を要すると
いう欠点があり、非接触式の場合も、被測定体の形状を
認識しているだけで、被測定体の位置、すなわち任意の
座標系における座標を直接計測しているのではないため
、被測定体の位置を求めるには、得られた画像から対象
とすべき点を求めたのち、求めた点の位置すなわち座標
を演算。 導出しなければならず、演算に時間がかかり、しかもこ
れらの手法を実現する測定装置は分解能弁が非常に低い
ため、被測定体そのものが小さい場合、あるいは被測定
体表面に小さな凹凸がある場合には、精度よく被測定体
の形状や表面の凹凸の状態を認識できず、信頼性に欠け
るという欠点があり、被測定体の形状等を測定するには
不十分である。 〔発明の目的〕 この発明は、前記の点に留意してなされたものであり、
被測定体の形状および位置を短時間で精度よく測定でき
るようにすることを目的とする。 〔発明の構成〕 この発明は、被測定体を撮像する1対の撮像手段を、前
後方向に移動自在、かつそれぞれの撮像範囲を左右方向
に移動自在に設けるとともに、スリット光を照射する光
源を、前後方向に移動自在。 かつ前記スリット光の照射点を左右方向に移動自在に設
け、前記光源により、前記再撮像手段の重複視野内の前
記被測定体表面の左右方向の線上の複数個所に順次スリ
ット光を照射し、前記光源からのスリット光をある照射
点に固定した状態で前記再撮像手段の撮像範囲を前記あ
る照射点を含む範囲で左右方向に移動し、移動後の前記
再撮像手段の重複視野内の前記被測定体表面の前記線上
の複数個所に前記スリット光を照射し、前記重複視野の
順次の移動および前記スリット光の照射点の移動を前記
再撮像手段および前記光源の前後方向への移動ごとに繰
り返し、画像処理手段により、前記被測定体表面の前記
スリット光ごとのそれぞれの照射点の、前記再撮像手段
により撮像された画像を処理して前記各照射点の位置を
導出し、前記被測定体の形状を測定することを特徴とす
る測定方法である。 〔発明の効果〕 したがって、この発明の測定方法によると、両撮偉手段
の撮像範囲を左右方向に順次移動し、前記各移動後の再
撮像手段の重複視野内における被測定体表面の左右方向
の線上の複数個所にスリット光を照射し、前記重複視野
の順次の移動およびスリット光の照射点の移動を再撮像
手段および光源の前後方向への移動ごとに繰り返し、画
像処理手段により被測定体表面の各照射点の画像を処理
し、前記各照射点の位置を導出して被測定体の形状を測
定するようにしたことにより、被測定体が大きくても、
被測定体表面の各点の位置を連続的に導出して被測定体
の形状と同時に位置を導出することができるとともに、
再撮像手段の撮像範囲を拡大するのみで、被測定体の微
細な形状や微細な表面状態を測定することもでき、被測
定体の形状や表面状態等を短時間で測定することが可能
となり、非常に実用的である。 さらに、再撮像手段の重複視野を移動する際に、スリッ
ト光をある照射点に固定した状態で再撮像手段の撮像範
囲を前記ある照射点を含む範囲で左右方向に移動するた
め、重複視野が移動しても照射点を常に左右方向の同一
線上に定めることができ、被測定体表面の各点の位置を
正確に導出して被測定体の形状を精度よく測定すること
ができる。 〔実施例〕 つぎに、この発明を、その実施例を示した図面とともに
詳細に説明する。 まず、l実施例を示した第1ないし第4図について説明
する。 それらの図面において、(I)は架台上に所定高さに設
けられた前後方向の第1ガイド体、(21は第1ガイド
体+1)上の後端部に取り付けられた後述の第2ガイド
体の移動用第1モータ、(3]は両端が第1モータ(2
)の回転軸および軸受に係止された第1送りねじに左下
端部が螺合して前後方向に移動自在に設けられた左右方
向に長尺の第2ガイド体、(4)は前記第1送りねじの
第2ガイド体(3)より前側の部分および後側の部分を
それぞれ包被して設けられた伸縮自在の蛇腹状の包被体
、+51 、 (brは第2ガイド体(3)上の左端部
および右端部に取り付けられた後述の第1移動体の移動
用第2モータおよび軸受、(6)は下面が開口した筐体
状の第1移動体であり、後側面の左上端部に一体に作動
体(61′が形成され、両端が第2モータ(6)、軸受
(51′に係止された第2送りねじに作動体(61′が
螺合して第1移動体(6)が第2ガイド体(3)の前方
を左右方向に移動自在となっている。 (7)は第1移動体(6)の前側面に回転自在に設けら
れ、第3モータにより所定角度回転し第1移動体(6)
とともに左右方向へ移動する下面が開口した筐体状の第
2移動体、(8)は前記架台上に載置された被測定体(
以下ワークという)、(9a)、(9b)は第2移動体
(7)内の左端部、右端部に固定されてそれぞれの撮像
範囲が左右方向に移動自在に設けられ。 ワ−り(81を撮像するCCD型リニアイメージセンサ
等からなる第1.第2撮像手段、(lO)は第1移動体
(6)の内側に上端部が回転自在に支持されスリット光
であるスポット光を照射するレーザ、円形スリット付き
キセノンランプからなる光源であり、第4図に示すよう
に、一端が第1移動体(6)内に固着された第4モータ
(Il)の回転軸(++1′に軸着された第1連結板(
1匂と一端が第1連結板(12)の他端に接続された第
2連結板(1萄とを介して光源(lO)の上端部が回転
自在に連結され、第4モータ(川の作動により光源(l
O)の下端部が回転するようになっている。 なお、(14)は第1ガイド体+11の右側面、第2ガ
イド体(3)の前側面の上端部、下端部にそれぞれ配設
され第2ガイド体(3)および第1移動体(6)の移動
時の摩擦を軽減して移動を容易にするリニア軸受である
。 また図示されていないが、両撮像手段(9a)、(9b
)の重複視野の順次の移動およびスポット光の照射点の
移動を両撮像手段(9a)、(9b)および光源(1ω
の前後方向への移動ごとに繰り返して得られるワーク(
8)の表面の前記スリット光ごとのそれぞれの照射点の
2両撮像手段(9a)、(9b)により撮像された画像
を処理して前記各照射点の位置を導出する画像処理手段
が設けられている。 いま、第1図中に示すように左右、上下9前後の各方向
にXYZ座標系のx、y、zの各軸をとり、ワーク(8
)の表面の各点の位置、すなわちXYZ座標系における
座標を導出してワーク(8)の形状を測定する場合、第
2ガイド体(3)を所定位置に停止させるとともに、第
2移動体(7)を所定角度の位置に停止させて両撮像手
段(9a)、(9b)の重複視野を固定し、両撮像手段
(9a)、(9b)の重複視野内のワーク(8)の表面
のX軸に平行な線り上のある照射点Pに光源(lO)か
らのスポット光を照射し、両撮像手段(9a)、(9b
)により前記スポット光の照射点Pの近辺を同時に撮像
するとともに、画像処理手段により両撮像手段(9a)
、(9b)による前記照射点Pの近辺の画像のうち最も
明るい点の位置すなわち照射点Pの両撮像手段(9a)
、(9b)の撮像面上における位置を導出し、前記両撮
像面上の前記照射点Pの位置をX軸に平行な任意の基準
線を含む基準面における点の位置に換算し、前記両撮像
面上の画点それぞれと前記基準面上の画点それぞれとを
結ぶ2本の直線の交点としてワーク(8)上の実際の照
射点Pの位置、すなわちX、Y座標成分および第2ガイ
ド体(3)の位置により定まるZ座標成分からなる座標
を導出する。 つぎに、第4モータ(11)を駆動して光源(10)を
前記線りを含む面内で回転して両撮像手段(9a)、(
9b)の重複視野内における前記線り上の照射点Pの次
の照射点にスポット光を照射し、前記の照射点Pの位置
導出と同様にして前記法の照射点の位置を導出するとと
もに、前記重複視野内における前記線り上の各照射点の
位置を導出し前記スポット光の照射点が前記重複視野内
における線りの端部の点に達したときには、次の照射点
が前記重複視野から外れてしまうため、スポット光をた
とえば第2図に示す照射点P′に固定した状態で、第3
図に示すように、第2移動体(7)を所定角度回転して
両撮像手段(9a)、(9b)の撮像範囲を、照射点P
′を含む範囲でX軸方向に移動させ、移動後の面撮像手
段(9a)。 (9b)の重複視野内におけるワーク(8)の表面の前
記線り上の各照射点にスポット光を照射する。 そして、前記した照射点Pの位置導出と同様にして移動
後の前記重複視野内におけるワーク(8)の表面の前記
線り上の各照射点の位置すなわちXYZ座標系における
座標を導出し、さらには第2移動体(7)の回転に加え
て第2移動体(7)を@1移動体(6)とともに第2ガ
イド体(3)に沿ってX軸の正方向に移動させ、これら
の動作を繰り返してワーク(8)の表面の前記線り上の
各照射点の位置を導出したのち、第2移動体(7)を前
記と逆方向に回転するとともにX軸の負方向へ移動して
面撮像手段(9a)、(9b)の撮像範囲を測定開始位
置に復帰させ、その後第1モータ(2)の作動により第
2ガイド体(3)をZ軸の正方向へ所定量移動させて前
記の動作を再び繰り返すとともに、第2ガイド体(3)
をZ軸の正方向に前記所定量ずつ移動させるごとに前記
の動作を繰り返し、画像処理手段により、ワーク(8)
上の各照射点の位置すなわちX、Y座標成分および第2
ガイド体+31の移動量により定まるZ軸成分からなる
各座標を導出し、導出した前記各照射点の座標にもとづ
き、ワーク(8)の形状と同時に位置を測定する。 したがって、前記実施例によると、ワーク(8)ががで
きるとともに、スポット光のスポット径を小さくしゅか
つ面撮像手段(9a)、(9b)の倍率を上げて面撮像
手段(9a)、(9b)の撮像範囲を拡大するのみで、
ワーク(8)の微細な形状や微細な表面状態をも測定す
ることもでき、ワーク(8)の形状や表面状態等を短時
間で測定することが可能となり、表面検査装置にも適用
することができ、非常に実用的である。 さらに、面撮像手段(9a)、(9b)の重複視野を移
動する際に、スポット光をある照射点に固定した状態で
面撮像手段(9a)、(9b)の撮像範囲を前記ある照
射点を含む範囲で左右方向に移動するため、重複視野が
移動しても照射点を常に左右方向の同一線上に定めるこ
とができ、ワーク(8)の表面の各点の位置を正確に導
出してワーク(8)の形状等を精度よく測定することが
できる。 また、ワーク(8)の形状を非接触で行なうため、ワー
ク(8)がゴム等の柔軟で変形し易いものであっても、
形状等を容易に計測することができる。 さら
[Industrial Field of Application] The present invention relates to a measuring method for determining the position of each point on the surface of an object to be measured and measuring the shape of the object. [Prior Art] Conventionally, as a method of deriving the position of each point on the surface of a measured object and measuring the shape of the measured object, contact is used to measure the shape of the measured object by bringing a sensing probe into contact with the measured object. stereo photography, which measures the shape of the object by capturing images of the same object simultaneously with two cameras and finding common points between both images; The moiré topography method is based on which the shape of the object to be measured is measured, and the shape of the object is determined by irradiating the object with a vertical slit light, capturing an image of the irradiated area with a television camera, and finding the characteristic points in the image. There are non-contact methods such as the optical cutting method that measure the amount of light, and these methods are widely applied as object recognition technology for industrial robots or for various inspection devices. However, the contact method described above has the disadvantage that measurement takes a long time, and even in the case of a non-contact method, the position of the object, that is, the position in any coordinate system, can only be determined by recognizing the shape of the object. Since the coordinates are not directly measured, in order to determine the position of the object to be measured, the target point is determined from the obtained image, and then the position, or coordinates, of the determined point is calculated. The measurement equipment that implements these methods has a very low resolution valve, so it is difficult to use when the object to be measured is small or there are small irregularities on the surface of the object to be measured. The method has the disadvantage that it cannot accurately recognize the shape of the object to be measured or the state of surface irregularities, and is therefore unreliable, making it insufficient for measuring the shape, etc. of the object to be measured. [Object of the invention] This invention has been made with the above points in mind,
The purpose is to enable accurate measurement of the shape and position of an object to be measured in a short time. [Structure of the Invention] The present invention provides a pair of imaging means for imaging an object to be measured, which are movable in the front and back directions, and whose respective imaging ranges are movable in the left and right directions, and a light source that emits slit light. , can move freely in the front and back directions. and the irradiation point of the slit light is provided to be movable in the left-right direction, and the light source sequentially irradiates the slit light at a plurality of locations on a line in the left-right direction on the surface of the object to be measured within the overlapping field of view of the re-imaging means; With the slit light from the light source fixed at a certain irradiation point, the imaging range of the re-imaging means is moved in the left-right direction within a range that includes the certain irradiation point, and the image within the overlapping field of view of the re-imaging means after the movement is The slit light is irradiated to a plurality of locations on the line on the surface of the object to be measured, and the overlapping field of view is sequentially moved and the irradiation point of the slit light is moved every time the re-imaging means and the light source are moved in the front and back direction. Repeatedly, the image processing means processes the image taken by the re-imaging means of each irradiation point for each of the slit lights on the surface of the object to be measured to derive the position of each irradiation point, and This measurement method is characterized by measuring the shape of the body. [Effects of the Invention] Therefore, according to the measurement method of the present invention, the imaging ranges of both imaging means are sequentially moved in the left-right direction, and the surface of the object to be measured is measured in the left-right direction within the overlapping field of view of the re-imaging means after each movement. The slit light is irradiated to multiple locations on the line, and the sequential movement of the overlapping field of view and the movement of the slit light irradiation point are repeated each time the re-imaging means and the light source are moved in the front and back direction, and the image processing means By processing the image of each irradiation point on the surface and deriving the position of each irradiation point to measure the shape of the object to be measured, even if the object to be measured is large,
The position of each point on the surface of the object to be measured can be continuously derived, and the shape and position of the object to be measured can be derived at the same time.
By simply expanding the imaging range of the re-imaging means, it is possible to measure the minute shape and surface condition of the object to be measured, making it possible to measure the shape and surface condition of the object in a short time. , very practical. Furthermore, when moving the overlapping field of view of the re-imaging means, the slit light is fixed at a certain irradiation point and the imaging range of the re-imaging means is moved in the left-right direction within a range that includes the certain irradiation point, so the overlapping field of view is Even when moving, the irradiation point can always be set on the same line in the left-right direction, and the position of each point on the surface of the object to be measured can be accurately derived to accurately measure the shape of the object to be measured. [Example] Next, the present invention will be described in detail with reference to drawings showing examples thereof. First, FIGS. 1 to 4 showing the first embodiment will be explained. In those drawings, (I) is a first guide body in the front and rear direction provided at a predetermined height on the pedestal, and a second guide (described later) attached to the rear end of (21 is the first guide body + 1) The first motor for moving the body (3) has both ends connected to the first motor (2).
), a second guide body which is elongated in the left-right direction and whose left lower end is screwed onto the first feed screw which is locked to the rotating shaft and the bearing, and which is movable in the front-back direction; +51 is a telescopic bellows-shaped covering body provided to cover the front and rear parts of the second guide body (3) of the 1-feed screw, respectively. ) A second motor and a bearing for moving the first moving body, which will be described later, are attached to the left and right ends of the upper part. An actuating body (61') is integrally formed at the end, and both ends are connected to the second motor (6), and the actuating body (61' is screwed to the second feed screw locked to the bearing (51') to move the first movement. The body (6) is movable in the left and right direction in front of the second guide body (3). (7) is rotatably provided on the front side of the first movable body (6), and is moved by the third motor. The first moving body (6) rotates by a predetermined angle.
(8) is a second moving body in the form of a casing with an open bottom that moves in the left-right direction along with the object to be measured ((8) placed on the pedestal;
(hereinafter referred to as works), (9a), and (9b) are fixed to the left end and right end of the second moving body (7), and their respective imaging ranges are movable in the left and right direction. The first and second imaging means (lO), which is composed of a CCD type linear image sensor or the like that images the workpiece (81), is a slit light whose upper end is rotatably supported inside the first moving body (6). The light source consists of a laser that irradiates a spot light and a xenon lamp with a circular slit, and as shown in FIG. The first connecting plate (
The upper end of the light source (lO) is rotatably connected via a second connecting plate (12) whose one end is connected to the other end of the first connecting plate (12), The light source (l
The lower end of O) is designed to rotate. In addition, (14) is arranged at the right side of the first guide body +11, the upper end part and the lower end part of the front side of the second guide body (3), respectively, and the second guide body (3) and the first movable body (6 ) is a linear bearing that reduces friction during movement and facilitates movement. Although not shown, both imaging means (9a) and (9b
) and the spot light irradiation point are sequentially moved by the imaging means (9a), (9b) and the light source (1ω
The work piece (
8) is provided with image processing means for processing the images taken by the two imaging means (9a) and (9b) of each irradiation point for each of the slit lights on the surface and deriving the position of each irradiation point. ing. Now, as shown in Figure 1, the x, y, and z axes of the XYZ coordinate system are taken in the left and right, up and down directions, and the workpiece is
), that is, the coordinates in the XYZ coordinate system, to measure the shape of the workpiece (8), the second guide body (3) is stopped at a predetermined position, and the second moving body ( 7) at a predetermined angle position to fix the overlapping fields of view of both imaging means (9a) and (9b), and to detect the surface of the workpiece (8) within the overlapping field of view of both imaging means (9a) and (9b). A spot light from a light source (lO) is irradiated to a certain irradiation point P on a line parallel to the X-axis, and both imaging means (9a) and (9b
) to simultaneously image the vicinity of the spot light irradiation point P, and image processing means to simultaneously image the vicinity of the spot light irradiation point P, and image processing means to simultaneously image the vicinity of the spot light irradiation point P.
, (9b), the position of the brightest point among the images near the irradiation point P, that is, both imaging means (9a) of the irradiation point P.
, (9b) on the imaging plane, converting the position of the irradiation point P on both the imaging planes into the position of a point on the reference plane including an arbitrary reference line parallel to the X-axis, and The position of the actual irradiation point P on the workpiece (8), that is, the X, Y coordinate components and the second guide, is the intersection of two straight lines connecting each pixel on the imaging plane and each pixel on the reference plane. A coordinate consisting of a Z coordinate component determined by the position of the body (3) is derived. Next, the fourth motor (11) is driven to rotate the light source (10) within a plane that includes the line, and both imaging means (9a), (
Irradiating the spot light to the next irradiation point after the irradiation point P on the line in the overlapping field of view in 9b), and deriving the position of the irradiation point in the method in the same manner as deriving the position of the irradiation point P, and , the position of each irradiation point on the line within the overlapping field of view is derived, and when the irradiation point of the spotlight reaches the end point of the line within the overlapping field of view, the next irradiation point is located on the overlapping field of view. Therefore, with the spot light fixed at the irradiation point P' shown in FIG.
As shown in the figure, by rotating the second moving body (7) by a predetermined angle, the imaging range of both imaging means (9a) and (9b) is adjusted to the irradiation point P.
' is moved in the X-axis direction, and after the movement, the surface imaging means (9a). Spot light is irradiated onto each irradiation point on the line on the surface of the workpiece (8) within the overlapping field of view (9b). Then, similarly to deriving the position of the irradiation point P described above, the position of each irradiation point on the line on the surface of the workpiece (8) within the overlapping field of view after movement, that is, the coordinate in the XYZ coordinate system, is derived, and further In addition to the rotation of the second moving body (7), the second moving body (7) is moved along the second guide body (3) together with @1 moving body (6), and these After repeating the operation and deriving the position of each irradiation point on the line on the surface of the workpiece (8), the second moving body (7) is rotated in the opposite direction and moved in the negative direction of the X axis. The imaging range of the surface imaging means (9a) and (9b) is returned to the measurement starting position, and then the second guide body (3) is moved by a predetermined amount in the positive direction of the Z-axis by the operation of the first motor (2). and repeat the above operation again, and move the second guide body (3)
The above operation is repeated each time the workpiece (8) is moved in the positive direction of the Z-axis by the predetermined amount, and the image processing means
The position of each irradiation point above, that is, the X, Y coordinate components and the second
Each coordinate consisting of a Z-axis component determined by the amount of movement of the guide body +31 is derived, and based on the derived coordinates of each irradiation point, the shape and position of the workpiece (8) are measured at the same time. Therefore, according to the embodiment, the workpiece (8) is produced, the spot diameter of the spot light is reduced, and the magnification of the surface imaging means (9a), (9b) is increased. ) by simply expanding the imaging range of
It is also possible to measure the minute shape and surface condition of the workpiece (8), making it possible to measure the shape and surface condition of the workpiece (8) in a short time, and it can also be applied to surface inspection equipment. It is very practical. Furthermore, when moving the overlapping fields of view of the surface imaging means (9a) and (9b), the imaging range of the surface imaging means (9a) and (9b) is changed to the certain irradiation point with the spot light fixed at a certain irradiation point. Since it moves in the left-right direction in a range that includes The shape etc. of the workpiece (8) can be measured with high accuracy. In addition, since the shape of the workpiece (8) is shaped without contact, even if the workpiece (8) is a flexible and easily deformable material such as rubber,
Shape etc. can be easily measured. Sara

【と、スポット光を使用しているため、エネルギー
密度が低く2弱い光でもよく、照明を使用したときの照
明熱により、ワーク(8)に歪が生じたりすることもな
い。 つぎに、他の実施例を示す第5図および第6図について
説明する。 まず第5図において、第1図ないし第3図と同一記号は
同一のものを示し、第1図ないし第3図と異なる点は、
左下端部が前記第1送りねじに螺合した左右方向に長尺
の第3ガイド体(15)を設け、第3ガイド体(16)
の前面右端部に、面撮像手段(9a)。 (9b)を固定して収納した筐体(I6)の上端部を回
転自在に取り付けるとともに、筐体(16)内に光源(
10)を筐体(16)の回転と関係なく回転自在に収納
し、第3ガイド体(15)のほぼ中央部にステッピング
モータからなる第5モータ(1ηを取り付け、第5モー
タ07)の回転軸に回転体(18)の一端部を軸着し、
一端が回転体(18)の他端の貫通孔に嵌入された作動
棒09)の他端を筐体(I6Iの左側面の下端部に回転
自在に連結し、第5モータ(I7)の作動による回転体
θ8)の回転により筐体(16)の下端部を回転させて
面撮像手段(9a)、(9b)の撮像範囲を移動するよ
うにした点である。 また第6図に示すように、第3ガイド体(15)の後側
面の右端部に減速機構(財)を備えた第6モータ@】)
を取り付け、第3ガイド体α5)の前側面の右端部を貫
設した減速機構(2))の回転軸に筐体(IQの上端中
央部を軸着してもよい。 したがって、前記両実施例によると、第1図ないし第4
図に示す実施例と同等の効果を得ることができる。 さらに他の実施例を示す第7図以下の図面について説明
する。 それらの図面において、偉4は左下端部が前記第1送り
ねじに螺合した左右方向に長尺の第4ガイド体、(23
)は第4ガイド体(2η上の左端部に取り付けられた後
述の第3移動体の移動用第7モータ、シ4)は第4ガイ
ド体翰の左側面に取り付けられた後述の光源の移動用第
8モータ、(ロ)は下面が開口した第1.第2撮像手段
(9a)、(9b)が設けられ、両端が第7モータ(2
3)の回転軸および軸受に係止された第3送りねじ(財
)に作動体−が螺合し、第7モータ(23の作動により
第3送りねしく社)が回転し、作動体−が左右方向に送
られて第3移動体(社)が第4ガイド体偉4の後側を左
右方向に移動する。 圀は第4ガイド体□□□の前側面および後側面にそれぞ
れ上、下に並行して配設され第3移動体(社)および後
述の光源の移動時の摩擦を軽減して移動を容易にする1
対のリニア軸受、□□□は光源であり1、本体atの下
端部に一体に作動体(28)%S設けられ、両端が第8
モークシ4)の回転軸および軸受に係止された第4送り
ねし四に作動体(28)%5螺合し、第8モータ(財)
の作動により第4送りねじ(29)が回転し、作動体シ
粉′力5左右方向に送られて光源(2(へ)が第、4ガ
イド体(22Iの前側を左右方向に移動し、両撮像手段
(9a)、(gb)の重複視野内のワーク(8)の表面
の左右方向の線り上の複数個所に順次鋒41スポット光
を照射するようになっている。 なお、(301、mllは第3.第4送りねじ(財)、
し9)それぞれの作動体(25+ 、 Hの左側の部分
および右側の部分をそれぞれ包被して設けられた伸縮自
在の蛇腹状の包被体である。 そして、第7モ〜り瞥の作動により、光源−からのスポ
ット光をある照射点に固定した状態で第3移動体(ロ)
が左右方向であるX軸の正方向に移動し、第9図に示す
ように、前記ある照射点を含む範囲で両撮像手段(9a
)、(9b)の撮像範囲が移動して両撮像手段(9a)
、(9b)の重複視野が移動し、移動後の両撮像手段(
9a)、(9b)の重複騰野1内のワーク(8)の表面
の線り上の複数個所に、光源(2SがX軸の正方向に順
次移動してスポット光を照射する。 したがって、前記実施例によると、第1図ないし第4図
に示す実施例と同等の効果を得ることができる。 なお、第1図、第2図および第3図において、光源から
のスポット光の光路をモータにより回転させるだけでな
く、電子ビーム等により磁気的にスポット光の光路を回
転させるようにしてもよい。 j y=、両撮像手段(9a)、(9b)トシテCCD
型イメージセンサを使用したが、MO3型イメージセン
サヤ撮像管等により構成してもよいことは勿論である。
[Since spot light is used, the energy density is low and weak light is sufficient, and the workpiece (8) will not be distorted by the heat of the illumination when the illumination is used. Next, FIGS. 5 and 6 showing other embodiments will be described. First, in FIG. 5, the same symbols as in FIGS. 1 to 3 indicate the same things, and the differences from FIGS. 1 to 3 are as follows.
A third guide body (15), which is elongated in the left-right direction and whose left lower end portion is screwed to the first feed screw, is provided, and a third guide body (16) is provided.
At the right end of the front surface, there is a surface imaging means (9a). (9b) is fixedly stored in the housing (I6), and the upper end of the housing (I6) is rotatably attached, and the light source (16) is installed inside the housing (16).
10) is housed so as to be rotatable regardless of the rotation of the housing (16), and the fifth motor (1η is attached to the stepping motor approximately at the center of the third guide body (15), and the fifth motor 07) is rotated. One end of the rotating body (18) is attached to the shaft,
The other end of the operating rod 09, one end of which is fitted into the through hole at the other end of the rotating body (18), is rotatably connected to the lower end of the left side of the casing (I6I) to operate the fifth motor (I7). The lower end of the casing (16) is rotated by the rotation of the rotating body θ8) to move the imaging range of the surface imaging means (9a) and (9b). In addition, as shown in Fig. 6, there is a sixth motor equipped with a speed reduction mechanism at the right end of the rear side of the third guide body (15).
may be attached, and the upper end center portion of the casing (IQ) may be pivotally attached to the rotating shaft of the deceleration mechanism (2) which is provided through the right end of the front side of the third guide body α5). According to the example, Figures 1 to 4
The same effect as the embodiment shown in the figure can be obtained. Further, the drawings from FIG. 7 showing another embodiment will be explained. In those drawings, the shaft 4 is a fourth guide body (23
) is the seventh motor for moving the third moving body, which will be described later, attached to the left end of the fourth guide body (2η); (b) is the first motor with an open bottom. Second imaging means (9a) and (9b) are provided, and both ends are connected to a seventh motor (2).
The actuating body is screwed into the third feed screw (corporate) which is locked to the rotating shaft and bearing of 3), the seventh motor (Daisan Feed Nesshikusha) rotates due to the operation of 23, and the actuating body - is sent in the left-right direction, and the third moving body moves in the left-right direction on the rear side of the fourth guide body 4. The walls are arranged in parallel above and below the front and rear sides of the fourth guide body □□□, respectively, to reduce friction and facilitate movement of the third moving body and the light source (described later). to make 1
A pair of linear bearings, □□□ is a light source 1, an operating body (28)%S is provided integrally at the lower end of the main body, and both ends are 8th
The actuating body (28) is screwed into the fourth feed gear 4, which is locked to the rotating shaft and bearing of the mokushi 4), and the 8th motor
The fourth feed screw (29) rotates due to the operation of the actuator, and the force of the actuating body is sent in the left and right directions, causing the light source (2) to move in the left and right direction on the front side of the fourth guide body (22I). The spot light of the blade 41 is sequentially irradiated to multiple locations on the horizontal line on the surface of the workpiece (8) within the overlapping fields of view of both the imaging means (9a) and (gb). , mll is the 3rd and 4th feed screw (goods),
9) Each operating body (25+, H is a telescopic bellows-shaped covering body that covers the left and right parts of H. With the spot light from the light source fixed at a certain irradiation point, the third moving body (b)
moves in the positive direction of the X-axis, which is the left-right direction, and as shown in FIG.
), (9b) are moved and both imaging means (9a)
, (9b) are moved, and both imaging means (
The light source (2S) sequentially moves in the positive direction of the X-axis to irradiate spot light onto multiple locations on a line on the surface of the workpiece (8) in the overlapping field 1 of 9a) and (9b). Therefore, According to the embodiment described above, it is possible to obtain the same effect as the embodiment shown in Figs. 1 to 4. In Figs. 1, 2, and 3, the optical path of the spot light from the light source is In addition to rotating by a motor, the optical path of the spot light may be rotated magnetically by an electron beam or the like.
Although a type image sensor is used, it goes without saying that an MO3 type image sensor or an image pickup tube or the like may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の測定方法の実施例を示し、第1図な
いし第4図は1実施例を示し、第1図は測定装置の斜視
図、第2図および第3図はそれぞれ測定時の異なる状態
における一部の正面図、第4図は第1図の一部の斜視図
、第5図および第6図はそれぞれ他の実施例における測
定装置の斜視図および一部の右側面図、第7図以下の図
面はさらに他の実施例を示し、第7図は斜視図、第8図
は右側面図、第9図は動作説明図である。 +81 ・・・被測定体、(9a)、(9b) 、、、
撮像手段、+101 、 (g119−光源、L・・・
線、P 、 P’・・・照射点。 第2図     第3図 第8図     第911
The drawings show an embodiment of the measuring method of the present invention, and FIGS. 1 to 4 show one embodiment, FIG. 1 is a perspective view of the measuring device, and FIGS. 2 and 3 are views during measurement. 4 is a perspective view of a portion of FIG. 1; FIGS. 5 and 6 are a perspective view and a right side view of a portion of the measuring device in other embodiments, respectively; The drawings following FIG. 7 show still other embodiments, in which FIG. 7 is a perspective view, FIG. 8 is a right side view, and FIG. 9 is an explanatory diagram of the operation. +81...Object to be measured, (9a), (9b) ,,
Imaging means, +101, (g119- light source, L...
Line, P, P'...Irradiation point. Figure 2 Figure 3 Figure 8 Figure 911

Claims (1)

【特許請求の範囲】[Claims] (1)被測定体を撮像する1対の撮像手段を前後方向に
移動自在、かつそれぞれの撮像範囲を左右方向に移動自
在に設けるとともに、スリット光を照射する光源を、前
後方向に移動自在、かつ前記スリット光の照射点を左右
方向に移動自在に設け、前記光源により、前記両撮像手
段の重複視野内の前記被測定体表面の左右方向の線上の
複数個所に順次スリット光を照射し、前記光源からのス
リット光をある照射点に固定した状態で前記両撮像手段
の撮像範囲を前記ある照射点を含む範囲で左右方向に移
動し、移動後の前記両撮像手段の重複視野内の前記被測
定体表面の前記線上の複数個所に前記スリット光を照射
し、前記重複視野の順次の移動および前記スリット光の
照射点の移動を前記両撮像手段および前記光源の前後方
向への移動ごとに繰り返し、画像処理手段により、前記
被測定体表面の前記スリット光ごとのそれぞれの照射点
の、前記両撮像手段により撮像された画像を処理して前
記各照射点の位置を導出し、前記被測定体の形状を測定
することを特徴とする測定方法。
(1) A pair of imaging means for imaging the object to be measured are provided so as to be movable in the front and rear directions, and each imaging range is movable in the left and right directions, and a light source for emitting slit light is movable in the front and back directions; and the irradiation point of the slit light is provided to be movable in the left-right direction, and the light source sequentially irradiates the slit light at a plurality of locations on a line in the left-right direction on the surface of the object to be measured within the overlapping field of view of both the imaging means, With the slit light from the light source fixed at a certain irradiation point, the imaging ranges of both the imaging means are moved in the left-right direction within a range that includes the certain irradiation point, and the image within the overlapping field of view of both the imaging means after the movement is The slit light is irradiated to a plurality of locations on the line on the surface of the object to be measured, and the overlapping fields of view are sequentially moved and the irradiation point of the slit light is moved each time the imaging means and the light source are moved in the front and rear directions. Repeatedly, the image processing means processes the images of each irradiation point of each of the slit lights on the surface of the object to be measured, taken by both the imaging means, to derive the position of each irradiation point, and A measurement method characterized by measuring the shape of the body.
JP15185184A 1984-07-20 1984-07-20 Measuring method Pending JPS6129710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15185184A JPS6129710A (en) 1984-07-20 1984-07-20 Measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15185184A JPS6129710A (en) 1984-07-20 1984-07-20 Measuring method

Publications (1)

Publication Number Publication Date
JPS6129710A true JPS6129710A (en) 1986-02-10

Family

ID=15527653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15185184A Pending JPS6129710A (en) 1984-07-20 1984-07-20 Measuring method

Country Status (1)

Country Link
JP (1) JPS6129710A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893933A (en) * 1987-09-30 1990-01-16 Armco Inc. Automatic BOF vessel remaining lining profiler and method
JPH0385542U (en) * 1989-12-21 1991-08-29
US5118192A (en) * 1990-07-11 1992-06-02 Robotic Vision Systems, Inc. System for 3-D inspection of objects
JPH0538511U (en) * 1991-10-25 1993-05-25 トヨタ車体株式会社 measuring device
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
US5430547A (en) * 1992-04-07 1995-07-04 Honda Giken Kogyo Kabushiki Kaisha Non-contacting position detecting apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893933A (en) * 1987-09-30 1990-01-16 Armco Inc. Automatic BOF vessel remaining lining profiler and method
JPH0385542U (en) * 1989-12-21 1991-08-29
US5118192A (en) * 1990-07-11 1992-06-02 Robotic Vision Systems, Inc. System for 3-D inspection of objects
JPH0538511U (en) * 1991-10-25 1993-05-25 トヨタ車体株式会社 measuring device
US5430547A (en) * 1992-04-07 1995-07-04 Honda Giken Kogyo Kabushiki Kaisha Non-contacting position detecting apparatus
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera

Similar Documents

Publication Publication Date Title
US10254404B2 (en) 3D measuring machine
US8612173B2 (en) Six axis motion control apparatus
CN1437000A (en) Projecting grating method and device for measuring 3D surface shape of object
WO2019140778A1 (en) Three-dimensional reconstruction system and three-dimensional reconstruction method
JP5948729B2 (en) Shape measuring device
JPH05288516A (en) Noncontact type position detecting device
US10670390B2 (en) System and method for verifying projection accuracy
JP2007534933A (en) Method for determining workpiece coordinates
US5363185A (en) Method and apparatus for identifying three-dimensional coordinates and orientation to a robot
JP2013064644A (en) Shape-measuring device, shape-measuring method, system for manufacturing structures, and method for manufacturing structures
JP5776282B2 (en) Shape measuring apparatus, shape measuring method, and program thereof
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
CN215338167U (en) Size detection equipment suitable for large-scale flat plate type industrial parts
JPS6129710A (en) Measuring method
JP3530972B2 (en) Shape measuring device
JPH05322527A (en) Three-dimensional shape measuring device
JP2012093258A (en) Shape measurement device
JPS6129709A (en) Measuring method of shape
JPH05164525A (en) Measuring head for laser type coordinate measuring apparatus
JPS6281512A (en) Solid shape measuring gauge
JPS6125003A (en) Configuration measuring method
JPH0352888B2 (en)
JPS6131905A (en) Three-dimensional measuring instrument
Zhu et al. A non-contact measurement method of cabin capacity based on structured light vision
JP3157001B2 (en) 3D shape measuring device