JP2006090881A - Surveying machine and servo processing program for the same - Google Patents

Surveying machine and servo processing program for the same Download PDF

Info

Publication number
JP2006090881A
JP2006090881A JP2004277589A JP2004277589A JP2006090881A JP 2006090881 A JP2006090881 A JP 2006090881A JP 2004277589 A JP2004277589 A JP 2004277589A JP 2004277589 A JP2004277589 A JP 2004277589A JP 2006090881 A JP2006090881 A JP 2006090881A
Authority
JP
Japan
Prior art keywords
point
angle
surveying instrument
collimation
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277589A
Other languages
Japanese (ja)
Other versions
JP4431472B2 (en
Inventor
Toru Fukuchi
徹 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2004277589A priority Critical patent/JP4431472B2/en
Publication of JP2006090881A publication Critical patent/JP2006090881A/en
Application granted granted Critical
Publication of JP4431472B2 publication Critical patent/JP4431472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To permit simple and rapid observation, by changing a collimation direction of a surveying machine to be automatically directed toward a desired known point, in observing the multitude of known points for precisely obtaining the position of a mechanical point of the surveying machine. <P>SOLUTION: A servo processing program for the surveying machine is loaded, which includes: steps (S1-S4) for calculating the positional information of the mechanical point of the surveying machine, from observation information when the plurality of known points are collimated; a step (S5) for calculating the horizontal angle and the vertical angle between the current collimation direction and the direction of the next known point, on the basis of the positional information of the desired known point other than the known points and the positional information of the mechanical point; and a step (S6) for changing the collimation direction by the amounts of the horizontal angle and the vertical angle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トータルステーション(電子式測距測角儀)やセオドライト(測角儀)等の測量機に搭載される測量機制御コンピュータを作動させるために用いる測量機制御用サーボ処理プログラムに関する。   The present invention relates to a surveying instrument control servo processing program used for operating a surveying instrument control computer mounted on a surveying instrument such as a total station (electronic rangefinder) or a theodolite (angle measuring instrument).

トータルステーションやセオドライト等の測量機100は、図1に示したように、整準台10上に水平回転可能に水平回転部12を取り付け、この水平回転部12に立設された一対の柱部14間に垂直回転可能に望遠鏡16を取り付けている。そして、水平回転部には、測定結果等を表示する表示部32と、データや各種指令を入力する入力部34とが設けられる。柱部14には、(望遠鏡16の垂直回転軸と測量機100の水平回転軸との交点)位置を示す機械点印11が付されている。   As shown in FIG. 1, a surveying instrument 100 such as a total station or theodolite has a horizontal rotating portion 12 mounted on a leveling table 10 so as to be horizontally rotatable, and a pair of column portions 14 erected on the horizontal rotating portion 12. A telescope 16 is attached between them so as to be vertically rotatable. The horizontal rotation unit is provided with a display unit 32 for displaying measurement results and the like, and an input unit 34 for inputting data and various commands. The column part 14 is provided with a mechanical mark 11 indicating a position (intersection of the vertical rotation axis of the telescope 16 and the horizontal rotation axis of the surveying instrument 100).

近年、このような測量機においては、制御部(サーボモータ)により望遠鏡を水平方向及び鉛直方向に回転駆動できるように構成して、自動視準装置により望遠鏡が自動的に測点上に設置されたターゲットを向くようにして、自動視準可能としたものも普及している。   In recent years, in such a surveying instrument, a telescope is automatically installed on a measuring point by an automatic collimation device, in which the control unit (servomotor) can rotate the telescope in the horizontal and vertical directions. A device that enables automatic collimation by facing the target is also popular.

自動視準装置を備えた測量機100について、トータルステーションを例に説明する。自動視準装置を備えた測量機100は、図2に示したように、測量機100の機械点11(望遠鏡回転軸と測量機100の水平回転軸との交点)から測定点までの距離を測定する測距部(光波距離計)18と、望遠鏡16の光軸方向すなわち視準方向の方位角を測定する水平測角部(水平エンコーダ)20と、視準方向の高度角を測定する鉛直測角部(鉛直エンコーダ)22と、視準方向の方位角を制御する水平制御部(水平サーボモータ)24と、視準方向の高度角を制御する鉛直制御部(鉛直サーボモータ)26と、これら各部を制御するとともに測定結果を処理して表示させるためのCPU(測量機制御コンピュータ)28と、ターゲット方向センサ36と、入力部34と、表示部32と、記憶手段30とを備えている(下記特許文献1参照)。   The surveying instrument 100 equipped with an automatic collimation device will be described by taking a total station as an example. As shown in FIG. 2, the surveying instrument 100 equipped with the automatic collimation device calculates the distance from the mechanical point 11 of the surveying instrument 100 (the intersection of the telescope rotation axis and the horizontal rotation axis of the surveying instrument 100) to the measurement point. A distance measuring unit (lightwave distance meter) 18 for measuring, a horizontal angle measuring unit (horizontal encoder) 20 for measuring the azimuth angle in the optical axis direction of the telescope 16, that is, the collimating direction, and a vertical measuring the altitude angle in the collimating direction. An angle measuring unit (vertical encoder) 22, a horizontal control unit (horizontal servo motor) 24 for controlling the azimuth angle in the collimation direction, a vertical control unit (vertical servo motor) 26 for controlling the altitude angle in the collimation direction, A CPU (surveying instrument control computer) 28, a target direction sensor 36, an input unit 34, a display unit 32, and a storage unit 30 are provided for controlling these units and processing and displaying the measurement results. (The following patent document Reference).

ターゲット方向センサ36とは、ターゲットの方向と視準方向とのずれを検出するもので、CCDカメラ、CCDラインセンサを十字形に配置した十字形センサ、円形センサを4つに分割した4分円センサ等が用いられるが、これらのセンサは周知であるので説明を省略する。   The target direction sensor 36 detects a deviation between the target direction and the collimation direction. The CCD camera, a cross sensor in which the CCD line sensors are arranged in a cross shape, and a quadrant that is obtained by dividing the circular sensor into four. Sensors and the like are used, but since these sensors are well known, description thereof is omitted.

自動視準装置は、ターゲット方向センサ32、CPU28、水平制御部24及び水平制御部26から構成される。CPU28は、ターゲット方向センサ32からの出力に応じた制御信号を水平制御部24及び鉛直制御部26に送って、視準方向を正確にターゲットに向けさせる。   The automatic collimation device includes a target direction sensor 32, a CPU 28, a horizontal control unit 24, and a horizontal control unit 26. The CPU 28 sends a control signal corresponding to the output from the target direction sensor 32 to the horizontal control unit 24 and the vertical control unit 26 so that the collimation direction is accurately directed to the target.

このようなトータルステーションで測量する場合、測量機の機械点の位置を求めることが必要になる。このような場合、最低2個の既知点を測距測角するか、又は3個の既知点を測角して、後方交会法によって機械点の位置(座標値)を算出できる(下記非特許文献1参照)。機械点の位置をさらに高精度に求める場合には、さらに多数の既知点を観測し、観測した結果に対して最小二乗法を用いて機械点位置を算出する方法が採用される。
特開2003−130644号公報 (株)ソキア、「測量と測量機のレポート」、1999-4-1、P.31
When surveying at such a total station, it is necessary to determine the position of the mechanical point of the surveying instrument. In such a case, it is possible to calculate the position (coordinate value) of the mechanical point by the backward intersection method by measuring the angle of at least two known points or measuring the angle of three known points. Reference 1). In the case of obtaining the position of the machine point with higher accuracy, a method of observing a larger number of known points and calculating the machine point position using the least square method with respect to the observed result is adopted.
JP 2003-130644 A Sokkia Co., Ltd., “Surveying and Survey Report”, 1999-4-1, P.31

測量機の機械点位置を高精度に求めるためには、多数の既知点を観測する必要があって、その都度、作業者が望遠鏡を各既知点に向け視準しなければならず、作業者の負担が大きいという問題があった。自動視準装置を備えた測量機であっても、既知点を望遠鏡の視野内に捕らえるまでに時間がかかるので、多数の既知点を観測すると非常に時間がかかるという問題があった。   In order to determine the machine point position of the surveying instrument with high accuracy, it is necessary to observe a large number of known points, and each time the operator must aim the telescope at each known point. There was a problem that the burden of. Even a surveying instrument equipped with an automatic collimation device has a problem that it takes a very long time to observe a large number of known points because it takes time to capture the known points within the field of view of the telescope.

本発明は、前記問題に鑑みてなされたもので、測量機の機械点位置を高精度に求めるために多数の既知点を観測する際、測量機の視準方向を自動的に所望の既知点に向くように変更し、簡単迅速な観測を可能にすることを課題とする。   The present invention has been made in view of the above problems, and when observing a number of known points in order to obtain the mechanical point position of a surveying instrument with high accuracy, the collimation direction of the surveying instrument is automatically set to a desired known point. The challenge is to enable easy and quick observation.

前記課題を解決するために、請求項1に係る発明の測量機では、複数の既知点を視準したときの観測情報から機械点の位置情報を算出する機械点位置算出手段と、前記既知点以外の所望の既知点の位置情報及び前記機械点の位置情報に基づいて、現在の視準方向と前記所望の既知点の方向との間の水平角を算出する水平角算出手段と、前記水平角分だけ視準方向を変更する水平視準方向変更手段とを備えた。   In order to solve the above-mentioned problem, in the surveying instrument of the invention according to claim 1, a machine point position calculating means for calculating position information of a machine point from observation information when collimating a plurality of known points, and the known point A horizontal angle calculation means for calculating a horizontal angle between a current collimation direction and the direction of the desired known point based on position information of a desired known point other than the above and position information of the machine point; and the horizontal Horizontal collimation direction changing means for changing the collimation direction by an angle.

請求項2に係る発明の測量機では、請求項1に係る発明において、さらに、現在の視準方向と前記所望の既知点の方向との間の鉛直角を算出する高度角算出手段と、前記鉛直角分だけ視準方向を変更する鉛直視準方向変更手段とを備えた。   In the surveying instrument of the invention according to claim 2, in the invention according to claim 1, further, an altitude angle calculation means for calculating a vertical angle between the current collimation direction and the direction of the desired known point; Vertical collimation direction changing means for changing the collimation direction by the vertical angle.

請求項2に係る発明の測量機では、請求項1又は2に係る発明において、さらに、自動視準装置を備えた。   The surveying instrument of the invention according to claim 2 is the invention according to claim 1 or 2, further comprising an automatic collimation device.

請求項4に係る発明の測量機用サーボ処理プログラムでは、複数の既知点を視準したときの観測情報から機械点の位置情報を算出する機械点位置算出手段と、前記既知点以外の所望の既知点の位置情報及び前記機械点の位置情報に基づいて、現在の視準方向と前記所望の既知点の方向との間の水平角を算出する水平角算出手段と、前記水平角分だけ視準方向を変更する水平視準方向変更手段としての機能を測量機制御コンピュータに付与する。   In the servo processing program for a surveying instrument of the invention according to claim 4, mechanical point position calculating means for calculating position information of a mechanical point from observation information when a plurality of known points are collimated, and a desired point other than the known point Horizontal angle calculation means for calculating a horizontal angle between the current collimation direction and the desired known point direction based on the position information of the known point and the position information of the machine point, A function as horizontal collimation direction changing means for changing the quasi direction is given to the surveying instrument control computer.

請求項5に係る発明の測量機用サーボ処理プログラムでは、請求項4に係る発明において、さらに、現在の視準方向と前記所望の既知点の方向との間の高度角を算出する高度角算出手段と、前記高度角分だけ視準方向を変更する鉛直視準方向変更手段としての機能とを測量機制御コンピュータに付与する。   According to a servo processing program for a surveying instrument of the invention according to claim 5, in the invention according to claim 4, an altitude angle calculation for calculating an altitude angle between the current collimation direction and the direction of the desired known point. The surveying instrument control computer is provided with means and a function as vertical collimation direction changing means for changing the collimation direction by the height angle.

請求項6に係る発明の測量機用サーボ処理プログラムでは、請求項4又は5に係る発明において、前記機械点位置算出手段は、第1及び第2の既知点を測距測角したときの観測情報から機械点の位置情報を算出する。   In a servo processing program for a surveying instrument according to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect, the mechanical point position calculating means observes when the first and second known points are measured by ranging. The position information of the machine point is calculated from the information.

請求項7に係る発明の測量機用サーボ処理プログラムでは、請求項4又は5に係る発明において、前記機械点位置算出手段は、第1、第2及び第3の既知点を測角したときの観測情報から機械点の位置情報を算出する。   In the surveying instrument servo processing program of the invention according to claim 7, in the invention according to claim 4 or 5, the mechanical point position calculation means is configured to measure the first, second and third known points. The position information of the machine point is calculated from the observation information.

請求項8に係る発明の測量機用サーボ処理プログラムでは、請求項4、5、6又は7に係る発明において、さらに、視準方向を略前記所望の既知点に向けたとき自動視準装置を作動させる。   In the servo processing program for surveying instrument of the invention according to claim 8, in the invention according to claim 4, 5, 6 or 7, the automatic collimation device is further provided when the collimation direction is substantially directed to the desired known point. Operate.

請求項9に係る発明の測量機用サーボ処理プログラムでは、請求項4、5、6、7又は8に係る発明において、さらに、前記機械点の位置情報の算出に、前記測量機の望遠鏡の位置を正にして得られたときの観測情報と反にしたときに得られた観測情報とを用いる。   The servo processing program for a surveying instrument of the invention according to claim 9 is the invention according to claim 4, 5, 6, 7 or 8, and further, the position of the telescope of the surveying instrument is used for calculating the position information of the machine point. The observation information obtained when the value is made positive and the observation information obtained when the value is reversed are used.

以上説明したように、請求項1に係る発明によれば、現在の視準方向と適宜既知点の方向との間の水平角を算出して、該水平角分だけ視準方向を変更することによって、視準方向を自動的に適宜既知点付近に変更することができるので、各既知点を望遠鏡で捜す手間が不要となる。このため、測量機の機械点位置を正確に求めるために多数の既知点を観測するとき、この作業を簡単迅速に行うことができ、作業員に負担がかからない。   As described above, according to the first aspect of the invention, the horizontal angle between the current collimation direction and the direction of the known point is calculated as appropriate, and the collimation direction is changed by the horizontal angle. As a result, the collimation direction can be automatically changed to the vicinity of known points as appropriate, so that it is not necessary to search for each known point with a telescope. For this reason, when observing a large number of known points in order to accurately determine the machine point position of the surveying instrument, this operation can be performed easily and quickly, and the worker is not burdened.

請求項2に係る発明によれば、さらに、現在の視準方向と適宜既知点の方向との間の鉛直角を算出して、該鉛直角分だけ視準方向を変更することによって、鉛直方向に関しても視準方向を自動的に適宜既知点付近に変更することができるので、多数の既知点の観測をいっそう簡単迅速に行うことができる。   According to the invention according to claim 2, the vertical direction is further calculated by calculating the vertical angle between the current collimation direction and the direction of the known point, and changing the collimation direction by the vertical angle. Since the collimation direction can be automatically changed to the vicinity of known points as appropriate, many known points can be observed more easily and quickly.

請求項3に係る発明によれば、さらに、自動視準装置を備えたので、作業員の負担なく、多数の既知点を自動的に観測して測量機の機械点位置を求めることができる。   According to the invention of claim 3, since the automatic collimation device is further provided, the mechanical point position of the surveying instrument can be obtained by automatically observing a large number of known points without burdening the operator.

請求項4に係る発明によれば、複数の既知点を視準したときの観測情報から機械点の位置情報を算出する機械点位置算出手段と、前記既知点以外の所望の既知点の位置情報及び前記機械点の位置情報に基づいて、現在の視準方向と前記所望の既知点の方向との間の水平角を算出する水平角算出手段と、前記水平角分だけ視準方向を変更する水平視準方向変更手段としての機能を測量機制御コンピュータに付与したから、請求項1に係る発明と同じ効果を奏する。   According to the invention of claim 4, mechanical point position calculating means for calculating position information of a mechanical point from observation information when a plurality of known points are collimated, and positional information of a desired known point other than the known point And a horizontal angle calculation means for calculating a horizontal angle between the current collimation direction and the desired known point direction based on the position information of the mechanical point, and the collimation direction is changed by the horizontal angle. Since the function as the horizontal collimation direction changing means is given to the surveying instrument control computer, the same effect as the invention according to claim 1 is obtained.

請求項5に係る発明によれば、請求項4に係る発明において、現在の視準方向と所望の既知点の方向との間の高度角を算出する高度角算出手段と、前記高度角に従って視準方向を自動的に略所望の既知点に変更する鉛直視準方向変更手段としての機能を測量機制御コンピュータに付与したから、請求項2に係る発明と同じ効果を奏する。   According to the invention according to claim 5, in the invention according to claim 4, an altitude angle calculating means for calculating an altitude angle between the current collimation direction and the direction of a desired known point, and viewing according to the altitude angle. Since the surveying instrument control computer is provided with a function as a vertical collimation direction changing means for automatically changing the quasi direction to a substantially desired known point, the same effect as that of the invention according to claim 2 is obtained.

請求項6に係る発明によれば、請求項4又は5に係る発明において、機械点位置算出手段は、第1及び第2の既知点を測距測角したときの観測情報から機械点の位置情報を算出するものであるから、測距測角が可能なトータルステーションに本発明を適用できる。   According to the invention according to claim 6, in the invention according to claim 4 or 5, the machine point position calculating means calculates the position of the machine point from the observation information when the first and second known points are measured by ranging. Since the information is calculated, the present invention can be applied to a total station capable of ranging.

請求項7に係る発明によれば、請求項4又は5に係る発明において、機械点位置算出手段は、第1、第2及び第3の既知点を測角したときの観測情報から機械点の位置情報を算出するものであるから、トータルステーションの他、測角可能なセオドライトにも本発明を適用できる。   According to the invention according to claim 7, in the invention according to claim 4 or 5, the mechanical point position calculating means calculates the mechanical point from the observation information when the first, second and third known points are measured. Since the position information is calculated, the present invention can be applied to a theodolite capable of measuring an angle in addition to the total station.

請求項8に係る発明によれば、視準方向を略所望の既知点に向けたとき自動視準装置を作動させるから、請求項3に係る発明と同じ効果を奏する。しかも、自動視準装置の一部を共通に使用できるので、測量機のハードウェアの変更を必要とせず経済的である。   According to the eighth aspect of the present invention, the automatic collimation device is activated when the collimation direction is directed to a substantially desired known point, so that the same effect as the third aspect of the present invention is achieved. In addition, since a part of the automatic collimation device can be used in common, the hardware of the surveying instrument does not need to be changed, which is economical.

請求項9に係る発明によれば、機械点の位置情報の算出に、測量機の望遠鏡の位置を正にして得られたときの観測情報と反にしたときに得られた観測情報とを用いているから、望遠鏡の水平軸又は鉛直軸に対する取付誤差による機械誤差を消去することができ、いっそう正確に機械点の位置を求めることができる。   According to the ninth aspect of the present invention, the position information of the mechanical point is calculated by using the observation information obtained when the position of the telescope of the surveying instrument is made positive and the observation information obtained when the position is reversed. Therefore, the mechanical error due to the mounting error with respect to the horizontal axis or the vertical axis of the telescope can be eliminated, and the position of the mechanical point can be obtained more accurately.

以下、本発明の好ましい実施の形態につき、添付図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図3は、本実施例の測量機と既知点の位置関係を示す図である。図4は、前記測量機の機械点位置を求める手順を説明するフローチャートである。   FIG. 3 is a diagram illustrating the positional relationship between the surveying instrument of this embodiment and the known points. FIG. 4 is a flowchart for explaining the procedure for obtaining the mechanical point position of the surveying instrument.

本実施例の測量機100は、トータルステーションであり、図1及び図2に示した従来のものとハードウェア的には同じ構成を有している。ただし、この測量機100は、図3に示したように、多数の既知点T1、T2、− −、Ti−1、Ti、− −、Tn(n:3以上の正の整数、i:n未満の正の整数)を測距測角(観測)することにより、これらの既知点Tiの測距値、方位角θi及び高度角hi等の観測情報から、測量機100の機械点T0の位置情報である座標値(x0,y0,z0)を算出できるものである。このため、この測量機100は、後述する測量機用サーボ処理プログラムを記憶手段30に記憶している。 The surveying instrument 100 of the present embodiment is a total station, and has the same hardware configuration as the conventional one shown in FIGS. 1 and 2. However, as shown in FIG. 3, the surveying instrument 100 has a large number of known points T1, T2, −−, T i−1 , Ti, −−, Tn (n: a positive integer of 3 or more, i: (positive integer less than n) is measured and measured (observed), from the measured information of these known points Ti, such as azimuth angle θi and altitude angle hi, the machine point T0 of the surveying instrument 100 A coordinate value (x0, y0, z0) as position information can be calculated. Therefore, the surveying instrument 100 stores a surveying instrument servo processing program, which will be described later, in the storage unit 30.

このサーボ処理プログラムは、第1及び第2の既知点T1、T2の測距値、方位角及び高度角(又は、第1、第2及び第3の既知点T1、T2、T3の方位角及び高度角)から、機械点T0の仮座標値を求め、以下、この機械点T0の仮座標値を用いて任意の既知点Tiの方位角θi及び高度角hiを求め、水平制御部(水平サーボモータ)24と鉛直制御部(鉛直サーボモータ)26とを作動させて、測量機100の視準方向を自動的に略所望の既知点Tiの方向に向け、所望の既知点Tiを自動的に測距測角し、こうして得た多数の既知点の測距値、方位角θi及び高度角hiから機械点T0の座標値(x0,y0,z0)を最小二乗法により算出する機能をCPU(測量機制御コンピュータ)28に付与するものである。   This servo processing program stores the distance measurement values, azimuth angles and altitude angles of the first and second known points T1, T2 (or the azimuth angles of the first, second and third known points T1, T2, T3 and From the altitude angle, a temporary coordinate value of the machine point T0 is obtained, and thereafter, the azimuth angle θi and altitude angle hi of an arbitrary known point Ti are obtained using the temporary coordinate value of the machine point T0, and a horizontal control unit (horizontal servo) The motor) 24 and the vertical control unit (vertical servomotor) 26 are operated so that the collimation direction of the surveying instrument 100 is automatically directed to a substantially desired known point Ti, and the desired known point Ti is automatically set. The CPU has a function of measuring the distance and calculating the coordinate values (x0, y0, z0) of the mechanical point T0 from the distance values, the azimuth angle θi and the altitude angle hi of the many known points thus obtained by the least square method. To the surveying instrument control computer) 28.

そこで、図4に示したフローチャートに基づいてCPU28が行うサーボ処理プログラムを詳細に説明する。   Therefore, the servo processing program executed by the CPU 28 will be described in detail based on the flowchart shown in FIG.

まず、測量機100を適宜位置に設置し、第1の既知点T1(座標値:x1,y1,z1)、第2の既知点T2(座標値:x2,y2、z2)、第3の既知点T3(座標値:x3,y3,z3)、− − − −第iの既知点Ti(座標値:xi,yi,zi)にそれぞれ図示しないターゲット(反射プリズム)を設置する。そこで、このサーボ処理プログラムをスタートさせると、ステップS1に進み、第1の既知点T1が作業者によって視準されるのを待つ。作業者が第1の既知点T1を視準すると、ステップS2に進み、自動的に測距部18及び水平測角部20及び鉛直測角部により測距測角を行い、第1の既知点T1に関する観測情報である測距値、方位角及び高度角を取得して記憶する。   First, the surveying instrument 100 is installed at an appropriate position, the first known point T1 (coordinate values: x1, y1, z1), the second known point T2 (coordinate values: x2, y2, z2), the third known point. Points T3 (coordinate values: x3, y3, z3), ----- Targets (reflecting prisms) (not shown) are installed at the i-th known point Ti (coordinate values: xi, yi, zi). Therefore, when this servo processing program is started, the process proceeds to step S1 and waits for the operator to collimate the first known point T1. When the operator collimates the first known point T1, the process proceeds to step S2, in which the distance measuring unit 18, the horizontal angle measuring unit 20, and the vertical angle measuring unit automatically measure the distance and measure the first known point. A distance measurement value, an azimuth angle, and an altitude angle, which are observation information relating to T1, are acquired and stored.

次に、ステップS3に進んで、2つの既知点T1、T2の観測を完了したかを判断する。第2の既知点T2が観測されていないと、ステップS1とS2を繰り返して、第2の既知点T2に関する観測情報である測距値、方位角及び高度角を取得して記憶する。第1及び第2の既知点T1、T2の両方の観測して観測情報が得られると、ステップS4に進んで、これらの観測情報に基づいて後方交会法によって機械点T0の位置情報である座標値(x0,y0,z0)が求められる。後方交会法は、当業者に周知であるので、この説明は省略する。以上のステップS1−S4が、請求項1又は4に記載の機械点位置算出手段に相当する。   Next, proceeding to step S3, it is determined whether the observation of the two known points T1 and T2 is completed. If the second known point T2 is not observed, steps S1 and S2 are repeated, and the distance measurement value, the azimuth angle, and the altitude angle, which are observation information related to the second known point T2, are acquired and stored. When observation information is obtained by observing both the first and second known points T1 and T2, the process proceeds to step S4, and coordinates that are position information of the machine point T0 are obtained by the backward intersection method based on these observation information. Values (x0, y0, z0) are determined. Since the backward intersection method is well known to those skilled in the art, this description is omitted. The above steps S1 to S4 correspond to the machine point position calculating means according to claim 1 or 4.

機械点T0の位置情報が得られると、ステップS5に進み、機械点T0、現在の視準点(第2の既知点)及び次に視準する既知点(第3の既知点T3)の各座標値に基づいて、CPU58は、現在の視準方向(第2の既知点T2方向)と所望の既知点方向(第3の既知点T3方向)のなす水平角Δθ及び鉛直角Δhを算出する。このステップS5が、請求項1又は4に記載の水平角算出手段と、請求項2又は5に記載の鉛直角算出手段に相当する。   When the position information of the machine point T0 is obtained, the process proceeds to step S5, and each of the machine point T0, the current collimation point (second known point) and the next collimated known point (third known point T3) Based on the coordinate values, the CPU 58 calculates the horizontal angle Δθ and the vertical angle Δh formed by the current collimation direction (the second known point T2 direction) and the desired known point direction (the third known point T3 direction). . This step S5 corresponds to the horizontal angle calculating means according to claim 1 or 4, and the vertical angle calculating means according to claim 2 or 5.

次にステップS6に進んで、CPU58は、ステップS5で算出された水平角Δθ及び鉛直角Δhに応じた制御信号を水平制御部24及び鉛直制御部26に出力し、水平制御部24及び鉛直制御部26の作動によって望遠鏡16の光軸すなわち視準方向を算出された水平角Δθ及び鉛直角Δhだけ変更する。これで、視準方向は、所望の既知点(第3の既知点T3)を向くことになる。このステップS6が、請求項1又は4に記載の水平視準方向変更手段と、請求項2又は5に記載の鉛直視準方向変更手段に相当する。   In step S6, the CPU 58 outputs control signals corresponding to the horizontal angle Δθ and the vertical angle Δh calculated in step S5 to the horizontal control unit 24 and the vertical control unit 26, and the horizontal control unit 24 and the vertical control. The operation of the unit 26 changes the optical axis of the telescope 16, that is, the collimation direction, by the calculated horizontal angle Δθ and vertical angle Δh. Thus, the collimation direction is directed to a desired known point (third known point T3). This step S6 corresponds to the horizontal collimation direction changing means according to claim 1 or 4 and the vertical collimation direction changing means according to claim 2 or 5.

次にステップS7に進んで、自動視準装置を作動させ、正確に所望の既知点(第3の既知点T3)を視準する。それから、ステップS8に進んで、自動的に測距測角を行い、所望の既知点(第3の既知点)に関する観測情報である測距値、方位角及び高度角を取得して記憶する。   In step S7, the automatic collimation device is operated to accurately collimate a desired known point (third known point T3). Then, the process proceeds to step S8, in which the distance measurement angle is automatically performed, and the distance measurement value, the azimuth angle, and the altitude angle, which are observation information relating to the desired known point (third known point), are acquired and stored.

次に、ステップS9に進んで、今までに観測した全部の既知点T1、T2、− − − に関する観測情報を用いて、最小二乗法によって機械点T0の位置情報である座標値を再計算して修正する。   Next, the process proceeds to step S9, and the coordinate values, which are the position information of the machine point T0, are recalculated by the least square method using the observation information about all the known points T1, T2, and--observed so far. To correct.

次に、ステップS10に進んで、予め記憶手段に記憶させておいた観測予定の既知点T1、T2、T3、− − − − Tn全部の観測を完了したかどうか判断する。観測予定の既知点全部の観測を完了していないときは、ステップS5に戻って、現在の視準方向が第i−1の既知点Ti−1の方向であるとすると、第i−1の既知点Ti−1の方向と第iの既知点Tiの方向とのなす水平角Δθ及び鉛直角Δhを算出する。そして、ステップS6に進んで、算出した水平角Δθ及び鉛直角Δhだけ視準方向を変更し、さらにステップS7、S8に進んで、所望の第iの既知点Tiについて自動視準し、観測情報である測距値及び方位角θi及び高度角hiを求めて記憶する。そして、今までに観測した全部の既知点T1、T2、− − − に関する観測情報を用いて、最小二乗法によって機械点T0の位置情報である座標値を再計算して修正する。以下同様に、ステップS5−S10を繰り返して、観測予定のn個の既知点全部の観測を完了すると、このサーボ処理プログラムを終了する。   Next, the process proceeds to step S10, and it is determined whether or not the observation of all the known points T1, T2, T3 and ----- Tn scheduled to be stored in advance in the storage unit has been completed. If the observation of all the known points to be observed has not been completed, returning to step S5, assuming that the current collimation direction is the direction of the i-1th known point Ti-1, the i-1th A horizontal angle Δθ and a vertical angle Δh formed by the direction of the known point Ti-1 and the direction of the i-th known point Ti are calculated. Then, the process proceeds to step S6, the collimation direction is changed by the calculated horizontal angle Δθ and vertical angle Δh, the process further proceeds to steps S7, S8, and the desired i-th known point Ti is automatically collimated to obtain observation information. The distance measurement value, the azimuth angle θi, and the altitude angle hi are calculated and stored. Then, using the observation information regarding all the known points T1, T2, and −−− observed so far, the coordinate value which is the position information of the machine point T0 is recalculated and corrected by the least square method. Similarly, when the steps S5 to S10 are repeated to complete the observation of all n known points to be observed, this servo processing program is terminated.

以上説明したように、本実施例の測量機100によれば、現在の視準方向と所望の既知点の方向との間の水平角Δθ及び鉛直角Δhを算出して、該水平角Δθと該鉛直角Δhだけ視準方向を変更し、さらに自動視準して測距測角することができるので、自動的に多数の既知点を観測できる。このため、観測する既知点Tiが多くなっても、簡単迅速に観測でき、しかも作業員に負担がかからない。   As described above, according to the surveying instrument 100 of the present embodiment, the horizontal angle Δθ and the vertical angle Δh between the current collimation direction and the desired known point direction are calculated, and the horizontal angle Δθ is calculated. Since the collimation direction can be changed by the vertical angle Δh and the distance can be measured by automatic collimation, a large number of known points can be automatically observed. For this reason, even if the number of known points Ti to be observed increases, observation can be performed easily and quickly, and the operator is not burdened.

次に、機械点T0位置を求める方法について、さらに詳しく説明する。これには、2既知点以上の測距測角、もしくは3既知点以上の測角のデータを基に、機械点の座標を計算する。使用できる既知点の数は最大10点とする。計算には最小二乗法を使用する。   Next, the method for obtaining the mechanical point T0 position will be described in more detail. For this purpose, the coordinates of the machine point are calculated based on the distance measurement angle of two or more known points or the data of the angle measurement of three or more known points. The maximum number of known points that can be used is 10. The least square method is used for the calculation.

(1.1)まず、機械点の仮座標を計算する。3測点以上のときは、3点の測角データから仮座標を求める。   (1.1) First, the temporary coordinates of the machine point are calculated. When there are three or more measurement points, provisional coordinates are obtained from angle measurement data at three points.

i点目の既知点座標(i=1〜n)を(Xi、Yi)、i点目の観測水平角をHi、機械点の仮座標を(X、Y)とする。1点目と2点目の観測挟角Pang1は、Pang1=H2−H1、2点目と3点目の観測挟角Pang2は、Pang2=H3−H2となる。   The i-th known point coordinates (i = 1 to n) are (Xi, Yi), the i-th observation horizontal angle is Hi, and the temporary coordinates of the machine point are (X, Y). The first and second observation angle Pang1 is Pang1 = H2-H1, and the second and third observation angle Pang2 is Pang2 = H3-H2.

1点目と2点目との距離Hd12と、2点目と3点目との距離Hd23は、
Hd12=√((X2−X1)+(Y2−Y1)) (1)
Hd23=√((X3−X2)+(Y3−Y2)) (2)
となる。
The distance Hd12 between the first point and the second point and the distance Hd23 between the second point and the third point are:
Hd12 = √ ((X2−X1) 2 + (Y2−Y1) 2 ) (1)
Hd23 = √ ((X3−X2) 2 + (Y3−Y2) 2 ) (2)
It becomes.

1点目から2点目への方向角az1と、2点目から3点目への方向角az2は、
az1=tan−1((Y2−Y1)/(X2−X1)) (3)
(X2−X1<0のときは、az1=az1+180°)
az2=tan−1((Y3−Y2)/(X3−X2)) (4)
(X3−X2<0のときは、az2=az2+180°)
となる。
The direction angle az1 from the first point to the second point and the direction angle az2 from the second point to the third point are:
az1 = tan −1 ((Y2−Y1) / (X2−X1)) (3)
(When X2−X1 <0, az1 = az1 + 180 °)
az2 = tan −1 ((Y3−Y2) / (X3−X2)) (4)
(When X3-X2 <0, az2 = az2 + 180 °)
It becomes.

ここで、
bz=180°−az2+az1、 (5)
α=Hd23・sin(Pang1)・sin(Pang2) (6)
β=Hd12・sin(Pang2−Pang1)
+Hd23sin(Pang1)・cos(Pang2+bz) (7)
anga=tan−1(α/β) (8)
(β<0のときは、anga=anga+180°)
d1=Hd12・sin(Pang1+anga)/sin(Pang1) (9)
とすると、
X=X1+d1・cos(anga+az1) (10)
Y=Y1+d1・sin(anga+az1) (11)
と、機械点の仮座標(X、Y)が求まる。
here,
bz = 180 ° −az2 + az1, (5)
α = Hd23 · sin (Pang1) · sin (Pang2) (6)
β = Hd12 · sin (Pang2-Pang1)
+ Hd23sin (Pang1) · cos (Pang2 + bz) (7)
anga = tan −1 (α / β) (8)
(When β <0, anga = anga + 180 °)
d1 = Hd12 · sin (Pang1 + anga) / sin (Pang1) (9)
Then,
X = X1 + d1.cos (anga + az1) (10)
Y = Y1 + d1 · sin (anga + az1) (11)
Then, the temporary coordinates (X, Y) of the machine point are obtained.

(1.2)2測点だけのときは、測角データの他に測距データも用いて、機械点の仮座標を計算する。   (1.2) When there are only two measurement points, the temporary coordinates of the machine point are calculated using distance measurement data in addition to the angle measurement data.

i点目の既知点座標(i=1〜n)を(Xi、Yi)、i点目の観測水平角をHi、観測鉛直角をVi、斜距離をDi、機械点の仮座標を(X、Y)とする。   The i-th known point coordinates (i = 1 to n) are (Xi, Yi), the i-th observation horizontal angle is Hi, the observation vertical angle is Vi, the oblique distance is Di, and the temporary coordinates of the machine point are (X , Y).

1点目の観測水平距離Hd1、2点目の観測水平距離Hd2は、
Hd1=D1・sin(V1) (12)
Hd2=D2・sin(V2) (13)
となる。1点目と2点目の観測挟角Pangは、Pang=H2−H1となる。そこで、
a1=tan−1((Hd2・sin(Pang))
/(Hd1−Hd2・cos(Pang)) (14)
(a1は、0〜180°まで)
az=tan−1((Y2−Y1)/(X2−X1)) (15)
(X2−X1<0のときは、az=az+180°)
とすると
X=X1+Hd1・cos(az+a1) (16)
Y=Y1+Hd1・sin(az+a1)) (17)
と、機械点の仮座標(X、Y)が求まる。
The first observation horizontal distance Hd1 and the second observation horizontal distance Hd2 are
Hd1 = D1 · sin (V1) (12)
Hd2 = D2 · sin (V2) (13)
It becomes. The observation angle Pang at the first point and the second point is Pang = H2−H1. Therefore,
a1 = tan −1 ((Hd2 · sin (Pang))
/ (Hd1-Hd2 · cos (Pang)) (14)
(A1 is 0 to 180 °)
az = tan −1 ((Y2−Y1) / (X2−X1)) (15)
(When X2−X1 <0, az = az + 180 °)
Then X = X1 + Hd1.cos (az + a1) (16)
Y = Y1 + Hd1 · sin (az + a1)) (17)
Then, the temporary coordinates (X, Y) of the machine point are obtained.

(2)観測方程式は、
V=A・X+L (18)
である。ここで、Vは補正値ベクトル、Aは係数行列、Xは仮座標に対する補正値ベクトル、Lは定数ベクトルである。角度と距離の観測方程式KE、LEの詳細は、図5に行列を用いた式(18A)に示す。
(2) The observation equation is
V = A · X + L (18)
It is. Here, V is a correction value vector, A is a coefficient matrix, X is a correction value vector for temporary coordinates, and L is a constant vector. Details of the angle and distance observation equations KE and LE are shown in equation (18A) using a matrix in FIG.

角度の観測方程式KEにおいて、Vtiは観測角度に対する補正値(未知数)、ΔXとΔYは仮座標値(X,Y)に対する補正値(未知数)、aiはΔXの係数、biはΔYの係数、Ltiは定数である。そして、
ai=(Yi−Y)/Hdi (19)
bi=(Xi−X)/Hdi (20)
Lti=(Hi−H1)−Bi (21)
である。ただし、(Xi,Yi)はi点目の既知点座標、Hdiは同じく観測水平距離、Hiは同じく観測水平角、Biは既知点座標から計算した1点目とi点目の挟角である。
In the angle observation equation KE, Vti is a correction value (unknown number) for the observation angle, ΔX and ΔY are correction values (unknown numbers) for the temporary coordinate values (X, Y), ai is a coefficient for ΔX, bi is a coefficient for ΔY, Lti Is a constant. And
ai = (Yi−Y) / Hdi 2 (19)
bi = (Xi−X) / Hdi 2 (20)
Lti = (Hi−H1) −Bi (21)
It is. Where (Xi, Yi) is the i-th known point coordinate, Hdi is the observed horizontal distance, Hi is also the observed horizontal angle, and Bi is the angle between the first and i-th points calculated from the known point coordinates. .

角度の方程式にシュライバーの消去式を追加することにより、角度の観測方程式から不要な未知の定数項を予め消去できる。図5に示した前述の観測方程式(18A)は、この消去式を用いることを前提にして、不要な定数項は含まれていない。また、ΣVtは未知数であり、
Σa=a1+a2+・・+an (22)
Σb=b1+b2+・・+bn (23)
である。
By adding the Schleiber elimination formula to the angle equation, unnecessary unknown constant terms can be eliminated from the angle observation equation in advance. The aforementioned observation equation (18A) shown in FIG. 5 does not include an unnecessary constant term on the assumption that this elimination equation is used. ΣVt is an unknown number,
Σa = a1 + a2 + .. + an (22)
Σb = b1 + b2 +. + Bn (23)
It is.

距離の観測方程式LEにおいて、Vsiは観測水平距離に対する補正値(未知数)、biはΔXの係数、aiはΔYの係数、Lsiは定数である。そして、
bi=(Xi−X)/Hdi (20と同じ)
ai=(Yi−Y)/Hdi (19と同じ)
Lsi=(Hdi−HD1→i)/Hdi (24)
である。ただし、XiとYiはi点目の既知点座標、Hdiは同じく観測水平距離、HD1→iは既知点座標から計算した1点目とi点目の水平距離である。
In the distance observation equation LE, Vsi is a correction value (unknown number) for the observation horizontal distance, bi is a coefficient of ΔX, ai is a coefficient of ΔY, and Lsi is a constant. And
bi = (Xi−X) / Hdi 2 (same as 20)
ai = (Yi−Y) / Hdi 2 (same as 19)
Lsi = (Hdi−HD1 → i ) / Hdi (24)
It is. However, Xi and Yi are the known point coordinates of the i-th point, Hdi is the observation horizontal distance, and HD1- > i is the horizontal distance of the first point and the i-th point calculated from the known point coordinates.

(3)角度及び距離の観測方程式KE、LEに対して重みを加える。この重みは、図6に示した式(25)のとおりである。すなわち、既知点数をnとすると、角度の観測方程式に対する重み=1、シュライバーの式に対する重み=1/n、距離の観測方程式に対する重み=Psiとなる。Psiについては、
mt=7” (26)
ms=5・10−3mt (27)
k=5・10−6ms (28)
ρ=3600・180/π (29)
とすると、
Psi=(mt・Hdi)/(ms+k・hdi)・ρ (30)
となる。
(3) Add weights to the observation equations KE and LE for angles and distances. This weight is as shown in Expression (25) shown in FIG. That is, if the number of known points is n, the weight for the angle observation equation = 1, the weight for the Shriver equation = 1 / n, and the weight for the distance observation equation = Psi. For Psi,
mt = 7 "(26)
ms = 5 · 10-3mt (27)
k = 5 · 10-6ms (28)
ρ = 3600 · 180 / π (29)
Then,
Psi = (mt 2 · Hdi 2 ) / (ms 2 + k 2 · hdi 2 ) · ρ 2 (30)
It becomes.

(4)観測方程式(18)に対する正規方程式は、次のようになる。
NX+U=0 (31)
ただし、
N=APA (32)
U=APL (33)
である。ここで、Aは、Aの転置行列である。このNとUについては、詳細は図7の式(32A)及び図8の式(33A)に示す。
(4) The normal equation for the observation equation (18) is as follows.
NX + U = 0 (31)
However,
N = A t PA (32)
U = A t PL (33)
It is. Here, A t is the transpose matrix of A. Details of N and U are shown in equation (32A) in FIG. 7 and equation (33A) in FIG.

この正規方程式(31)を解くと、
X=−N−1U (34)
と求まり、仮座標値(X,Y)に対する補正値(ΔX,ΔY)も求まる。ただし、N−1は、Nの逆行列である。よって、機械点座標の最確値(X0,Y0)は次のようになる。
X0=X+ΔX (35)
Y0=Y+ΔY (36)
ここで、仮座標に対する補正値(ΔX,ΔY)のどちらかが±0.5mmより大きければ、今求めた機械点座標(X0,Y0)を仮座標(X、Y)として、再び前述の機械点座標(X0,Y0)を求めることを繰り返す。3回繰り返しても、機械点座標の最確値(X0,Y0)が収束しないときは、解無しのエラーとする。
Solving this normal equation (31)
X = −N −1 U (34)
The correction values (ΔX, ΔY) for the temporary coordinate values (X, Y) are also obtained. However, N −1 is an inverse matrix of N. Therefore, the most probable values (X0, Y0) of the machine point coordinates are as follows.
X0 = X + ΔX (35)
Y0 = Y + ΔY (36)
Here, if either of the correction values (ΔX, ΔY) with respect to the temporary coordinates is larger than ± 0.5 mm, the machine point coordinates (X0, Y0) thus obtained are used as the temporary coordinates (X, Y), and the above-mentioned machine is again used. The determination of the point coordinates (X0, Y0) is repeated. If the most probable value (X0, Y0) of the machine point coordinates does not converge even after repeating three times, an error without solution is assumed.

(5)機械点のZ座標Z0を求める。Z座標Z0は、
Z0=(Σ(Zi+fhi−Vdi−ih))/n (37)
である。ただし、Ziはi点目(i=1〜n)の既知点のZ座標、Vdiは同じく観測高低差、fhiは同じく観測時の視準高、ihは機械高である。この計算では、測距データのみ計算に入れて、測角データは計算から除く。
(5) Obtain the Z coordinate Z0 of the machine point. Z coordinate Z0 is
Z0 = (Σ (Zi + fhi−Vdi−ih)) / n (37)
It is. Here, Zi is the Z coordinate of the known point of the i-th point (i = 1 to n), Vdi is the difference in observation height, fhi is the collimation height at the time of observation, and ih is the machine height. In this calculation, only distance measurement data is included in the calculation, and angle measurement data is excluded from the calculation.

(6)以上のようにして得た機械点の位置の計算結果画面には、さらに、X軸方向及びY軸方向についての標準偏差(ρX,ρY)も表示する。   (6) Further, the standard deviation (ρX, ρY) in the X-axis direction and the Y-axis direction is also displayed on the calculation result screen of the position of the machine point obtained as described above.

前記(4)で求めた仮座標に対する補正量(ΔX,ΔY)により、観測値に対する補正量Vを求める。補正量Vは図5に示した式(18A)のとおりであるが、重みPも加味してVPVを求める。VPVの詳細は、図9の式(38)に示す。 The correction amount V for the observed value is obtained from the correction amounts (ΔX, ΔY) for the temporary coordinates obtained in (4). The correction amount V is as shown in the equation (18A) shown in FIG. 5, but V t PV is obtained with the weight P taken into account. Details of V t PV are shown in equation (38) of FIG.

次に、標準偏差(ρX,ρY)を求める。行列Aの行数fと標準偏差ρは、
f=測定数+1+測距測定数 (39)
ρ=(1/(f−2))・N(VPV) (40)
であるから、X軸方向及びY軸方向についての標準偏差(ρX,ρY)は、
ρX=(1/(f−2))・N11(VPV) (41)
ρY=(1/(f−2))・N22(VPV) (42)
と求まる。ただし、N11及びN22は、行列Nの第1行第1列及び第2行第2列の成分である。
Next, a standard deviation (ρX, ρY) is obtained. The number of rows f of the matrix A and the standard deviation ρ are
f = number of measurements + 1 + number of distance measurement (39)
ρ = (1 / (f−2)) · N (V t PV) (40)
Therefore, the standard deviations (ρX, ρY) in the X-axis direction and the Y-axis direction are
ρX = (1 / (f−2)) · N11 (V t PV) (41)
ρY = (1 / (f−2)) · N22 (V t PV) (42)
It is obtained. Here, N11 and N22 are components of the first row and the first column and the second row and the second column of the matrix N, respectively.

(7)さらに、水平角差分dHARiと水平距離差分dHDを求めると、
dHARi=(Hi−H1)−(Bi−B1)=ΔΘH2 (42)
dHD=Hdi−HD1→i (43)
となる。この水平角差分dHARiと水平距離差分dHDも表示する。ただし、Hiは測定水平角、Biは求まった機械点と既知点座標から計算により求めた水平角、Hdiは測定水平距離、HD1→iは、求まった機械点と既知点の座標より求めた水平距離である。
(7) Further, when the horizontal angle difference dHALi and the horizontal distance difference dHD are obtained,
dHAri = (Hi−H1) − (Bi−B1) = ΔΘH2 (42)
dHD = Hdi-H D1 → i (43)
It becomes. The horizontal angle difference dHALi and the horizontal distance difference dHD are also displayed. However, Hi is a measured horizontal angle, Bi is a horizontal angle obtained by calculation from the obtained machine point and known point coordinates, Hdi is a measured horizontal distance, and HD1- > i is obtained from the obtained machine point and known point coordinates. Horizontal distance.

ところで、本発明は、前記実施例に限るものではなく、種々の変形が可能である。たとえば、前記実施例においては、水平方向と鉛直方向の両方向に関して視準方向を略既知点に向けたが、水平制御部26のみを用いて水平方向のみに関して視準方向を略既知点に向けるだけでもよい。この場合には、鉛直方向に関しては、自動又は手動によって視準方向を略既知点に向ける操作が余分に必要になるが、略定まった鉛直面内で既知点に設置されたターゲットを捜すだけで済むので、それほど観測に要する負担と時間が増すものではない。   By the way, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the above-described embodiment, the collimation direction is directed to a substantially known point in both the horizontal direction and the vertical direction, but only the horizontal control unit 26 is used to direct the collimation direction to a substantially known point. But you can. In this case, with respect to the vertical direction, an extra operation for automatically or manually directing the collimation direction to a substantially known point is required, but only by searching for a target installed at a known point within a substantially vertical plane. This will not increase the burden and time required for observation.

また、前記実施例においては、測量機100に自動視準装置を搭載したが、安価にするため、自動視準装置を省いて人手で視準してもよい。この場合でも、の視準方向が略既知点に自動的に向くので、人手により次の既知点を望遠鏡で捜す手間が不要になるので、人手による視準作業の負担は軽くなる。   In the above embodiment, the automatic collimation device is mounted on the surveying instrument 100. However, in order to reduce the cost, the automatic collimation device may be omitted and the collimation may be performed manually. Even in this case, since the collimation direction is automatically directed to a substantially known point, there is no need to manually search for the next known point with a telescope, so that the burden of collimation work by the manpower is reduced.

さらに、機械点T0の位置情報の算出に、望遠鏡16を正にして得られた観測情報と反にして得られた観測情報とを用いて(正反観測)で、望遠鏡の水平軸又は鉛直軸に対する取付誤差による機械誤差を消去することができ、いっそう高精度に機械点の位置を求めることができる。   Further, the position information of the mechanical point T0 is calculated by using the observation information obtained by setting the telescope 16 in the positive direction and the observation information obtained in the opposite direction (direct observation), and the horizontal axis or the vertical axis of the telescope. It is possible to eliminate the mechanical error due to the mounting error with respect to and to obtain the position of the mechanical point with higher accuracy.

本発明及び従来の測量機の背面図である。It is a rear view of this invention and the conventional surveying instrument. 本発明及び従来の測量機のブロック図である。It is a block diagram of this invention and the conventional surveying instrument. 本発明の測量機と既知点の位置関係を示す図である。It is a figure which shows the positional relationship of the surveying instrument of this invention, and a known point. 本発明の測量機の機械点位置を求める手順を説明するフローチャートである。It is a flowchart explaining the procedure which calculates | requires the machine point position of the surveying instrument of this invention. 角度及び距離の観測方程式である。It is an observation equation of angle and distance. 角度及び距離の観測方程式に対する重みを示す行列である。It is a matrix which shows the weight with respect to the observation equation of an angle and distance. 正規方程式を構成する行列である。It is a matrix that constitutes a normal equation. 正規方程式を構成する行列である。It is a matrix that constitutes a normal equation. 重みを加味した仮座標に対する補正量である。This is the correction amount for the temporary coordinates with weights added.

符号の説明Explanation of symbols

16 望遠鏡
18 測距部
24 水平測角部
26 鉛直測角部
28 CPU(測量機用サーボ処理プログラム)
30 記憶手段
36 ターゲット方向センサ
100 測量機
T0 機械点
T1,T2,− ―,Ti,−,Tn 既知点
θn 方位角
hn 高度角
Δθ 水平角
Δh 鉛直角
16 Telescope 18 Distance measuring unit 24 Horizontal angle measuring unit 26 Vertical angle measuring unit 28 CPU (servo processing program for surveying instrument)
30 Storage means 36 Target direction sensor 100 Surveying instrument T0 Machine point T1, T2,--, Ti,-, Tn Known point θn Azimuth angle hn Altitude angle Δθ Horizontal angle Δh Vertical angle

Claims (9)

複数の既知点を視準したときの観測情報から機械点の位置情報を算出する機械点位置算出手段と、前記既知点以外の所望の既知点の位置情報及び前記機械点の位置情報に基づいて、現在の視準方向と前記所望の既知点の方向との間の水平角を算出する水平角算出手段と、前記水平角分だけ視準方向を変更する水平視準方向変更手段とを備えた測量機。   Based on the machine point position calculating means for calculating the position information of the machine point from the observation information when collimating a plurality of known points, based on the position information of the desired point other than the known point and the position information of the machine point , A horizontal angle calculation means for calculating a horizontal angle between the current collimation direction and the direction of the desired known point, and a horizontal collimation direction change means for changing the collimation direction by the horizontal angle. Surveyor. 現在の視準方向と前記所望の既知点の方向との間の鉛直角を算出する高度角算出手段と、前記鉛直角分だけ視準方向を変更する鉛直視準方向変更手段とを備えた請求項1に記載の測量機。   An altitude angle calculation unit that calculates a vertical angle between a current collimation direction and the direction of the desired known point, and a vertical collimation direction change unit that changes a collimation direction by the vertical angle. Item 1. The surveying instrument according to item 1. 自動視準装置を備えた請求項1又は2に記載の測量機。   The surveying instrument according to claim 1, further comprising an automatic collimation device. 複数の既知点を視準したときの観測情報から機械点の位置情報を算出する機械点位置算出手段と、前記既知点以外の所望の既知点の位置情報及び前記機械点の位置情報に基づいて、現在の視準方向と前記所望の既知点の方向との間の水平角を算出する水平角算出手段と、前記水平角分だけ視準方向を変更する水平視準方向変更手段としての機能を測量機制御コンピュータに付与する測量機用サーボ処理プログラム。   Based on the machine point position calculating means for calculating the position information of the machine point from the observation information when collimating a plurality of known points, based on the position information of the desired point other than the known point and the position information of the machine point A function of horizontal angle calculation means for calculating a horizontal angle between the current collimation direction and the direction of the desired known point, and a function of horizontal collimation direction change means for changing the collimation direction by the horizontal angle. Surveyor servo processing program assigned to the surveyor control computer. 現在の視準方向と前記所望の既知点の方向との間の高度角を算出する高度角算出手段と、前記高度角分だけ視準方向を変更する鉛直視準方向変更手段としての機能とを測量機制御コンピュータに付与する請求項4に記載の測量機用サーボ処理プログラム。   An altitude angle calculating means for calculating an altitude angle between a current collimating direction and the direction of the desired known point, and a function as a vertical collimating direction changing means for changing the collimating direction by the altitude angle. The servo processing program for a surveying instrument according to claim 4, which is given to the surveying instrument control computer. 前記機械点位置算出手段は、第1及び第2の既知点を測距測角したときの観測情報から機械点の位置情報を算出する請求項4又は5に記載の測量機用サーボ処理プログラム。   6. The servo processing program for a surveying instrument according to claim 4 or 5, wherein the mechanical point position calculating means calculates the positional information of the mechanical point from observation information obtained when the first and second known points are measured by ranging. 前記機械点位置算出手段は、第1、第2及び第3の既知点を測角したときの観測情報から機械点の位置情報を算出する請求項4又は5に記載の測量機用サーボ処理プログラム。   6. The servo processing program for a surveying instrument according to claim 4, wherein the mechanical point position calculation means calculates position information of the mechanical point from observation information obtained when the first, second, and third known points are measured. . 視準方向を略前記所望の既知点に向けたとき自動視準装置を作動させる請求項4、5又は6に記載の測量機用サーボ処理プログラム。   The servo processing program for a surveying instrument according to claim 4, 5 or 6, wherein the automatic collimation device is activated when the collimation direction is substantially directed to the desired known point. 前記機械点の位置情報の算出に、前記測量機の望遠鏡の位置を正にして得られたときの観測情報と反にしたときに得られた観測情報とを用いた請求項4、5、6、7又は8に記載の測量機用サーボ処理プログラム。   7. The position information of the mechanical point is calculated by using observation information obtained when the position of the telescope of the surveying instrument is made positive and observation information obtained when the position is reversed. 7. Servo processing program for surveying instrument according to 7 or 8.
JP2004277589A 2004-09-24 2004-09-24 Surveyor and servo processing program for surveying instrument Active JP4431472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277589A JP4431472B2 (en) 2004-09-24 2004-09-24 Surveyor and servo processing program for surveying instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277589A JP4431472B2 (en) 2004-09-24 2004-09-24 Surveyor and servo processing program for surveying instrument

Publications (2)

Publication Number Publication Date
JP2006090881A true JP2006090881A (en) 2006-04-06
JP4431472B2 JP4431472B2 (en) 2010-03-17

Family

ID=36232012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277589A Active JP4431472B2 (en) 2004-09-24 2004-09-24 Surveyor and servo processing program for surveying instrument

Country Status (1)

Country Link
JP (1) JP4431472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181428A (en) * 2016-03-31 2017-10-05 株式会社トプコン Position acquisition method of surveying device and surveying device
CN115615414A (en) * 2022-12-16 2023-01-17 广东粤能工程管理有限公司 Multifunctional measuring tool for engineering cost estimation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137871A (en) * 1992-10-26 1994-05-20 Kajima Corp Method and device for automatically measuring building and for administrating it
JPH0914921A (en) * 1995-06-27 1997-01-17 Nikon Corp Non-contact three-dimensional measuring instrument
JP2002048546A (en) * 2000-08-01 2002-02-15 Jekku:Kk System and method for observing different types of observation points
JP2002090144A (en) * 2000-09-21 2002-03-27 Jekku:Kk Secular change monitoring system using automatic tracking total station and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137871A (en) * 1992-10-26 1994-05-20 Kajima Corp Method and device for automatically measuring building and for administrating it
JPH0914921A (en) * 1995-06-27 1997-01-17 Nikon Corp Non-contact three-dimensional measuring instrument
JP2002048546A (en) * 2000-08-01 2002-02-15 Jekku:Kk System and method for observing different types of observation points
JP2002090144A (en) * 2000-09-21 2002-03-27 Jekku:Kk Secular change monitoring system using automatic tracking total station and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181428A (en) * 2016-03-31 2017-10-05 株式会社トプコン Position acquisition method of surveying device and surveying device
CN115615414A (en) * 2022-12-16 2023-01-17 广东粤能工程管理有限公司 Multifunctional measuring tool for engineering cost estimation

Also Published As

Publication number Publication date
JP4431472B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US11460561B2 (en) Surveying device, and calibration method and calibration program for surveying device
JP5722224B2 (en) Handheld positioning interface for spatial query
US7200945B2 (en) Surveying instrument
US8548766B2 (en) Systems and methods for gyroscope calibration
CN108759798B (en) Method for realizing precision measurement of high-precision spacecraft
JP5538929B2 (en) Three-dimensional position measurement and ink marking system and its usage
EP3483554A1 (en) Surveying device, and calibration checking method and calibration checking program for surveying device
CN103292795B (en) A method for accurate measurement by using dual prisms, and a measuring rod
EP1672314A2 (en) Method for preparing a stereo image and three-dimensional data preparation system
EP3748292B1 (en) Surveying device
CN109990761B (en) Levelness measuring system and levelness measuring method
US9194698B2 (en) Geodetic device and a method for determining a characteristic of the device
JP6441154B2 (en) Measuring method using total station and control device for total station
JP4431472B2 (en) Surveyor and servo processing program for surveying instrument
JP4916780B2 (en) Surveying equipment
JP5682078B1 (en) Surveying instrument and surveying method using it
CN112729109B (en) Point cloud data correction method and device
JP6894248B2 (en) Rotation angle calculation device and rotation angle calculation method
JP7345377B2 (en) Alignment measurement system, information processing device, alignment measurement method and program
JP7287824B2 (en) surveying equipment
CN109141385B (en) Positioning method of total station instrument without leveling
JPH0814903A (en) Surveying instrument
RU2423664C2 (en) Method to align metering instrument and device for its realisation
WO2011108956A1 (en) Method for installing measuring equipment in a working position and device for implementing same
CN110866951B (en) Method for correcting optical axis inclination of monocular camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250