JPH06258182A - Method and apparatus for measuring eccentricity of aspherical lens - Google Patents
Method and apparatus for measuring eccentricity of aspherical lensInfo
- Publication number
- JPH06258182A JPH06258182A JP5259966A JP25996693A JPH06258182A JP H06258182 A JPH06258182 A JP H06258182A JP 5259966 A JP5259966 A JP 5259966A JP 25996693 A JP25996693 A JP 25996693A JP H06258182 A JPH06258182 A JP H06258182A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical axis
- inspected
- aspherical
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一面のみが非球面であ
る非球面レンズの偏芯測定に関し、より詳しく言えば、
一面のみが非球面である非球面レンズにおけるレンズの
光軸と非球面軸との成す角度を測定する方法及び装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to eccentricity measurement of an aspherical lens whose one surface is aspherical, and more specifically,
The present invention relates to a method and an apparatus for measuring an angle formed by an optical axis of a lens and an aspherical axis of an aspherical lens having only one surface being an aspherical surface.
【0002】[0002]
【従来の技術】一面が球面で他面が非球面からなる非球
面レンズの光軸は、球面の曲率中心と参照球面(非球面
の基となる球面)の曲率中心とを結ぶ線であり、非球面
軸は、参照球面の曲率中心と非球面の頂点とを結ぶ線で
ある。そして、レンズが設計どおりに製作されていれ
ば、レンズ光軸は非球面軸と完全に一致する。2. Description of the Related Art The optical axis of an aspherical lens, one surface of which is a spherical surface and the other surface of which is an aspherical surface, is a line connecting the center of curvature of a spherical surface and the center of curvature of a reference spherical surface (a spherical surface that is the basis of the aspherical surface), The aspherical surface axis is a line connecting the center of curvature of the reference spherical surface and the apex of the aspherical surface. Then, if the lens is manufactured as designed, the optical axis of the lens coincides perfectly with the aspherical axis.
【0003】しかし、実際にそのようなレンズを製造す
ることは不可能で、両軸にはわずかながら違いが生じ
る。したがって、非球面レンズを製作した場合、出来上
がったレンズの偏芯を測定する必要がある。However, it is impossible to actually manufacture such a lens, and there is a slight difference between the two axes. Therefore, when manufacturing an aspherical lens, it is necessary to measure the eccentricity of the finished lens.
【0004】このような要請に基づき、従来から幾つか
の非球面レンズの偏芯を測定する装置が提案されてい
る。特開平3−37544号公報に記載の装置は、非球
面レンズとしての被検レンズをレンズホルダに取付け、
被検レンズをほぼその光軸回りに回転し、回転軸方向か
らレーザビームを照射し、被検レンズから反射されるス
ポット像を監視しながら被検レンズを回転軸と直角な方
向に移動し、回転軸と光軸とが一致するようにセッティ
ングずれを修正し、その後、偏芯の測定をするものであ
る。Based on such demands, there have conventionally been proposed devices for measuring the eccentricity of some aspherical lenses. The apparatus described in Japanese Patent Laid-Open No. 3-37544 mounts a lens to be tested as an aspherical lens on a lens holder,
The test lens is rotated around its optical axis, the laser beam is irradiated from the direction of the rotation axis, and the test lens is moved in the direction perpendicular to the rotation axis while monitoring the spot image reflected from the test lens, The setting deviation is corrected so that the rotation axis and the optical axis coincide with each other, and then the eccentricity is measured.
【0005】また、その他にも種々の偏芯測定装置が提
案されているが、どの装置も回転軸と光軸とが一致する
ようにセッティングずれを修正しなければならない。ま
た、測定精度を確保するために、この修正には1μm程
度の高精度が要求される。したがって、被検レンズのセ
ッティングずれの修正作業は熟練を要し、非常に時間が
掛かるものであった。Various other eccentricity measuring devices have been proposed, but any device must correct the setting deviation so that the rotation axis and the optical axis coincide with each other. Further, in order to ensure the measurement accuracy, this correction requires a high accuracy of about 1 μm. Therefore, the work of correcting the setting deviation of the lens to be inspected requires skill and takes a very long time.
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
問題の解決を図ったもので、困難なセッティングずれの
修正作業を行うことなく、容易に、しかも短時間で測定
できる非球面レンズの偏芯測定の方法と装置を提供する
ことを目的としている。SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and provides an aspherical lens that can be easily and quickly measured without performing a work of correcting a difficult setting deviation. An object is to provide a method and apparatus for measuring eccentricity.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
め本発明の偏芯測定方法は、一面のみが非球面である被
検レンズをその光軸とほぼ一致する回転軸回りに回転
し、該被検レンズに回転軸方向から光を照射して被検レ
ンズからの反射光を光学系の結像面にスポット像として
結像させ、被検レンズが回転するときに該スポット像が
描く円の大きさにより光軸と回転軸とのずれを検知し、
被検レンズの外周に基準位置を定め、該基準位置とレン
ズの回転中心とを結ぶ線と、スポット像とレンズの回転
中心とを結ぶ線とがなす角度から前記ずれの方向を求
め、前記被検レンズの回転に伴う非球面の光軸方向のぶ
れを実測し、前記円の大きさと方向から前記ぶれの補正
値を算出し、該補正値を前記実測したぶれから差し引い
て光軸と非球面軸との偏芯を求める構成を特徴としてい
る。In order to achieve the above object, the eccentricity measuring method of the present invention comprises rotating a lens to be inspected, one surface of which is an aspherical surface, around a rotation axis substantially coincident with its optical axis, A circle that is drawn by the spot image when the lens is rotated by irradiating the lens under test with light from the rotation axis direction to form the reflected light from the lens as a spot image on the imaging surface of the optical system. Detects the deviation between the optical axis and the rotation axis by the size of
A reference position is set on the outer circumference of the lens to be inspected, and the direction of the deviation is obtained from the angle formed by the line connecting the reference position and the rotation center of the lens and the line connecting the spot image and the rotation center of the lens. The shake of the aspherical surface in the optical axis direction due to the rotation of the lens is measured, the correction value for the shake is calculated from the size and direction of the circle, and the correction value is subtracted from the measured shake to determine the optical axis and the aspherical surface. It is characterized by a configuration for obtaining the eccentricity with respect to the shaft.
【0008】また、被検レンズをその光軸とほぼ垂直な
方向に変位させ、該変位による非球面の光軸方向のぶれ
と、被検レンズの光軸と回転軸とのずれの変化量とを求
め、該ずれの変化量と前記ぶれの量との比を用いて前記
補正値の算出をする構成としたり、被検レンズの光軸と
回転軸とがなす角度をφだけ変化させたときの非球面の
光軸方向のぶれを被検レンズの形状パラメータから算出
して前記の補正をする構成としてもよい。Further, the lens to be inspected is displaced in a direction substantially perpendicular to its optical axis, and the displacement of the aspherical surface in the optical axis direction due to the displacement and the amount of change in the deviation between the optical axis and the rotation axis of the lens to be inspected. When the correction value is calculated using the ratio of the amount of change in the shift and the amount of blur, or when the angle formed by the optical axis and the rotation axis of the lens under test is changed by φ. The above-described correction may be performed by calculating the shake of the aspherical surface in the optical axis direction from the shape parameter of the lens under test.
【0009】本発明の偏芯測定装置は、一面のみが非球
面である被検レンズを保持する手段と、該保持手段を被
検レンズの光軸とほぼ重なる回転軸回りに回転する駆動
手段と、被検レンズの回転角度を検知する角度センサ
と、被検レンズに回転軸方向から光を照射する光源と、
被検レンズから反射された光のスポット像を結像する光
学系と、該光学系の結像位置に設けられスポット像の位
置を検知する手段と、被検レンズにおける被検面の光軸
方向のぶれを実測する変位測定手段と、前記スポット位
置検知手段と角度センサとで検知した回転軸と被検レン
ズの光軸とのずれ及びずれの方向から前記変位測定手段
による実測値に対する補正値を算出する演算手段とから
なる構成を特徴としている。The eccentricity measuring device of the present invention comprises a means for holding the lens to be inspected whose only one surface is aspherical surface, and a driving means for rotating the holding means around a rotation axis substantially overlapping the optical axis of the lens to be inspected. An angle sensor for detecting the rotation angle of the lens to be inspected, and a light source for irradiating the lens to be inspected with light from the rotation axis direction,
An optical system for forming a spot image of the light reflected from the lens to be inspected, means for detecting the position of the spot image provided at an image forming position of the optical system, and an optical axis direction of an inspected surface of the lens to be inspected. The displacement measurement means for actually measuring the blurring of the displacement, the displacement between the rotation axis detected by the spot position detection means and the angle sensor and the optical axis of the lens under test, and the correction value for the measured value by the displacement measurement means from the direction of the displacement. It is characterized by a configuration including a calculation means for calculating.
【0010】また、被検レンズをその光軸とほぼ垂直な
方向に進退させるアクチュエータを付加する構成とした
り、前記演算手段、変位測定手段及びアクチュエータが
協働し、演算手段が算出した補正値だけアクチュエータ
が被検レンズを光軸とほぼ垂直な方向に変位させる構成
とすることもできる。Further, an actuator for advancing and retracting the lens to be inspected in a direction substantially perpendicular to the optical axis thereof may be added, or the calculating means, the displacement measuring means and the actuator cooperate, and only the correction value calculated by the calculating means. The actuator may be configured to displace the lens under test in a direction substantially perpendicular to the optical axis.
【0011】[0011]
【作用】被検レンズを保持した保持手段は、被検レンズ
をその光軸とほぼ一致する回転軸回りに回転する。そし
て、回転軸方向から被検レンズに光が照射され、レンズ
の表面で反射された光は光学系によって、その結像面に
スポット像を結像する。被検レンズの光軸と回転軸が不
一致であれば、スポット像は被検レンズの回転に伴い円
を描く。この円の半径Rと、レンズの回転中心に対して
基準位置とスポット像とが作る角度βを求めると、被検
レンズの回転に伴う非球面の光軸方向の理論上のぶれを
算出できる。一方、このぶれの実測値を変位測定手段に
よって測り、理論上のぶれを差し引けば、偏心によるぶ
れが求まり、このぶれから公知の方法によって非球面レ
ンズの偏芯を算出することができる。被検レンズのセッ
ティングを修正する必要なく測定できるので、測定が容
易になり、かつ測定時間の短縮も図れる。The holding means for holding the lens to be inspected rotates the lens to be inspected around a rotation axis substantially coincident with the optical axis thereof. Then, the test lens is irradiated with light from the direction of the rotation axis, and the light reflected on the surface of the lens forms a spot image on its image forming surface by the optical system. If the optical axis of the lens under test and the rotation axis do not match, the spot image draws a circle as the lens under test rotates. By obtaining the radius R of this circle and the angle β formed by the reference position and the spot image with respect to the center of rotation of the lens, the theoretical shake of the aspherical surface in the optical axis direction due to the rotation of the lens under test can be calculated. On the other hand, if the measured value of this blur is measured by the displacement measuring means and the theoretical blur is subtracted, the blur due to eccentricity is obtained, and the eccentricity of the aspherical lens can be calculated from this blur by a known method. Since the measurement can be performed without modifying the setting of the lens to be inspected, the measurement becomes easy and the measurement time can be shortened.
【0012】また、前記演算手段、変位測定手段及びア
クチュエータが協働し、演算手段が算出した補正値だけ
被検レンズを光軸とほぼ垂直な方向に変位させる構成と
すれば、自動的にセッティングずれを修正することがで
き、熟練を必要とせずに、簡単に偏芯の測定ができる。Further, if the calculating means, the displacement measuring means and the actuator cooperate with each other to displace the lens to be inspected in the direction substantially perpendicular to the optical axis by the correction value calculated by the calculating means, the setting is automatically performed. The deviation can be corrected, and the eccentricity can be easily measured without requiring skill.
【0013】[0013]
【実施例】以下に図面を用いて本発明の実施例を説明す
る。図1は本発明の装置の1実施例である。同図におい
て、1は被検レンズで、一方の面1aは球面で他方の面
1bが非球面である。2は保持手段で、被検レンズ1の
球面1a側を把持する。3はスピンドルを回転させる駆
動手段で、回転角を正確に制御するためにステッピング
モータを使用している。4は角度センサで、ステッピン
グモータ3の回転角を検知する。5は光源で、6はビー
ムスプリッタ、7は光学系で二枚のレンズ7a,7bか
らなっている。8は光学系7の結像面に置かれたスポッ
ト位置検知手段で、CCDカメラを使用している。9は
電気マイクロからなる変位測定手段で、被検レンズ1の
非球面に当接しており、被検レンズの回転に伴い生じる
光軸方向の変位を測定するものである。10は演算手段
としてのコンピュータである。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the device of the present invention. In the figure, 1 is a lens to be inspected, one surface 1a is a spherical surface and the other surface 1b is an aspherical surface. Reference numeral 2 denotes a holding means for holding the spherical surface 1a side of the lens 1 to be inspected. Reference numeral 3 denotes a drive means for rotating the spindle, which uses a stepping motor to accurately control the rotation angle. An angle sensor 4 detects the rotation angle of the stepping motor 3. Reference numeral 5 is a light source, 6 is a beam splitter, and 7 is an optical system, which is composed of two lenses 7a and 7b. Reference numeral 8 denotes a spot position detecting means placed on the image plane of the optical system 7, which uses a CCD camera. Reference numeral 9 denotes a displacement measuring means including an electric micro, which is in contact with the aspherical surface of the lens 1 to be measured and measures displacement in the optical axis direction caused by rotation of the lens to be measured. Reference numeral 10 is a computer as a calculation means.
【0014】光源5により照射された光は、ビームスプ
リッタ6により反射され、光学系7によって、非球面1
b上に集光される。被検レンズ5により反射された光
は、前記光路とは逆方向に進み、ビームスプリッタ6を
透過して、光学系7の結像面にあるスポット位置検出手
段8に集束してスポット像を結像する。The light emitted from the light source 5 is reflected by the beam splitter 6, and the aspherical surface 1 is reflected by the optical system 7.
It is focused on b. The light reflected by the lens to be inspected 5 travels in the direction opposite to the optical path, passes through the beam splitter 6, and is focused on the spot position detecting means 8 on the image plane of the optical system 7 to form a spot image. Image.
【0015】被検レンズ1はスピンドル2に保持され、
回転角度を検知する角度センサ4を取りつけた駆動手段
3によりスピンドル2の軸を回転軸として回転する。変
位測定手段9は、被検レンズ1の回転に伴う非球面1b
の光軸方向のぶれ(変位)を測定し、その値を演算装置
10に入力する。一方、角度センサ4は、駆動手段3に
よる回転角度を逐一測定し、演算手段10に入力する。
したがって、演算手段10は、任意の回転角度における
非球面1bの光軸方向のぶれが分かる。The lens 1 to be inspected is held by a spindle 2,
The drive means 3 provided with an angle sensor 4 for detecting the rotation angle rotates the spindle 2 about the axis thereof. The displacement measuring means 9 includes an aspherical surface 1b associated with the rotation of the lens 1 under test.
The shake (displacement) in the optical axis direction is measured, and the value is input to the arithmetic unit 10. On the other hand, the angle sensor 4 measures the rotation angle by the driving means 3 one by one and inputs it to the calculating means 10.
Therefore, the calculating means 10 can know the shake in the optical axis direction of the aspherical surface 1b at any rotation angle.
【0016】図2(a) は、レンズ7a,7bを考慮しな
い場合における、被検レンズ1、スポット位置検知手段
8の結像面8a、被検レンズの光軸11、スピンドルの
回転軸12及び非球面軸13との関係を示す概念図であ
る。FIG. 2A shows the lens 1 to be inspected, the image plane 8a of the spot position detecting means 8, the optical axis 11 of the lens to be inspected, the rotary shaft 12 of the spindle, and the lens 7a and 7b when the lenses 7a and 7b are not taken into consideration. 3 is a conceptual diagram showing a relationship with an aspherical surface axis 13. FIG.
【0017】図2(a) において、回転軸12と結像面8
aとの交点をOとし、光軸11と結像面8aとの交点を
Pとし、非球面軸13と結像面8aとの交点をQとす
る。また、結像面8aに図示のように直交するx,y軸
を取る。In FIG. 2A, the rotary shaft 12 and the image plane 8 are shown.
The intersection with a is O, the intersection between the optical axis 11 and the image forming surface 8a is P, and the intersection between the aspherical surface axis 13 and the image forming surface 8a is Q. Further, the x and y axes orthogonal to the image plane 8a are taken as shown in the figure.
【0018】光軸11とスピンドル回転軸12とのなす
角度αが、セッティングずれによる誤差の大きさを示
し、線分OPとx軸とのなす角度βが、前記誤差の方向
を示す。光軸11を回転軸12と一致させて回転した場
合、光軸P11と非球面軸13とのなす角度θが正味の
偏芯量、線分PQとx軸とのなす角度γが偏芯の方向と
なる。The angle α formed by the optical axis 11 and the spindle rotating shaft 12 indicates the magnitude of the error due to the setting deviation, and the angle β formed by the line segment OP and the x axis indicates the direction of the error. When the optical axis 11 is rotated in coincidence with the rotation axis 12, the angle θ formed by the optical axis P11 and the aspherical surface axis 13 is the net eccentricity amount, and the angle γ formed by the line segment PQ and the x axis is the eccentricity. Direction.
【0019】図2(b) は、2枚のレンズ7a,7bを考
慮に入れた場合の、被検レンズ1と結像面8aとの関係
を示す図である。点O1 は被検レンズ1の曲面1aの曲
率中心、点O2 は非球面1bの光軸近傍の曲率中心をそ
れぞれ示す。したがって、点O1 とO2 とを結ぶ線が被
検レンズの光軸11である。保持手段2は、被検レンズ
1の球面側を保持しており、セッティングずれαの値い
かんにかかわらず球面1a側の曲率中心O1 が、常に回
転軸12上に来るようになっている。他方の点O2 は、
被検レンズ1にセッティングずれαがあるため、図示の
ように回転軸12から外れている。FIG. 2 (b) is a diagram showing the relationship between the lens to be inspected 1 and the image plane 8a when the two lenses 7a and 7b are taken into consideration. A point O 1 indicates the center of curvature of the curved surface 1 a of the lens 1 to be inspected, and a point O 2 indicates the center of curvature of the aspherical surface 1 b near the optical axis. Therefore, the line connecting the points O 1 and O 2 is the optical axis 11 of the lens under test. The holding means 2 holds the spherical surface side of the lens 1 to be inspected, and the curvature center O 1 on the spherical surface 1a side always comes to the rotation axis 12 regardless of the value of the setting deviation α. The other point O 2 is
Since the lens 1 to be inspected has a setting deviation α, it is off the rotation axis 12 as shown in the figure.
【0020】光源5からの光は、レンズ7aによって点
O2 に集束するように射出されるが、セッティングずれ
αがあるため、点O2 の近傍の点O2 ′に集束するよう
に進む。被検面1bで反射された光は、ほぼ元の光路を
戻り、レンズ7a,7bを透過して、結像面8a上の点
Pにスポット像を結像する。[0020] Light from the light source 5 is emitted to focus by the lens 7a to a point O 2, because of the setting deviation alpha, proceeds to focus at a point O 2 'in the vicinity of the point O 2. The light reflected by the surface to be inspected 1b returns almost through the original optical path, passes through the lenses 7a and 7b, and forms a spot image at a point P on the image forming surface 8a.
【0021】スピンドル2を回転すると、前記反射スポ
ットPは結像面8a上で点Oを中心に回転する。前述し
た被検レンズ1により反射され、スポット位置検出手段
8に結像する反射光と光軸11とは、図2(b) に示す関
係になり、次式のようにあらわされる。 R=f2tanδ (f1tanδ)/2=T sinα=eWhen the spindle 2 is rotated, the reflection spot P rotates about the point O on the image plane 8a. The reflected light reflected by the lens 1 to be inspected and imaged on the spot position detecting means 8 and the optical axis 11 have a relationship shown in FIG. 2 (b), which is expressed by the following equation. R = f 2 tanδ (f 1 tanδ) / 2 = T sin α = e
【0022】ここに、 f1 : レンズ7aの焦点距離 f2 : レンズ7bの焦点距離 δ : 反射光と回転軸がなす角度 α : レンズ光軸11と回転軸12とがなす角度 e : 点O2 と回転軸12との距離 また、スポット像が回転したときに描く円について、任
意の回転角度におけるスポット像の座標を読み取ること
ができる。Where f 1 is the focal length of the lens 7a f 2 is the focal length of the lens 7b δ is the angle formed by the reflected light and the rotation axis α is the angle formed by the lens optical axis 11 and the rotation axis 12 e is the point O Distance between 2 and rotation axis 12 Further, the coordinates of the spot image at an arbitrary rotation angle can be read for the circle drawn when the spot image rotates.
【0023】そこで、たとえば、スポット位置検知手段
8としてCCDカメラを使用してこの重心の座標を電気
信号として取り出し、その信号を演算手段10に入力す
ることにより、スポットの描く円の半径Rを求め、さら
に光軸11と回転軸12とがなす角αを求めることがで
きる。また、図2に示すような反射スポット像と光軸1
1とは、同じ点O1 と、同じ回転軸12を通るので、同
一平面内にあると見做せ、したがって、被検レンズ1を
回転させて反射スポット像が、回転原点位置を通るとき
の回転角を角度センサ4から読み取れば、βの値を求め
ることができる。Therefore, for example, a CCD camera is used as the spot position detecting means 8 to extract the coordinates of the center of gravity as an electric signal, and the signal is input to the calculating means 10 to obtain the radius R of the circle drawn by the spot. Further, the angle α formed by the optical axis 11 and the rotation axis 12 can be obtained. In addition, the reflection spot image and the optical axis 1 as shown in FIG.
Since 1 passes through the same point O 1 and the same rotation axis 12, it can be regarded as being in the same plane. Therefore, when the lens 1 to be inspected is rotated and the reflection spot image passes through the rotation origin position. The value of β can be obtained by reading the rotation angle from the angle sensor 4.
【0024】電気マイクロからなる変位測定手段9は、
前記スピンドル2の回転に伴い、円周2πをi等分した
各位置で非球面の光軸方向の変位Do(i) を測定し、そ
のデータを演算手段10に入力している。ただし、ここ
で検知された変位Do(i) は、セッテイングずれαによ
る誤差を含んだものである。The displacement measuring means 9 consisting of an electric micro is
With the rotation of the spindle 2, the displacement Do (i) of the aspherical surface in the optical axis direction is measured at each position obtained by equally dividing the circumference 2π into i, and the data is input to the arithmetic means 10. However, the displacement Do (i) detected here includes an error due to the setting deviation α.
【0025】こうして得た測定値Do(i) から、次の式
により真のぶれ(補正変位)D(i)を算出することがで
きる。 D(i) =Do(i) −Aαcos〔{2π(i−1)/n}+β〕(μm) ここで、 i:カウント数 n:サンプリング数 A:換算係数(μm/分) α:セッティングずれ β:セッティングずれの方向From the measured value Do (i) thus obtained, the true shake (correction displacement) D (i) can be calculated by the following equation. D (i) = Do (i) -Aαcos [{2π (i-1) / n} + β] (μm) where i: Count number n: Sampling number A: Conversion coefficient (μm / min) α: Setting Deviation β: Direction of setting deviation
【0026】図3は、上式により求まるi個の補正変位
の描く正弦波曲線の一例である。同図の全幅Dから正味
の偏芯量を特願平4−29995号に記載した方法等に
より算出することができる。また、初期位相は偏芯の方
向γを示している。FIG. 3 is an example of a sine wave curve drawn by i correction displacements obtained by the above equation. The net amount of eccentricity can be calculated from the full width D in the figure by the method described in Japanese Patent Application No. 4-299995. Further, the initial phase indicates the eccentric direction γ.
【0027】図4,5は、前述の式におけるAの求め方
の一例を説明する図である。図4(a) は、被検レンズ1
の光軸と回転軸とが一致した状態を示す。被検レンズ1
から反射された光は、スポット位置検知手段8の中央に
結像する。4 and 5 are diagrams for explaining an example of how to obtain A in the above equation. FIG. 4A shows the lens 1 under test.
The state where the optical axis and the rotation axis match is shown. Lens to be inspected 1
The light reflected from is imaged at the center of the spot position detecting means 8.
【0028】この位置にある被検レンズ1に、矢符号方
向の外力を加え、図4(b) に示すように微小なずれを起
こさせる。すると、スポット像は、スポット位置検知手
段8の中心からずれた位置に結像する。変位測定手段9
はこの被検面の光軸方向のぶれ量S(μm) を検知し、
スポット位置検知手段8は、O2 からのずれ量λ(pixe
l)を検知する。そして、A=(S・B)/λ(μm/pi
xel)として換算係数を求めることができる。ただし、B
は反射スポットが1分傾いたときの位置検出手段上での
反射スポットの移動量で、実験により簡単に求められ
る。An external force in the direction of the arrow is applied to the lens 1 to be inspected at this position to cause a slight shift as shown in FIG. 4 (b). Then, the spot image is formed at a position deviated from the center of the spot position detection means 8. Displacement measuring means 9
Detects the amount of blurring S (μm) in the optical axis direction of the surface to be inspected,
The spot position detecting means 8 detects the deviation amount λ (pixe from O 2
l) is detected. And A = (S · B) / λ (μm / pi
xel) can be used to obtain the conversion factor. However, B
Is the amount of movement of the reflection spot on the position detecting means when the reflection spot is tilted by 1 minute, and can be easily obtained by an experiment.
【0029】なお、(a) では、光軸と回転軸が当初一致
している場合としたが、一致していない場合でも、通常
のずれ量は小さいので、同じ方法で換算係数を算出する
ことができる。In (a), the optical axis and the rotation axis are initially aligned with each other. However, even if they are not aligned with each other, the normal deviation amount is small. Therefore, the conversion coefficient should be calculated by the same method. You can
【0030】図5は横軸にスポットの移動量λ(pixe
l)、縦軸に被検面の光軸方向のぶれ量S(μm)をと
り、図4に示した被検レンズ1の光軸と垂直な方向の微
小移動を任意の回数行い、各回についての測定結果をプ
ロットしたものである。これらの点について回帰直線を
引き、その傾きを求めると、換算係数Aを求めることが
できる。被検レンズに加える変位Sを広範囲に拡げ、か
つ多数回測定すれば、より正確な換算係数が得られる。In FIG. 5, the horizontal axis represents the spot movement amount λ (pixe
l), the vertical axis is the amount of shake S (μm) in the direction of the optical axis of the surface to be inspected, and the minute movement in the direction perpendicular to the optical axis of the lens to be inspected 1 shown in FIG. It is a plot of the measurement results of. The conversion coefficient A can be obtained by drawing a regression line for these points and finding the slope thereof. If the displacement S applied to the lens to be inspected is spread over a wide range and is measured many times, a more accurate conversion coefficient can be obtained.
【0031】図6は、換算係数を求めるための別の方法
を説明する図である。被検レンズ1の球面の曲率中心O
1 を原点にして、スピンドルの回転軸12をx軸とし、
x軸と原点O1 で直交する線分をy軸とする。被検レン
ズ1を光軸に垂直な方向に押すと、被検レンズ1は原点
O1 を中心に回転する。その回転角をφ(分)とし、そ
のとき被検面がx軸方向にぶれる量Sを変位測定手段9
で測定する。FIG. 6 is a diagram for explaining another method for obtaining the conversion coefficient. Center of curvature O of spherical surface of lens 1 under test
With 1 as the origin and the spindle rotation axis 12 as the x-axis,
A line segment orthogonal to the x axis and the origin O 1 is defined as the y axis. When the lens 1 to be inspected is pushed in the direction perpendicular to the optical axis, the lens 1 to be inspected rotates about the origin O 1 . The rotation angle is φ (minutes), and at that time, the displacement measuring means 9 measures the amount S of deviation of the test surface in the x-axis direction.
To measure.
【0032】しかるに、上記のSの値は被検レンズ1の
形状パラメータから計算によって求めることができる。
したがって、S/φにより反射スポットが単位角(1
分)傾いた場合の被検面の光軸方向のぶれが求まる。However, the value of S can be calculated from the shape parameter of the lens 1 under test.
Therefore, due to S / φ, the reflected spot becomes a unit angle (1
Min) The tilt of the surface to be inspected when tilted can be obtained.
【0033】図7は、本発明における他の実施例の構成
を示す。図1に示した装置に加え、保持された被検レン
ズ1に光軸とほぼ垂直な方向に外力を加えるためのアク
チュエータ14が設置されている。アクチュエータ14
は、ステッピングモータ14aと、このモータにより動
作するカムフォロア14bとからなる。被検レンズ1の
アクチュエータ14と対向する側には、光軸と垂直な方
向に変位する被検レンズ1の変位量を測定する垂直変位
測定手段15が設けられている。この垂直変位測定手段
15も変位測定手段9と同様の電気マイクロを使用して
いる。FIG. 7 shows the configuration of another embodiment of the present invention. In addition to the device shown in FIG. 1, an actuator 14 for applying an external force to the held lens 1 to be tested is installed in a direction substantially perpendicular to the optical axis. Actuator 14
Consists of a stepping motor 14a and a cam follower 14b operated by this motor. On the side of the lens to be inspected 1 facing the actuator 14, vertical displacement measuring means 15 for measuring the amount of displacement of the lens to be inspected 1 displaced in the direction perpendicular to the optical axis is provided. This vertical displacement measuring means 15 also uses the same electric micro as the displacement measuring means 9.
【0034】図1で説明したように、角度センサ4及び
スポット位置検知手段8により、被検レンズ1のセッテ
ィングずれα(分)と方向β(度)を求めることができ
る。したがって、演算手段10がαの値から光軸と垂直
方向のセッティングずれを算出し、これらに応じて演算
手段10から駆動手段3に指示を出し、角度センサ4に
より回転角がβになるまで被検レンズ1を回動し、次
に、その位置からアクチュエータ14と垂直変位測定手
段15とによるフィードバック系により、指定量だけ光
軸と垂直な方向に移動させる。As described with reference to FIG. 1, the angle sensor 4 and the spot position detecting means 8 can determine the setting deviation α (minute) and the direction β (degree) of the lens 1 to be inspected. Therefore, the calculating means 10 calculates the setting deviation in the direction perpendicular to the optical axis from the value of α, and the calculating means 10 gives an instruction to the driving means 3 in accordance with these values until the rotation angle reaches β by the angle sensor 4. The inspection lens 1 is rotated, and then a feedback system including the actuator 14 and the vertical displacement measuring means 15 is moved from that position in a direction perpendicular to the optical axis by a designated amount.
【0035】なお、移動量が−の場合は被検レンズ1を
180°回転し、反対側からアクチュエータ14で押し
て、修正することになる。When the amount of movement is negative, the lens 1 to be inspected is rotated by 180 °, and is pushed by the actuator 14 from the opposite side to correct it.
【0036】[0036]
【発明の効果】以上に説明したように本発明によれば、
非球面レンズの偏芯測定において、被検レンズのセッテ
ィングずれを修正しなくても、補正により真の偏芯を求
めることができるので、熟練を要するセッティング作業
を省略して、短時間で精度よく偏芯の測定ができる。ま
た、演算手段、変位測定手段及びアクチュエータが協働
し、演算手段が算出した補正値だけ被検レンズを光軸と
ほぼ垂直な方向に変位させる構成とすれば、自動的にセ
ッテイングずれを修正することができる。As described above, according to the present invention,
When measuring the eccentricity of an aspherical lens, the true eccentricity can be obtained by correction without correcting the setting deviation of the lens under test. Therefore, setting work that requires skill can be omitted, and the accuracy can be reduced in a short time. Eccentricity can be measured. Further, if the calculating means, the displacement measuring means and the actuator cooperate to displace the lens to be inspected in the direction substantially perpendicular to the optical axis by the correction value calculated by the calculating means, the setting deviation is automatically corrected. be able to.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明による非球面レンズの偏芯測定装置の構
成を示す図である。FIG. 1 is a diagram showing the configuration of an eccentricity measuring device for an aspherical lens according to the present invention.
【図2】(a) は被検レンズのセッテイングずれ及び偏芯
を検出する原理を示す図、(b)はレンズを考慮した場合
の図である。FIG. 2A is a diagram showing a principle of detecting setting deviation and eccentricity of a lens to be inspected, and FIG. 2B is a diagram when a lens is taken into consideration.
【図3】被検レンズの1回転をi等分し、各等分された
位置における補正されたぶれをプロットした図である。FIG. 3 is a diagram in which one rotation of the lens to be inspected is divided into i equal parts, and the corrected blur at each equally divided position is plotted.
【図4】被検レンズに、光軸と垂直な方向の力を加えて
セッテイングずれを生じさせ、ずれ発生前後の状態から
換算係数を得る方法を説明する図で、(a) はずれ発生
前、(b) はずれ発生後の状態を示す。FIG. 4 is a diagram illustrating a method of applying a force in a direction perpendicular to an optical axis to a lens to be inspected to cause a setting deviation, and obtaining a conversion coefficient from a state before and after the deviation occurs. (b) shows the state after the occurrence of slippage.
【図5】図4に示すようにしてセッテイングずれを生じ
させ、変位測定手段で検出した変位を縦軸にとり、それ
に伴うスポット像の移動を横軸にとって、プロットした
図である。FIG. 5 is a diagram in which the displacement detected by the displacement measuring means is plotted on the vertical axis, and the displacement of the spot image accompanying it is plotted on the horizontal axis.
【図6】被検レンズに球面の曲率中心O1 を中心とした
回転角φの回転を与えたときの、ぶれSが発生する状態
を説明する図である。FIG. 6 is a diagram illustrating a state in which blurring S occurs when a lens to be inspected is rotated by a rotation angle φ about a center of curvature O 1 of a spherical surface.
【図7】本発明の他の実施例の構成を示す図である。FIG. 7 is a diagram showing the configuration of another embodiment of the present invention.
1 被検レンズ 1a 球面 1b 被検面(非球面) 2 支持手段 3 駆動手段 4 角度センサ 5 光源 7 光学系 8 スポット位置検知手段 8a 結像面 9 変位測定手段 10 演算手段 11 被検レンズの光軸 12 回転軸 13 非球面軸 14 アクチュエータ α セッテインィグずれ β セッテインィグずれの方向 θ 偏芯 γ 偏芯の方向 DESCRIPTION OF SYMBOLS 1 Test lens 1a Spherical surface 1b Test surface (aspherical surface) 2 Supporting means 3 Driving means 4 Angle sensor 5 Light source 7 Optical system 8 Spot position detecting means 8a Image forming surface 9 Displacement measuring means 10 Computing means 11 Light of test lens Axis 12 Rotation axis 13 Aspherical surface axis 14 Actuator α Setting deviation β Setting deviation direction θ Eccentricity γ Eccentricity direction
Claims (6)
の光軸とほぼ一致する回転軸回りに回転し、該被検レン
ズに回転軸方向から光を照射して被検レンズからの反射
光を光学系の結像面にスポット像として結像させ、被検
レンズが回転するときに該スポット像が描く円の大きさ
により光軸と回転軸とのずれを検知し、被検レンズの外
周に基準位置を定め、該基準位置とレンズの回転中心と
を結ぶ線と、スポット像とレンズの回転中心とを結ぶ線
とがなす角度から前記ずれの方向を求め、前記被検レン
ズの回転に伴う非球面の光軸方向のぶれを実測し、前記
円の大きさと方向から前記ぶれの補正値を算出し、該補
正値を前記実測したぶれから差し引いて光軸と非球面軸
との偏芯を求めることを特徴とする非球面レンズの偏芯
測定方法。1. A test lens having only one aspherical surface is rotated around a rotation axis substantially coincident with the optical axis of the test lens, and the test lens is irradiated with light from the direction of the rotation axis to reflect from the test lens. The light is formed as a spot image on the image forming plane of the optical system, and when the lens under test rotates, the deviation between the optical axis and the rotation axis is detected by the size of the circle drawn by the spot image, A reference position is defined on the outer periphery, the direction of the deviation is obtained from the angle formed by the line connecting the reference position and the rotation center of the lens, and the line connecting the spot image and the rotation center of the lens, and the rotation of the lens under test is determined. The blurring of the aspherical surface in the optical axis direction is measured, the correction value for the blurring is calculated from the size and direction of the circle, and the correction value is subtracted from the measured blurring to deviate the optical axis from the aspherical axis. An eccentricity measuring method for an aspherical lens, characterized in that a core is obtained.
に変位させ、該変位による非球面の光軸方向のぶれと、
被検レンズの光軸と回転軸とのずれの変化量とを求め、
該ずれの変化量と前記ぶれの量との比を用いて前記補正
値の算出をすることを特徴とする請求項1記載の非球面
レンズの偏芯測定方法。2. Displacement of a lens to be inspected in a direction substantially perpendicular to its optical axis, and the displacement of the aspherical surface in the optical axis direction due to the displacement,
Obtain the amount of change in the deviation between the optical axis and the rotation axis of the lens under test,
2. The eccentricity measuring method for an aspherical lens according to claim 1, wherein the correction value is calculated using a ratio between the amount of change in the shift and the amount of blur.
をφだけ変化させたときの非球面の光軸方向のぶれを被
検レンズの形状パラメータから算出して前記の補正をす
ることを特徴とする請求項1記載の非球面レンズの偏芯
測定方法。3. The correction is performed by calculating the blurring of the aspherical surface in the optical axis direction when the angle formed by the optical axis of the lens to be tested and the rotation axis is changed by φ from the shape parameter of the lens to be tested. The decentering measuring method for an aspherical lens according to claim 1, wherein
持する手段と、該保持手段を被検レンズの光軸とほぼ重
なる回転軸回りに回転する駆動手段と、被検レンズの回
転角度を検知する角度センサと、被検レンズに回転軸方
向から光を照射する光源と、被検レンズから反射された
光のスポット像を結像する光学系と、該光学系の結像位
置に設けられスポット像の位置を検知する手段と、被検
レンズにおける被検面の光軸方向のぶれを実測する変位
測定手段と、前記スポット位置検知手段と角度センサと
で検知した回転軸と被検レンズの光軸とのずれ及びずれ
の方向から前記変位測定手段による実測値に対する補正
値を算出する演算手段とからなることを特徴とする非球
面レンズの偏芯測定装置。4. A means for holding a lens to be inspected whose one surface is an aspherical surface, a driving means for rotating the holding means around a rotation axis substantially overlapping the optical axis of the lens to be inspected, and a rotation angle of the lens to be inspected. An angle sensor that detects the light, a light source that irradiates the lens to be inspected with light in the direction of the rotation axis, an optical system that forms a spot image of the light reflected from the lens to be inspected, and an image forming position of the optical system. Means for detecting the position of the spot image, a displacement measuring means for actually measuring the deviation of the surface to be inspected in the lens to be inspected, a rotation axis detected by the spot position detecting means and the angle sensor, and the lens to be inspected. An eccentricity measuring device for an aspherical lens, which comprises a calculation means for calculating a correction value for a measured value by the displacement measuring means from the deviation from the optical axis and the direction of the deviation.
ンズをその光軸とほぼ垂直な方向に進退させるアクチュ
エータを設けたことを特徴とする非球面レンズの偏芯測
定装置。5. An eccentricity measuring apparatus for an aspherical lens, wherein the apparatus according to claim 4 is further provided with an actuator for moving the lens under test in a direction substantially perpendicular to the optical axis thereof.
ュエータが協働し、演算手段が算出した補正値だけアク
チュエータが被検レンズを光軸とほぼ垂直な方向に変位
させることを特徴とする請求項5記載の非球面レンズの
偏芯測定装置。6. The calculating means, the displacement measuring means, and the actuator cooperate with each other, and the actuator displaces the lens under test in a direction substantially perpendicular to the optical axis by a correction value calculated by the calculating means. 5. An eccentricity measuring device for an aspherical lens according to 5.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25996693A JP3304556B2 (en) | 1993-01-11 | 1993-10-18 | Method and apparatus for measuring eccentricity of aspherical lens |
TW083106509A TW283201B (en) | 1993-08-13 | 1994-07-16 | |
US08/280,614 US5548396A (en) | 1993-08-13 | 1994-07-26 | Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP248193 | 1993-01-11 | ||
JP5-2481 | 1993-01-11 | ||
JP25996693A JP3304556B2 (en) | 1993-01-11 | 1993-10-18 | Method and apparatus for measuring eccentricity of aspherical lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06258182A true JPH06258182A (en) | 1994-09-16 |
JP3304556B2 JP3304556B2 (en) | 2002-07-22 |
Family
ID=26335859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25996693A Expired - Fee Related JP3304556B2 (en) | 1993-01-11 | 1993-10-18 | Method and apparatus for measuring eccentricity of aspherical lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3304556B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7046351B2 (en) | 2002-05-20 | 2006-05-16 | Pentax Corporation | Method and apparatus for measuring eccentricity of optical lens, and method and apparatus for centering and edging optical lens |
RU2738913C2 (en) * | 2016-01-23 | 2020-12-18 | 6 Овер 6 Вижн Лтд. | Apparatus, system and method of determining one or more optical parameters of a lens |
US10876923B2 (en) | 2015-05-10 | 2020-12-29 | 6 Over6 Vision Ltd. | Apparatus, system and method of determining one or more optical parameters of a lens |
US10876921B2 (en) | 2015-05-10 | 2020-12-29 | 6 Over 6 Vision Ltd. | Apparatus, system and method of determining one or more optical parameters of a lens |
KR102198274B1 (en) * | 2019-06-27 | 2021-01-04 | 주식회사 엠아이텍 | Camera Lens Driving Inspection Apparatus for Mobile Phone And An Auto Collimator Capable Of Curved Surface And Plane Tilt Measurement |
CN114624010A (en) * | 2022-05-16 | 2022-06-14 | 嘉兴中润光学科技股份有限公司 | Eccentricity testing method |
-
1993
- 1993-10-18 JP JP25996693A patent/JP3304556B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7046351B2 (en) | 2002-05-20 | 2006-05-16 | Pentax Corporation | Method and apparatus for measuring eccentricity of optical lens, and method and apparatus for centering and edging optical lens |
US10876923B2 (en) | 2015-05-10 | 2020-12-29 | 6 Over6 Vision Ltd. | Apparatus, system and method of determining one or more optical parameters of a lens |
US10876921B2 (en) | 2015-05-10 | 2020-12-29 | 6 Over 6 Vision Ltd. | Apparatus, system and method of determining one or more optical parameters of a lens |
US11054336B2 (en) | 2015-05-10 | 2021-07-06 | 6OVER6 Vision Ltd. | Apparatus, system and method of determining one or more optical parameters of a lens |
RU2738913C2 (en) * | 2016-01-23 | 2020-12-18 | 6 Овер 6 Вижн Лтд. | Apparatus, system and method of determining one or more optical parameters of a lens |
KR102198274B1 (en) * | 2019-06-27 | 2021-01-04 | 주식회사 엠아이텍 | Camera Lens Driving Inspection Apparatus for Mobile Phone And An Auto Collimator Capable Of Curved Surface And Plane Tilt Measurement |
CN114624010A (en) * | 2022-05-16 | 2022-06-14 | 嘉兴中润光学科技股份有限公司 | Eccentricity testing method |
CN114624010B (en) * | 2022-05-16 | 2022-08-23 | 嘉兴中润光学科技股份有限公司 | Eccentricity testing method |
Also Published As
Publication number | Publication date |
---|---|
JP3304556B2 (en) | 2002-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5548396A (en) | Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face | |
CN110702026A (en) | Flatness three-dimensional shape detection device based on complex beam angle adaptive optics and processing method thereof | |
JP3304556B2 (en) | Method and apparatus for measuring eccentricity of aspherical lens | |
JP2771546B2 (en) | Hole inner surface measuring device | |
JP6737879B2 (en) | Device with a sensor and method for performing a target measurement | |
JPH0996589A (en) | Method and apparatus for measuring performance of lens | |
JP2693791B2 (en) | Defect inspection equipment | |
US6744510B2 (en) | Ellipsometer and precision auto-alignment method for incident angle of the ellipsometer without auxiliary equipment | |
JP5307528B2 (en) | Measuring method and measuring device | |
JPH05203429A (en) | Eccentricity measuring method | |
JPH06194261A (en) | Method and apparatus for measuring outer diameter deflection of aspherical lens | |
JP2005274510A (en) | Apparatus and method for measuring eccentricity | |
JP3304571B2 (en) | Method and apparatus for measuring eccentricity of aspherical lens | |
JP2020060480A (en) | Eccentricity measuring method | |
JP2000121340A (en) | Face inclination angle measuring apparatus | |
JPH1194700A (en) | Measuring device and method for lens | |
JP7470521B2 (en) | Parameter acquisition device and parameter acquisition method | |
JP5317619B2 (en) | Eccentricity measurement method | |
JPH11211611A (en) | Eccentricity measuring apparatus | |
JPH05215636A (en) | Method for measuring eccentricity of aspherical lens | |
JP3237022B2 (en) | Projection exposure equipment | |
JP2003227713A (en) | Three-dimensional shape measuring apparatus and its error calibration method | |
TWI546884B (en) | Method for determining the position of an axis of rotation | |
JPH0755634A (en) | Method and device for measuring eccentricity of aspherical lens | |
JPH1137738A (en) | Device for measuring shape and eccentricity of aspherical lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |