JP2005274510A - Apparatus and method for measuring eccentricity - Google Patents

Apparatus and method for measuring eccentricity Download PDF

Info

Publication number
JP2005274510A
JP2005274510A JP2004091712A JP2004091712A JP2005274510A JP 2005274510 A JP2005274510 A JP 2005274510A JP 2004091712 A JP2004091712 A JP 2004091712A JP 2004091712 A JP2004091712 A JP 2004091712A JP 2005274510 A JP2005274510 A JP 2005274510A
Authority
JP
Japan
Prior art keywords
eccentricity
lens barrel
lens
amount
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004091712A
Other languages
Japanese (ja)
Inventor
Takehiko Koike
毅彦 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004091712A priority Critical patent/JP2005274510A/en
Publication of JP2005274510A publication Critical patent/JP2005274510A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a tilt of outer diameter of a body tube in an optical system to be tested, in order to carry out a speedy and precise eccentricity measurement using a measured result as a reference axis, even when it is difficult to hold the body tube in the optical system to be tested, while preventing it from tilting. <P>SOLUTION: An apparatus for measuring eccentricity is equipped with a holding member 2 which holds the body tube 1a in the optical system to be tested 1; a rotating/driving means 3 which rotates the holding member 2; a rotation angle detecting means 4 which reads out the rotational angle position of the holding member 2; an eccentricity measuring means 5 which measures the amount of eccentricity of the optical system to be tested 1; and a body tube fluctuation measuring means 6, which is arranged at a position perpendicular to the optical axis of the optical system in the eccentricity measuring means 5 and measures the amount of fluctuation of the body tube 1a in the optical system to be tested 1, with a timing, when the holding member 2 is rotated by the rotating/driving means 3. The eccentricity measuring means 5 measures the amount of eccentricity of the optical system to be tested 1, while carrying out corrections, based on the degree of the angle between the center axis 3a of a spindle 3 and the center axis of the body tube 1a calculated from the amount of fluctuation of the body tube 1a measured by the body tube fluctuation measuring means 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検レンズ系の偏心量を測定する偏心測定装置及び偏心測定方法に関する。   The present invention relates to an eccentricity measuring apparatus and an eccentricity measuring method for measuring the amount of eccentricity of a lens system to be measured.

図6は、特許文献1に開示された従来の偏心測定装置を示す。この偏心測定装置は、被検レンズ系105の偏心を測定するレンズ偏心測定機100を備えている。   FIG. 6 shows a conventional eccentricity measuring device disclosed in Patent Document 1. As shown in FIG. The decentration measuring apparatus includes a lens decentering measuring machine 100 that measures the decentering of the lens system 105 to be tested.

レンズ偏心測定機100は、ランダム偏光レーザを発振するレーザ発振器101と、ビームスブリッタ102と、第1結像レンズ103と、第2結像レンズ104と、第3結像レンズ108と、2次元点像位置検出センサ109とを具備している。レーザ発振器101から出射する平行ビーム状のレーザ光の光軸は、被検レンズ系105の基準軸106に一致しており、ビームスプリッタ102、第1結像レンズ103及び第2結像レンズ104は、この光軸上に配置される。   The lens eccentricity measuring apparatus 100 includes a laser oscillator 101 that oscillates a randomly polarized laser, a beam splitter 102, a first imaging lens 103, a second imaging lens 104, a third imaging lens 108, and a two-dimensional point. And an image position detection sensor 109. The optical axis of the parallel beam-shaped laser beam emitted from the laser oscillator 101 coincides with the reference axis 106 of the lens system 105 to be tested. The beam splitter 102, the first imaging lens 103, and the second imaging lens 104 are Are arranged on this optical axis.

レーザ発振器101から出射するレーザ光は、ビームスプリッタ102を通過し、第1結像レンズ103によって収束されて点光源状の照準光源107となる。この照準光源107から発せられる光は、第2結像レンズ104によって収束され、被検レンズ系105に入射する。このような構造では、レーザ発振器101、ビームスプリッタ102、第1結像レンズ103及び第2結像レンズ104により、照準光線107の光を被検レンズ系105に向けて投影する投光光学系が構成される。   The laser light emitted from the laser oscillator 101 passes through the beam splitter 102 and is converged by the first imaging lens 103 to be a point light source aiming light source 107. The light emitted from the aiming light source 107 is converged by the second imaging lens 104 and enters the lens system 105 to be measured. In such a structure, the light projecting optical system that projects the light of the aiming light beam 107 toward the lens system 105 by the laser oscillator 101, the beam splitter 102, the first imaging lens 103, and the second imaging lens 104 is provided. Composed.

被検レンズ系105内の特定の被測定面においてオートコリメーション状態で反射した光は、第2結像レンズ104及び第1結像レンズ103を通ってビームスプリッタ102により反射される。この反射光は、第3結像レンズ108により収束されて2次元点像位置検出センサ109上に入射する。その結果、照準光源107の点像が2次元点像位置検出センサ109上に結像する。   The light reflected in the autocollimation state on a specific measurement surface in the test lens system 105 is reflected by the beam splitter 102 through the second imaging lens 104 and the first imaging lens 103. The reflected light is converged by the third imaging lens 108 and is incident on the two-dimensional point image position detection sensor 109. As a result, a point image of the aiming light source 107 is formed on the two-dimensional point image position detection sensor 109.

この偏心測定機100では、基準軸106を回転軸として被検レンズ系105を回転させた場合に、被検レンズ系105の回転に連動して描く円の軌跡を2次元点像位置検出センサ109により取込み、図示しない信号処理回路により被検レンズ系105の偏心量を検出するものである。
特開平4−289426号公報
In this eccentricity measuring apparatus 100, when the test lens system 105 is rotated about the reference axis 106 as a rotation axis, the locus of a circle drawn in conjunction with the rotation of the test lens system 105 is represented by the two-dimensional point image position detection sensor 109. And the amount of decentration of the lens system 105 to be detected is detected by a signal processing circuit (not shown).
JP-A-4-289426

従来の偏心測定装置では、被検レンズ系105の保持部材の構造や被検レンズ系105の鏡筒の構造などにより、被検レンズ系105の基準軸と回転軸とを一致させることが困難である場合が多く、保持された被検レンズ系105の鏡筒の傾きが偏心測定結果に影響を及ぼす問題を有している。   In the conventional decentration measuring apparatus, it is difficult to make the reference axis and the rotation axis of the lens system 105 to coincide with each other due to the structure of the holding member of the lens system 105 and the structure of the lens barrel of the lens system 105. In many cases, there is a problem that the tilt of the lens barrel of the held lens system 105 has an influence on the eccentricity measurement result.

本発明は、このような従来技術の問題点を考慮してなされたものであり、被検レンズ系の鏡筒の構造などにより、鏡筒を傾くことなく保持部材により保持することが困難な場合でも、被検レンズ系の鏡筒の外径の傾きを測定し、これを基準軸として速やかで高精度な偏心測定が可能な偏心測定装置及び偏心測定方法を提供することを目的とする。   The present invention has been made in consideration of such problems of the prior art, and it is difficult to hold the lens barrel by the holding member without tilting due to the structure of the lens barrel of the lens system to be tested. However, it is an object of the present invention to provide an eccentricity measuring apparatus and an eccentricity measuring method capable of measuring the inclination of the outer diameter of the lens barrel of the lens system to be tested and using this as a reference axis for quick and highly accurate eccentricity measurement.

上記目的を達成するため、請求項1の発明の偏心測定装置は、被検レンズ系の鏡筒を保持する保持部材と、保持部材を回転させる回転駆動手段と、保持部材の回転角度位置を読み取る回転角度検出手段と、前記被検レンズ系の偏心量を測定する偏心測定手段と、該偏心測定手段における光学系の光軸と直交した位置に配置されており、前記回転駆動手段によって保持部材を回転させたときの被検レンズ系の鏡筒の振れ量を測定する鏡筒振れ測定手段とを備え、前記偏心測定手段は、前記鏡筒振れ測定手段が測定した鏡筒の傾きにより算出される鏡筒の中心軸を基準軸として被検レンズ系の偏心量を測定することを特徴とする。 In order to achieve the above object, an eccentricity measuring apparatus according to a first aspect of the present invention reads a holding member that holds a lens barrel of a lens system to be examined, a rotation driving means that rotates the holding member, and a rotation angle position of the holding member. A rotation angle detecting means, an eccentricity measuring means for measuring the amount of eccentricity of the lens system to be examined, and a position perpendicular to the optical axis of the optical system in the eccentricity measuring means; A lens barrel shake measuring means for measuring the lens barrel shake amount when the lens system is rotated, and the eccentricity measuring means is calculated by the tilt of the lens barrel measured by the lens barrel shake measuring means. The decentering amount of the lens system to be measured is measured using the central axis of the lens barrel as a reference axis.

請求項1の発明では、被検レンズ系が回転駆動手段の駆動により回転したときの鏡筒の振れ量を鏡筒振れ測定手段が測定する。この振れ量に基づいて鏡筒の中心軸の傾きを算出し、算出した中心軸を基準軸として被検レンズ系の偏心量を測定するため、被検レンズ系が傾くことに起因した鏡筒の回転軸と中心軸との乖離が偏心量に及ぼす影響をなくすことができる。このため、高精度に測定することができる。また、中心軸の傾きを計算によって補正するため、機械的な修正が不要となり、測定を迅速に行うことができる。   In the first aspect of the invention, the lens barrel shake measuring means measures the shake amount of the lens barrel when the lens system to be tested is rotated by the drive of the rotation driving means. The inclination of the central axis of the lens barrel is calculated based on the shake amount, and the eccentric amount of the test lens system is measured using the calculated central axis as a reference axis. The influence of the deviation between the rotation axis and the central axis on the amount of eccentricity can be eliminated. For this reason, it can measure with high precision. Further, since the inclination of the central axis is corrected by calculation, no mechanical correction is required, and measurement can be performed quickly.

請求項2の発明は、請求項1記載の偏心測定装置であって、前記鏡筒振れ測定手段は、被検レンズ系の鏡筒と非接触状態となるように配置されていることを特徴とする。   The invention according to claim 2 is the eccentricity measuring apparatus according to claim 1, wherein the lens barrel shake measuring means is arranged so as to be in a non-contact state with the lens barrel of the lens system to be measured. To do.

請求項2の発明では、鏡筒振れ測定手段が被検レンズ系の鏡筒と非接触状態となっているため、振れ量の測定時に鏡筒と接触することがなく、接触に起因した鏡筒の位置ずれがなく、測定を円滑且つ容易に行うことができる。   In the invention of claim 2, since the lens barrel shake measuring means is in a non-contact state with the lens barrel of the lens system to be measured, the lens barrel caused by the contact does not come into contact with the lens barrel when measuring the shake amount. Therefore, measurement can be performed smoothly and easily.

請求項3の発明の偏心測定方法は、被検レンズ系の偏心量を測定する偏心測定手段の光学系の光軸と直交するように鏡筒振れ測定手段を配置し、被検レンズ系を回転させたときの被検レンズ系の鏡筒の振れ量を前記鏡筒振れ測定手段によって検出することにより鏡筒の中心軸の傾きを算出し、算出した鏡筒の中心軸を基準軸として被検レンズ系の偏心量を測定することを特徴とする。   According to a third aspect of the present invention, there is provided an eccentricity measuring method in which a lens barrel shake measuring means is arranged so as to be orthogonal to the optical axis of the optical system of the eccentricity measuring means for measuring the amount of eccentricity of the subject lens system, and the subject lens system is rotated The inclination of the central axis of the lens barrel is calculated by detecting the shake amount of the lens barrel of the lens system to be detected by the lens barrel shake measuring means, and the test is performed using the calculated central axis of the lens barrel as a reference axis. The decentering amount of the lens system is measured.

請求項3の発明では、鏡筒振れ測定手段が測定した鏡筒の振れ量に基づいて鏡筒の中心軸の傾きを算出し、算出した中心軸を基準軸として被検レンズ系の偏心量を測定するため、被検レンズ系が傾くことに起因した鏡筒の回転軸と中心軸との乖離が偏心量に及ぼす影響をなくすことができ、高精度に測定することができる。しかも、中心軸の傾きを計算によって補正するため、機械的な修正が不要となり、測定を迅速に行うことができる。   According to the third aspect of the present invention, the inclination of the central axis of the lens barrel is calculated based on the lens barrel shake amount measured by the lens barrel shake measuring means, and the amount of eccentricity of the test lens system is calculated using the calculated center axis as a reference axis. Since the measurement is performed, the influence of the deviation between the rotation axis of the lens barrel and the central axis due to the tilt of the lens system to be examined on the eccentricity can be eliminated, and the measurement can be performed with high accuracy. In addition, since the inclination of the central axis is corrected by calculation, no mechanical correction is required and measurement can be performed quickly.

請求項4の発明は、請求項3記載の偏心測定方法であって、前記鏡筒振れ測定手段は、被検レンズ系と非接触状態で鏡筒の振れ量を測定することを特徴とする。   A fourth aspect of the present invention is the eccentricity measuring method according to the third aspect, wherein the lens barrel shake measuring means measures the amount of shake of the lens barrel in a non-contact state with the lens system to be measured.

請求項4の発明では、鏡筒振れ測定手段が被検レンズ系の鏡筒と非接触の状態で振れ量を測定するため、鏡筒と接触することがなく、接触に起因した鏡筒の位置ずれがなく、測定を円滑且つ容易に行うことができる。   In the invention of claim 4, since the lens barrel shake measuring means measures the shake amount in a non-contact state with the lens barrel of the lens system to be examined, the lens barrel position caused by the contact does not contact the lens barrel. There is no deviation, and the measurement can be performed smoothly and easily.

本発明の偏心測定装置によれば、鏡筒振れ測定手段が測定した被検レンズ系の振れ量に基づいて鏡筒の中心軸の傾きを算出し、算出した中心軸を基準軸として偏心測定手段が被検レンズ系の偏心量を測定するため、鏡筒の回転軸と中心軸との乖離が偏心量に及ぼす影響をなくすことができ、高精度且つ迅速に偏心量を測定することができる。従って、交換した保持部材の中心軸を回転軸に対して合致させるために同軸加工等を行う必要がなく、レンズ系の鏡筒の構造などによりレンズ系の鏡筒を傾きなく保持部材で保持することが困難な場合でも迅速に偏心量を測定することができる。   According to the eccentricity measuring apparatus of the present invention, the inclination of the central axis of the lens barrel is calculated based on the amount of shake of the lens system measured by the lens barrel measuring means, and the eccentricity measuring means is based on the calculated central axis as a reference axis. However, since the amount of eccentricity of the lens system to be measured is measured, the influence of the deviation between the rotation axis of the lens barrel and the central axis on the amount of eccentricity can be eliminated, and the amount of eccentricity can be measured with high accuracy and speed. Accordingly, it is not necessary to perform coaxial processing or the like in order to make the center axis of the replaced holding member coincide with the rotation axis, and the lens barrel is held by the holding member without tilting due to the structure of the lens barrel. Even when this is difficult, the amount of eccentricity can be measured quickly.

本発明の偏心測定方法によれば、保持部材の中心軸を回転軸に対して同軸加工などにより合致させる必要がなく、レンズ系の鏡筒の構造などによりレンズ系の鏡筒を傾きなく保持部材で保持することが困難な場合でも、レンズ系の鏡筒の外径の傾きを測定して速やかで高精度な偏心測定が可能となる。   According to the eccentricity measuring method of the present invention, there is no need to match the central axis of the holding member to the rotation axis by coaxial processing or the like, and the lens barrel can be held without tilting by the structure of the lens barrel. Even when it is difficult to hold the lens, it is possible to measure the inclination of the outer diameter of the lens barrel of the lens system and to perform the eccentric measurement quickly and with high accuracy.

以下、図面を参照して本発明の実施の形態を説明する。なお、各実施の形態において、同一の部材には同一の符号を付して対応させてある。   Embodiments of the present invention will be described below with reference to the drawings. In each embodiment, the same members are assigned the same reference numerals.

(実施の形態1)
図1〜図4は、本発明の実施の形態1を示し、図1は全体構成の斜視図、図2はその断面図、図3及び図4は、偏心を測定する手順を示す説明図である。
(Embodiment 1)
1 to 4 show a first embodiment of the present invention, FIG. 1 is a perspective view of the overall configuration, FIG. 2 is a cross-sectional view thereof, and FIGS. 3 and 4 are explanatory diagrams showing procedures for measuring eccentricity. is there.

この実施の形態の偏心測定装置は、被検レンズ系1の鏡筒1aを保持する保持部材としてのホルダ2と、ホルダ2を回転させる回転駆動手段としてのスピンドル3と、スピンドル3を回転させることによるホルダ2の回転角度位置を読み取る回転角度検出手段としてのエンコーダ4と、被検レンズ系1の偏心量を測定する偏心測定手段5と、スピンドル3を回転させたときの被検レンズ系1の鏡筒1aの振れ量を測定する鏡筒振れ測定手段とを有している。   The eccentricity measuring apparatus of this embodiment rotates a spindle 3 as a holder 2 as a holding member for holding the lens barrel 1a of the lens system 1 to be tested, a spindle 3 as a rotation driving means for rotating the holder 2, and the spindle 3. The encoder 4 as a rotation angle detecting means for reading the rotation angle position of the holder 2, the eccentricity measuring means 5 for measuring the amount of eccentricity of the lens system 1 to be tested, and the lens system 1 to be tested when the spindle 3 is rotated. A lens barrel shake measuring means for measuring the amount of shake of the lens barrel 1a is provided.

偏心測定手段5は、被検レンズ系1の光軸方向の上方に配置されている。また、鏡筒振れ測定手段は偏心測定手段5の光学系(図2参照)の光軸と直交した位置に配置された高性能のCCDカメラ6及び光源7を備えており、CCDカメラ6と光源7は対向した位置となっている。CCDカメラ6は、結像倍率β、画素サイズpが既知となっており、CCDカメラ6に対しては、光源7により被検レンズ系1を照射するようになっている。   The decentration measuring means 5 is disposed above the lens system 1 in the optical axis direction. The lens barrel shake measuring means includes a high-performance CCD camera 6 and a light source 7 disposed at a position orthogonal to the optical axis of the optical system (see FIG. 2) of the eccentricity measuring means 5, and the CCD camera 6 and the light source. 7 is a facing position. The CCD camera 6 has a known imaging magnification β and pixel size p, and the CCD camera 6 is irradiated with the light source 7 to the lens system 1 to be examined.

偏心測定手段5は、図2に示すように、測定用光源20を備え、測定用光源20によって照射されたターゲット21の像を採光レンズ22に入射し、さらにハーフプリズム23に入射する。そして、ハーフプリズム23で反射した光を被検レンズ系1の任意の被検面で反射させ、結像したターゲット像位置に偏心測定手段5の物点位置を合わせるように偏心測定手段5を上下させる。被検レンズ系1の任意の被検面で反射した光は再びハーフプリズム23に入射して結像レンズ系24を通り結像する。結像したターゲット像は拡大レンズ25により拡大される。拡大レンズ25からの射出光は拡大像の中心位置を検出するための光位置検出素子26上に集光される。   As shown in FIG. 2, the eccentricity measuring means 5 includes a measurement light source 20, and the image of the target 21 irradiated by the measurement light source 20 enters the daylighting lens 22 and further enters the half prism 23. Then, the light reflected by the half prism 23 is reflected by an arbitrary test surface of the test lens system 1, and the decentering measurement means 5 is moved up and down so that the object point position of the decentering measurement means 5 is aligned with the imaged target image position. Let The light reflected by an arbitrary test surface of the test lens system 1 enters the half prism 23 again and forms an image through the imaging lens system 24. The formed target image is magnified by the magnifying lens 25. The light emitted from the magnifying lens 25 is condensed on the light position detecting element 26 for detecting the center position of the magnified image.

次に、実施の形態の偏心測定装置による偏心の測定を説明する。被検レンズ系1を交換した際には、図1の矢印Gで示すように、スピンドル3の回転軸3a回りにホルダ2を回転しながら、エンコーダ4でホルダ2の回転角度θを読み取り、CCDカメラ6によりCCDカメラ端から鏡筒1aまでの距離Lを測定する。図3は、このときのCCDカメラ6の画像を示す。距離Lと回転角度θとの間には、数1で示す式が成立する(図4参照)。   Next, the measurement of the eccentricity by the eccentricity measuring apparatus of the embodiment will be described. When the test lens system 1 is replaced, as shown by an arrow G in FIG. 1, the rotation angle θ of the holder 2 is read by the encoder 4 while rotating the holder 2 around the rotation axis 3a of the spindle 3, and the CCD The distance L from the CCD camera end to the lens barrel 1a is measured by the camera 6. FIG. 3 shows an image of the CCD camera 6 at this time. Between the distance L and the rotation angle θ, the equation shown in Equation 1 is established (see FIG. 4).

Figure 2005274510
Figure 2005274510

上記式を図4を用いて説明する。図4は鏡筒1aを上側から見た図である。27はCCDカメラ6のカメラ端である。28はスピンドル3を回転したときの鏡筒1aの端面が描く軌跡である。rはスピンドル3を回転したときの鏡筒1aが描く軌跡の半径、θはスピンドル3によって回転されるホルダ2の回転角度θが0°のときの鏡筒1aの端面のX軸に対する角度である。aは大きさ(半径)r、傾きθのベクトルのX方向成分、bは大きさ(半径)r、傾きθのベクトルY方向成分である。cはCCDカメラ端27から鏡筒1aの回転中心までの距離である。θ、Lを少なくとも3点以上で測定した後、数学的手段を用いてa,b,cを算出する。これにより、rとθは数2の式及び数3の式のように導き出される。 The above equation will be described with reference to FIG. FIG. 4 is a view of the lens barrel 1a as viewed from above. Reference numeral 27 denotes a camera end of the CCD camera 6. Reference numeral 28 denotes a locus drawn by the end surface of the lens barrel 1a when the spindle 3 is rotated. r is the radius of the trajectory barrel 1a when the rotation of the spindle 3 is drawn, theta 0 is at an angle with respect to the X-axis of the end surface of the lens barrel 1a when the rotation angle theta of the holder 2 which is rotated by the spindle 3 is 0 ° is there. a is the X direction component of the vector of magnitude (radius) r and slope θ 0 , and b is the vector Y direction component of magnitude (radius) r and slope θ 0 . c is the distance from the CCD camera end 27 to the center of rotation of the lens barrel 1a. After measuring θ and L at at least three points, a, b, and c are calculated using mathematical means. As a result, r and θ 0 are derived as in Equation 2 and Equation 3.

Figure 2005274510
Figure 2005274510

Figure 2005274510
Figure 2005274510

上記手順により、r及びθを高さが異なった任意の鏡筒位置P1、P2で算出する。この操作により算出されたr、θをそれぞれP1(r,θ01)、P2(r,θ02)とする。 By the above procedure, r and θ 0 are calculated at arbitrary lens barrel positions P1 and P2 having different heights. Let r and θ 0 calculated by this operation be P1 (r 1 , θ 01 ) and P2 (r 2 , θ 02 ), respectively.

また測定した2点の鏡筒位置の間隔Dは、鏡筒位置P1及びP2の間のCCDカメラ6上での画素間隔をd、CCDカメラ6の画素サイズをp、結像倍率をβとすると、(d×p)/βで表される。さらに、被検レンズ系1の最上部とPlの間隔Dは、CCDカメラ6上での画素間隔をdとすると(d×p)/βで表される。 Also, the distance D between the two lens barrel positions measured is d, the pixel interval on the CCD camera 6 between the lens barrel positions P1 and P2, the pixel size of the CCD camera 6 is p, and the imaging magnification is β. , (D × p) / β. Further, a distance D 0 between the uppermost portion of the lens system 1 to be tested and Pl is represented by (d 0 × p) / β where the pixel distance on the CCD camera 6 is d 0 .

これにより、被検レンズ系1の鏡筒1aの中心軸がスピンドル3の中心軸3aに対してなす傾きの度合い(傾きε及び偏りδ)が数4の式及び数5の式のように計算される。   As a result, the degree of inclination (inclination ε and bias δ) formed by the central axis of the lens barrel 1a of the lens system 1 to be measured with respect to the central axis 3a of the spindle 3 is calculated as in Expressions 4 and 5. Is done.

Figure 2005274510
Figure 2005274510

Figure 2005274510
Figure 2005274510

次に、偏心測定手段5を光軸方向に調整して、被検レンズ系1の任意の被検面で反射したターゲット像が光位置検出素子26上に結像するようにした後、スピンドル3を回転駆動して光位置検出素子26上のターゲット像の移動量から、任意の被検面での偏心を求める。この操作を繰り返し、被検レンズ系1の各面での偏心量を算出する。その後、鏡筒1aの傾き軸Aが基準軸となるように、算出された被検レンズ系1の各面の偏心量に対して補正を行う。   Next, after adjusting the eccentricity measuring means 5 in the optical axis direction so that the target image reflected by an arbitrary test surface of the test lens system 1 is formed on the optical position detection element 26, the spindle 3 Is driven to obtain an eccentricity on an arbitrary test surface from the amount of movement of the target image on the optical position detection element 26. This operation is repeated to calculate the amount of eccentricity on each surface of the lens system 1 to be examined. Thereafter, the calculated eccentric amount of each surface of the lens system 1 is corrected so that the tilt axis A of the lens barrel 1a becomes the reference axis.

なお、上述した式に基づく計算及び鏡筒1aの中心軸の補正は、偏心測定手段に設けた演算手段(図示省略)によって行うものである。   The calculation based on the above-described formula and the correction of the central axis of the lens barrel 1a are performed by calculation means (not shown) provided in the eccentricity measurement means.

このような実施の形態では、CCDカメラ6を用いて測定した鏡筒1aの振れ量に基づいて鏡筒1aの中心軸がスピンドル3の中心軸3aに対してなす傾きの度合いを算出する。この傾きの度合いに基づいて補正を行って被検レンズ系1の偏心量を測定するため、被検レンズ系1が傾くことに起因した鏡筒1aの中心軸とスピンドル3の中心軸3aとの乖離が偏心量に及ぼす影響をなくすことができる。このため、高精度に測定することができる。また、鏡筒1aの中心軸の傾きの度合いを計算によって補正するため、機械的な修正が不要となり、測定を迅速に行うことができる。   In such an embodiment, the degree of inclination of the central axis of the lens barrel 1 a with respect to the central axis 3 a of the spindle 3 is calculated based on the shake amount of the lens barrel 1 a measured using the CCD camera 6. In order to measure the amount of decentration of the lens system 1 to be corrected based on the degree of tilt, the center axis of the lens barrel 1a caused by the tilt of the lens system 1 and the center axis 3a of the spindle 3 are measured. The influence of the deviation on the amount of eccentricity can be eliminated. For this reason, it can measure with high precision. In addition, since the degree of inclination of the central axis of the lens barrel 1a is corrected by calculation, no mechanical correction is required and measurement can be performed quickly.

また、この実施の形態では、被検レンズ系1の鏡筒1aの傾きの測定をCCDカメラ6及び光源7を用いて非接触で行うため、測定の際に被検レンズ系1の鏡筒1aに接触することがなく、鏡筒1aの位置がずれる問題が生じない。また、CCDカメラ6及び光源7は、偏心測定手段5での偏心測定に影響を及ぼさない位置に設置できる。このため、機械的干渉の心配がなく、偏心測定の際にCCDカメラ6及び光源7を待避させる必要が生じない。   In this embodiment, since the tilt of the lens barrel 1a of the lens system 1 to be tested is measured in a non-contact manner using the CCD camera 6 and the light source 7, the lens barrel 1a of the lens system 1 to be tested is measured. There is no problem that the position of the lens barrel 1a is shifted. Further, the CCD camera 6 and the light source 7 can be installed at positions that do not affect the eccentricity measurement by the eccentricity measuring means 5. For this reason, there is no worry of mechanical interference, and there is no need to retract the CCD camera 6 and the light source 7 during the eccentricity measurement.

(実施の形態2)
図5は、本発明の実施の形態2を示し、被検レンズ系1の保持部材として図1のホルダ2に代えて把持治具30を用いるものである。
(Embodiment 2)
FIG. 5 shows a second embodiment of the present invention, in which a gripping jig 30 is used as a holding member of the lens system 1 to be tested instead of the holder 2 of FIG.

把持治具30は、ホルダ2と同様に図1に示すスピンドル3上に配置されるものである。この把持治具30は、被検レンズ系1を把持解放する方向へ移動可能な一対のスライドテーブル33と、各スライドテーブル33上に設けられた一対の移動部材32と、各移動部材32上に対向するように設けられ、被検レンズ系1の鏡筒1aの把持解放を行う一対の把持部材31とを備えている。   The holding jig 30 is arranged on the spindle 3 shown in FIG. The gripping jig 30 includes a pair of slide tables 33 that can move in a direction for gripping and releasing the lens system 1 to be tested, a pair of moving members 32 provided on the slide tables 33, and a moving member 32. A pair of gripping members 31 are provided so as to face each other and perform gripping and releasing of the lens barrel 1a of the lens system 1 to be examined.

把持部材31における被検レンズ系1の鏡筒1aと接触する端面には、V溝加工が施されており、これにより、被検レンズ系1の種類によって鏡筒1aの径が異なる場合でも安定して把持することが可能となっている。   The end surface of the gripping member 31 that contacts the lens barrel 1a of the lens system 1 to be tested is V-grooved so that the lens barrel 1a is stable even when the diameter of the lens barrel 1a varies depending on the type of the lens system 1 to be tested. And can be gripped.

一対の移動部材32には、連結部材34が係合状態で連結されている。連結部材34は、横長の板状となって一対の移動部材32を掛け渡す方向に延びていると共に、各移動部材34にピン34aが挿入されることにより移動部材32と係合している。この連結部材34は、被検レンズ系1の中心付近を回転中心として回転可能となっている。   A connecting member 34 is connected to the pair of moving members 32 in an engaged state. The connecting member 34 is in the shape of a horizontally long plate and extends in a direction in which the pair of moving members 32 are spanned. The connecting members 34 are engaged with the moving members 32 by inserting pins 34 a into the respective moving members 34. The connecting member 34 is rotatable around the center of the lens system 1 to be tested.

さらに、連結部材34の一端側には、フックピン34bが立設しており、このフックピン34bに圧縮コイルばねからなる弾性部材36の一端が係止されている。弾性部材36の他端は、固定側となるスピンドル3に設けられたフックポスト35に係止されている。弾性部材36は、一対の移動部材32が回転部材34を介して被検レンズ系1の鏡筒1aを把持する方向に移動するように付勢するものである。   Further, a hook pin 34b is erected on one end side of the connecting member 34, and one end of an elastic member 36 made of a compression coil spring is locked to the hook pin 34b. The other end of the elastic member 36 is locked to a hook post 35 provided on the spindle 3 on the fixed side. The elastic member 36 urges the pair of moving members 32 to move in the direction of gripping the lens barrel 1 a of the lens system 1 to be tested via the rotating member 34.

このような実施の形態において、スライドテーブル33の上に設けられた移動部材32を解放方向に開き、解放している把持部材31の間に被検レンズ系1の鏡筒1aを挿入する。次に、被検レンズ系1の鏡筒を把持する方向へ移動部材32を移動する。これと共に、弾性部材36からの収縮方向の付勢力によって回転部材34が回転し移動部材32を被検レンズ系1を把持する方向に移動させる。これにより、把持部材31による鏡筒1aの把持状態を保持することができる。   In such an embodiment, the moving member 32 provided on the slide table 33 is opened in the releasing direction, and the lens barrel 1a of the lens system 1 to be tested is inserted between the released gripping members 31. Next, the moving member 32 is moved in a direction in which the lens barrel of the lens system 1 to be tested is gripped. At the same time, the rotating member 34 is rotated by the urging force from the elastic member 36 in the contracting direction, and the moving member 32 is moved in the direction in which the lens system 1 is gripped. Thereby, the holding state of the lens barrel 1a by the holding member 31 can be held.

このような実施の形態では、被検レンズ1の鏡筒1aを把持治具30で把持するため、被検レンズ系1の鏡筒1aの形状や大きさが異なる度に保持する部材を交換することが不要となり、これにより、速やかに偏心量を測定することができる。   In such an embodiment, since the lens barrel 1a of the lens 1 to be tested is gripped by the gripping jig 30, the member to be held is replaced whenever the shape and size of the lens barrel 1a of the lens system 1 to be tested are different. Thus, the amount of eccentricity can be measured quickly.

本発明の実施の形態1における偏心測定装置の斜視図である。It is a perspective view of the eccentricity measuring apparatus in Embodiment 1 of this invention. 実施の形態1の偏心測定装置の断面図である。2 is a cross-sectional view of the eccentricity measuring apparatus according to Embodiment 1. FIG. 偏心測定を説明する側面図である。It is a side view explaining eccentricity measurement. 偏心測定を説明する平面図である。It is a top view explaining eccentricity measurement. 実施の形態2における保持部材の斜視図である。FIG. 10 is a perspective view of a holding member in a second embodiment. 従来の偏心測定装置の光路を示す正面図である。It is a front view which shows the optical path of the conventional eccentricity measuring apparatus.

符号の説明Explanation of symbols

1 被検レンズ系
1a 鏡筒
2 ホルダ
3 スピンドル
3a 回転軸
4 エンコーダ
5 偏心測定手段
6 CCDカメラ
7 光源
DESCRIPTION OF SYMBOLS 1 Lens system 1a Lens barrel 2 Holder 3 Spindle 3a Rotating shaft 4 Encoder 5 Eccentricity measuring means 6 CCD camera 7 Light source

Claims (4)

被検レンズ系の鏡筒を保持する保持部材と、保持部材を回転させる回転駆動手段と、保持部材の回転角度位置を読み取る回転角度検出手段と、前記被検レンズ系の偏心量を測定する偏心測定手段と、該偏心測定手段における光学系の光軸と直交した位置に配置されており、前記回転駆動手段によって保持部材を回転させたときの被検レンズ系の鏡筒の振れ量を測定する鏡筒振れ測定手段とを備え、前記偏心測定手段は、前記鏡筒振れ測定手段が測定した鏡筒の傾きにより算出される鏡筒の中心軸を基準軸として被検レンズ系の偏心量を測定することを特徴とする偏心測定装置。   A holding member for holding the lens barrel of the lens system to be tested, a rotation driving means for rotating the holding member, a rotation angle detecting means for reading the rotation angle position of the holding member, and an eccentricity for measuring the amount of eccentricity of the lens system to be examined A measuring unit is disposed at a position orthogonal to the optical axis of the optical system in the decentering measuring unit, and measures the shake amount of the lens barrel of the lens system to be measured when the holding member is rotated by the rotation driving unit. A lens barrel shake measuring means, and the eccentricity measuring means measures the amount of eccentricity of the lens system to be measured with the central axis of the lens barrel calculated by the tilt of the lens barrel measured by the lens barrel shake measuring means as a reference axis. An eccentricity measuring device. 前記鏡筒振れ測定手段は、被検レンズ系の鏡筒と非接触状態となるように配置されていることを特徴とする請求項1記載の偏心測定装置。   2. The eccentricity measuring apparatus according to claim 1, wherein the lens barrel shake measuring means is arranged so as to be in a non-contact state with the lens barrel of the lens system to be examined. 被検レンズ系の偏心量を測定する偏心測定手段の光学系の光軸と直交するように鏡筒振れ測定手段を配置し、被検レンズ系を回転させたときの被検レンズ系の鏡筒の振れ量を前記鏡筒振れ測定手段によって検出することにより鏡筒の中心軸の傾きを算出し、算出した鏡筒の中心軸を基準軸として被検レンズ系の偏心量を測定することを特徴とする偏心測定方法。   A lens barrel of the test lens system when the lens barrel shake measuring means is arranged so as to be orthogonal to the optical axis of the optical system of the decentration measuring means for measuring the amount of eccentricity of the test lens system, and the test lens system is rotated. The inclination of the central axis of the lens barrel is calculated by detecting the amount of camera shake by the lens barrel shake measuring means, and the amount of eccentricity of the lens system to be measured is measured using the calculated center axis of the lens barrel as a reference axis. Eccentricity measuring method. 前記鏡筒振れ測定手段は、被検レンズ系と非接触状態で鏡筒の振れ量を測定することを特徴とする請求項3記載の偏心測定方法。   4. The method of measuring eccentricity according to claim 3, wherein the lens barrel shake measuring means measures the amount of shake of the lens barrel in a non-contact state with the lens system to be examined.
JP2004091712A 2004-03-26 2004-03-26 Apparatus and method for measuring eccentricity Withdrawn JP2005274510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091712A JP2005274510A (en) 2004-03-26 2004-03-26 Apparatus and method for measuring eccentricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091712A JP2005274510A (en) 2004-03-26 2004-03-26 Apparatus and method for measuring eccentricity

Publications (1)

Publication Number Publication Date
JP2005274510A true JP2005274510A (en) 2005-10-06

Family

ID=35174326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091712A Withdrawn JP2005274510A (en) 2004-03-26 2004-03-26 Apparatus and method for measuring eccentricity

Country Status (1)

Country Link
JP (1) JP2005274510A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090845A1 (en) 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Multi primary color display device
JP2010019559A (en) * 2008-07-08 2010-01-28 J-Net:Kk Measurement device
JP2017001155A (en) * 2015-06-12 2017-01-05 オリンパス株式会社 Workpiece holding mechanism, machining device, and workpiece machining method
CN107345849A (en) * 2017-08-25 2017-11-14 镇江金海创科技有限公司 Eyeglass detects and calibration tool and method
CN112815850A (en) * 2021-02-26 2021-05-18 中国工程物理研究院机械制造工艺研究所 Cylinder pose measuring method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090845A1 (en) 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha Multi primary color display device
JP2010019559A (en) * 2008-07-08 2010-01-28 J-Net:Kk Measurement device
JP2017001155A (en) * 2015-06-12 2017-01-05 オリンパス株式会社 Workpiece holding mechanism, machining device, and workpiece machining method
CN107345849A (en) * 2017-08-25 2017-11-14 镇江金海创科技有限公司 Eyeglass detects and calibration tool and method
CN107345849B (en) * 2017-08-25 2023-08-18 江苏金海创科技有限公司 Lens detection and calibration tool and method
CN112815850A (en) * 2021-02-26 2021-05-18 中国工程物理研究院机械制造工艺研究所 Cylinder pose measuring method and device

Similar Documents

Publication Publication Date Title
JP4774332B2 (en) Eccentricity measurement method
JP2019049524A5 (en)
CN101387502A (en) Synthesis measuring method for roundness of external circle, axiality of inner hole and external circle and verticality of end plane for shaft sleeve parts
JP5951793B2 (en) Image sensor position detector
JP4751156B2 (en) Autocollimator and angle measuring device using the same
TWI396837B (en) Method for determination of eccentricity
JP2005274510A (en) Apparatus and method for measuring eccentricity
JP6155924B2 (en) Dimension measuring apparatus and dimension measuring method
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP4718208B2 (en) Eccentricity measurement method
JPH06258182A (en) Method and apparatus for measuring eccentricity of aspherical lens
JP4190044B2 (en) Eccentricity measuring device
JPH1068674A (en) Measuring device of lens system and mtf measuring method of lens system
JP2006208175A (en) Eccentricity measuring method and eccentricity measuring device
JP5010964B2 (en) Angle measuring method and apparatus
TWM583937U (en) Detection module
JP2004286533A (en) Height measuring method and its apparatus
JPH11108793A (en) Lens eccentricity measuring method and lens eccentricity measuring device
WO2021187192A1 (en) Inner surface shape measurement apparatus, and alignment method for inner surface shape measurement apparatus
JP5380889B2 (en) Refractive index measuring method, dispersion measuring method, refractive index measuring device, and dispersion measuring device
JP2735106B2 (en) Aspherical lens eccentricity measuring device
JP2011143509A (en) Device and method for centering, and machine and method for centering
JP3340199B2 (en) Aspherical lens eccentricity measuring device
JP2008036713A (en) Clamping mechanism and measuring device
JPH0812126B2 (en) Aspherical lens eccentricity measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605