JP4718208B2 - Eccentricity measurement method - Google Patents

Eccentricity measurement method Download PDF

Info

Publication number
JP4718208B2
JP4718208B2 JP2005057072A JP2005057072A JP4718208B2 JP 4718208 B2 JP4718208 B2 JP 4718208B2 JP 2005057072 A JP2005057072 A JP 2005057072A JP 2005057072 A JP2005057072 A JP 2005057072A JP 4718208 B2 JP4718208 B2 JP 4718208B2
Authority
JP
Japan
Prior art keywords
lens
axis
test
optical axis
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005057072A
Other languages
Japanese (ja)
Other versions
JP2006242680A (en
Inventor
克巳 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005057072A priority Critical patent/JP4718208B2/en
Publication of JP2006242680A publication Critical patent/JP2006242680A/en
Application granted granted Critical
Publication of JP4718208B2 publication Critical patent/JP4718208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、レンズの光軸に対するレンズの外周面の中心軸の横ずれ量を測定する偏心測定方法に関する。 The present invention relates to an eccentric measuring Sadakata method for measuring the lateral deviation amount of the center axis of the outer peripheral surface of the lens with respect to the optical axis of the lens.

球面レンズなどのレンズを製造する際には、研磨、心取りが行われるが、厳密にはレンズの光軸(レンズ両面の曲率中心を結ぶ軸)と、レンズの外周面の中心軸とが一致することはなく、わずかながら偏心と称される横ずれを生じることが多い。レンズは、その外周面をレンズ枠に嵌合させて固定するため、光軸と外周面の中心軸との間に生じる横ずれは、そのレンズを組み込む光学系の光学性能を悪化させる大きな要因となる。このため、レンズの横ずれ量を測定し、その値が光学系の光学性能を確保する上で許容できる範囲内のものであるかを把握する必要がある。   When manufacturing a lens such as a spherical lens, polishing and centering are performed. Strictly speaking, the optical axis of the lens (the axis connecting the centers of curvature of both lens surfaces) matches the central axis of the outer peripheral surface of the lens. There is often no lateral shift, often referred to as eccentricity. Since the lens is fixed by fitting its outer peripheral surface to the lens frame, the lateral shift that occurs between the optical axis and the central axis of the outer peripheral surface is a major factor that deteriorates the optical performance of the optical system incorporating the lens. . For this reason, it is necessary to measure the amount of lateral displacement of the lens and grasp whether the value is within an allowable range for ensuring the optical performance of the optical system.

レンズの光軸に対するレンズの外周面の中心軸の横ずれ量を測定するためには、検査対象となるレンズ(以下、被検レンズとする)の光軸の傾きを除去し、被検レンズの光軸と被検レンズの回転軸とを一致させて、被検レンズの外周面の変位を読み取る方法が知られている。ここで、この方法では、最初に被検レンズの光軸と回転軸とを正確に一致させる必要がある。被検レンズの光軸と回転軸とを一致させる手段としては、例えば、図10に示すような偏心測定装置101がある。この偏心測定装置101は、被検レンズ102を保持するレンズホルダ103と、レンズホルダ103を回転駆動するスピンドル104と、スピンドル104の回転軸104aに対する被検レンズ102の光軸の傾きを測定する偏心測定部105とから構成されている。レンズホルダ103の中心軸は、スピンドル104の回転軸104aに対して同軸加工されており、このレンズホルダ103に被検レンズ102を支持させると、レンズホルダ103側のレンズ面102bの曲率中心は、理論的には常に回転軸104aの軸上にある。そして、レンズホルダ103を回転させて、偏心測定部105によって被検レンズ102のレンズ面102aの曲率中心を観察しながら、作業者が被検レンズ102の傾きを調整し、レンズ面102aの曲率中心が回転しないように合わせる。このようにして、被検レンズ102の光軸とスピンドル104の回転軸104aとが一致させられる。   In order to measure the lateral deviation of the central axis of the outer peripheral surface of the lens with respect to the optical axis of the lens, the inclination of the optical axis of the lens to be inspected (hereinafter referred to as the test lens) is removed, and the light of the test lens There is known a method of reading the displacement of the outer peripheral surface of the lens to be examined by matching the axis with the rotation axis of the lens to be examined. Here, in this method, it is necessary to first match the optical axis of the lens to be examined with the rotation axis accurately. As a means for matching the optical axis of the lens to be examined with the rotation axis, for example, there is an eccentricity measuring apparatus 101 as shown in FIG. The eccentricity measuring apparatus 101 includes a lens holder 103 that holds the lens 102 to be tested, a spindle 104 that rotationally drives the lens holder 103, and an eccentricity that measures the inclination of the optical axis of the lens 102 to be tested with respect to the rotation axis 104 a of the spindle 104. And a measuring unit 105. The center axis of the lens holder 103 is coaxially processed with respect to the rotation axis 104a of the spindle 104. When the lens holder 103 supports the test lens 102, the center of curvature of the lens surface 102b on the lens holder 103 side is Theoretically, it is always on the axis of the rotating shaft 104a. Then, while rotating the lens holder 103 and observing the center of curvature of the lens surface 102a of the lens 102 to be tested by the eccentricity measuring unit 105, the operator adjusts the inclination of the lens 102 to be tested and the center of curvature of the lens surface 102a is adjusted. Adjust so that does not rotate. In this way, the optical axis of the test lens 102 and the rotation axis 104a of the spindle 104 are matched.

また、従来の偏心測定装置の他の構成を図11に示す。この偏心測定装置111は、レンズホルダ113をスピンドル104の回転軸104aに対して水平方向に移動させる移動機構115と、レンズホルダ113の水平方向に対するあおりを調整するあおり調整機構116とを備えるものである(例えば、特許文献1参照)。この偏心測定装置111では、レンズホルダ113の上面に平行平面板を置き、偏心測定部105で測定を行いながらあおり調整機構116であおりを調整し、レンズホルダ113の上面をスピンドル104の回転軸104aに対して垂直にする。次に、レンズホルダ113に基準球面を置いて、偏心測定部105で測定を行いながら移動機構115によりレンズホルダ113の水平方向の位置を調整し、レンズホルダ113の中心軸をスピンドル104の回転軸104aに一致させる。このようにすることで、レンズホルダ113を交換してもレンズホルダ113の中心軸をスピンドル104の回転軸104aに対して直ちに同軸にすることができ、被検レンズ102のレンズホルダ113側のレンズ面102bの曲率中心を、理論的には回転軸104aの軸上にある状態とすることができる。そして、この後に作業者が被検レンズ102の傾きを調整し、被検レンズ102の光軸をスピンドル104の回転軸104aに一致させる。
特開平9−288041号公報
FIG. 11 shows another configuration of the conventional eccentricity measuring apparatus. The eccentricity measuring device 111 includes a moving mechanism 115 that moves the lens holder 113 in the horizontal direction with respect to the rotation shaft 104a of the spindle 104, and a tilt adjusting mechanism 116 that adjusts the tilt of the lens holder 113 in the horizontal direction. Yes (see, for example, Patent Document 1). In this eccentricity measuring device 111, a parallel flat plate is placed on the upper surface of the lens holder 113, and the tilt adjustment mechanism 116 is adjusted while measuring by the eccentricity measuring unit 105, and the upper surface of the lens holder 113 is adjusted to the rotating shaft 104 a of the spindle 104. Perpendicular to. Next, a reference spherical surface is placed on the lens holder 113, and the horizontal position of the lens holder 113 is adjusted by the moving mechanism 115 while performing the measurement by the eccentricity measuring unit 105, and the central axis of the lens holder 113 is set as the rotation axis of the spindle 104. Match with 104a. In this way, even if the lens holder 113 is replaced, the center axis of the lens holder 113 can be immediately made coaxial with the rotation axis 104a of the spindle 104, and the lens on the lens holder 113 side of the lens 102 to be examined. The center of curvature of the surface 102b can theoretically be on the axis of the rotating shaft 104a. Thereafter, the operator adjusts the inclination of the test lens 102 so that the optical axis of the test lens 102 coincides with the rotation axis 104 a of the spindle 104.
Japanese Patent Laid-Open No. 9-288041

しかしながら、従来の偏心測定装置101,111では、以下のような問題点を有していた。
スピンドル104の回転軸104aに対して被検レンズ102の光軸を一致させるときに、レンズホルダ103,113側のレンズ面102bの曲率中心は理論的にはスピンドル104の回転軸104a上にあることを前提としているが、レンズ面102bを受けるレンズホルダ103,113の円形の縁部に傷が付いていたり、被検レンズ102をレンズホルダ103,113に保持させるときにゴミや塵などを挟み込んでしまったりした場合には、レンズ面102bの曲率中心と回転軸104aとが一致しなくなることが多い。このような場合には、光軸が傾いた状態で被検レンズ102の光軸に対する被検レンズ102の外周面の中心軸の振れを測定していることになるので、正確な測定ができなくなる。このようなずれは、被検レンズ102の光軸に対する被検レンズ102の外周面の中心軸の横ずれ量の許容範囲が大きい場合には問題とならないが、高精度が要求される被検レンズにおいては大きな問題となる。
However, the conventional eccentricity measuring apparatuses 101 and 111 have the following problems.
When the optical axis of the test lens 102 is aligned with the rotation axis 104 a of the spindle 104, the center of curvature of the lens surface 102 b on the lens holder 103, 113 side is theoretically on the rotation axis 104 a of the spindle 104. However, the circular edges of the lens holders 103 and 113 that receive the lens surface 102b are scratched, or dust or dust is sandwiched when the lens 102 is held by the lens holders 103 and 113. In the case where the rotation occurs, the center of curvature of the lens surface 102b often does not coincide with the rotation axis 104a. In such a case, since the deflection of the central axis of the outer peripheral surface of the test lens 102 with respect to the optical axis of the test lens 102 is measured in a state where the optical axis is tilted, accurate measurement cannot be performed. . Such a shift does not cause a problem when the allowable range of the lateral shift amount of the central axis of the outer peripheral surface of the test lens 102 with respect to the optical axis of the test lens 102 is large, but in a test lens that requires high accuracy. Is a big problem.

また、偏心測定部105では、レンズホルダ103,113側のレンズ面102bを観察しながら、レンズ面102bの曲率中心を回転軸104aに一致させれば調整が済むと考えられるが、レンズホルダ103,113側のレンズ面102bは、レンズ面102aの影響を受けた上での観察となるために、レンズ面102aの曲率中心が回転軸104aと一致していない限り、正しくレンズ面102bの曲率中心を回転軸104aに一致させることができない。
このように、従来の偏心測定装置101,111では、被検レンズ102の光軸に対する被検レンズ102の外周面の中心軸の横ずれ量を容易に、かつ高精度に測定することができなかった。
Further, in the eccentricity measuring unit 105, it is considered that the adjustment is completed if the center of curvature of the lens surface 102b coincides with the rotation axis 104a while observing the lens surface 102b on the lens holder 103, 113 side. Since the lens surface 102b on the 113 side is observed under the influence of the lens surface 102a, unless the center of curvature of the lens surface 102a coincides with the rotation axis 104a, the center of curvature of the lens surface 102b is correctly set. It cannot be made to coincide with the rotating shaft 104a.
As described above, the conventional eccentricity measuring apparatuses 101 and 111 cannot easily and accurately measure the amount of lateral deviation of the central axis of the outer peripheral surface of the test lens 102 with respect to the optical axis of the test lens 102. .

この発明は、このような事情に鑑みてなされたものであり、その主な目的とするところは、レンズホルダに傷があったり、ゴミを挟み込んだりした状態で測定を行っても、被検レンズの光軸と回転軸とのずれを無視できる程度に抑え、被検レンズの光軸に対する外周面の中心軸の横ずれ量を高精度に測定することである。   The present invention has been made in view of such circumstances. The main object of the present invention is to measure the lens even if the lens holder is scratched or the measurement is performed with dust in between. The amount of lateral deviation of the central axis of the outer peripheral surface with respect to the optical axis of the lens to be measured is measured with high accuracy while suppressing the deviation between the optical axis and the rotation axis to a negligible level.

上記の課題を解決する本発明の請求項に係る発明は、回転駆動機構の回転軸に対するレンズ保持部材の水平方向の位置を調整する移動機構と、前記回転駆動機構の前記回転軸に対する前記レンズ保持部材及び前記移動機構の水平方向のあおりを調整するあおり調整機構と、前記レンズ保持部材により保持された被検レンズ両面の偏心を観察する偏心検出手段により、前記被検レンズの光軸を前記回転駆動機構の前記回転軸と一致させて、前記被検レンズの光軸に対する外周面の中心軸の振れ量を測定し、かつ、前記被検レンズの光軸を前記回転駆動機構の前記回転軸と一致させるに際し、前記被検レンズを水平移動させて一方のレンズ面の曲率中心と前記回転軸とを一致させる工程と、前記被検レンズのあおりを調整して他方のレンズ面の曲率中心と前記回転軸とを一致させる工程と、を交互に実施することを特徴とする偏心測定方法とした。
この偏心測定方法では、最初に被検レンズの光軸を回転駆動機構の回転軸と一致させることで、被検レンズの回転時の振れを防止し、その後に被検レンズの外周面の中心軸の振れ量を測定するので、被検レンズの外周面の中心軸の振れ量が精度良く測定される。
また、被検レンズの水平移動と、被検レンズのあおりの調整とを少なくとも1回ずつ交互に行うことで、被検レンズの光軸が徐々に回転駆動機構の回転軸に近づき、光軸と回転軸とのずれを無視できる程度になる。
Invention includes a moving mechanism for adjusting the horizontal position of the lens holding member with respect to the rotation axis of the rotary drive mechanism, the lens with respect to the rotation shaft of the rotary drive mechanism according to claim 1 of the present invention to solve the above problem A tilt adjusting mechanism that adjusts a tilt in the horizontal direction of the holding member and the moving mechanism, and an eccentricity detecting means for observing the eccentricity of both surfaces of the test lens held by the lens holding member, the optical axis of the test lens is The amount of shake of the central axis of the outer peripheral surface with respect to the optical axis of the lens to be tested is measured so as to coincide with the rotational axis of the rotational driving mechanism, and the optical axis of the lens to be tested is set to the rotational axis of the rotational driving mechanism The lens is horizontally moved to match the center of curvature of one lens surface with the rotation axis, and the tilt of the lens is adjusted to adjust the tilt of the other lens surface. A step of matching the rate center and the rotation axis, was used as the eccentricity determination method which comprises carrying out alternately.
In this decentering measurement method, first, the optical axis of the test lens is aligned with the rotation axis of the rotation drive mechanism, thereby preventing shake during rotation of the test lens, and then the central axis of the outer peripheral surface of the test lens. Therefore, the shake amount of the central axis of the outer peripheral surface of the lens to be measured is accurately measured.
Further, by alternately performing horizontal movement of the test lens and adjustment of the tilt of the test lens at least once, the optical axis of the test lens gradually approaches the rotation axis of the rotation drive mechanism, Deviation from the rotation axis is negligible.

本発明によれば、回転軸に対する被検レンズの光軸の傾き及び横ずれを、無視できる程度に小さく調整することが容易になるので、被検レンズの光軸に対する被検レンズの外周面の中心軸の横ずれ量の測定を高精度に行うことができる。   According to the present invention, since it becomes easy to adjust the inclination and lateral deviation of the optical axis of the test lens with respect to the rotation axis to a negligible level, the center of the outer peripheral surface of the test lens with respect to the optical axis of the test lens The amount of lateral deviation of the shaft can be measured with high accuracy.

(第1の実施の形態)
本発明の第1の実施の形態について図面を参照して詳細に説明する。なお、図1は偏心測定装置の概略構成を示す斜視図であり、図2は側面図である。また、図3から図6は被検レンズの回転軸に対する傾きと横ずれが修正される過程を段階的に示す正面図である。
図1及び図2に示すように、偏心測定装置1は、不図示の駆動源と共に回転駆動機構を構成するスピンドル2を有し、スピンドル2の上部には、スピンドル2の回転軸2aに直交する面(水平面)に対するあおり方向(図中のαβ方向)に移動可能なαβ揺動ステージ3(あおり調整機構)が固定されている。αβ揺動ステージ3は、α方向に移動自在なα軸方向テーブル3aと、β方向に移動自在なβ軸方向テーブル3bとを上下に積層させて構成され、これら各テーブル3a,3bの揺動中心はスピンドル2の回転軸2a上で一致するように設置されている。αβ揺動ステージ3上には、水平方向(図中のXY方向)に移動自在なXYステージ4が固定されている。XYステージ4は、X軸方向に平行移動自在なX軸方向テーブル4aと、Y方向に平行移動自在なY軸方向テーブル4bとを積層させて構成された移動機構である。さらに、XYステージ4上には、レンズホルダ固定部材5が固定されている。レンズホルダ固定部材5上には、円筒状のレンズホルダ6(レンズ保持部材)が着脱自在に固定されており、レンズホルダ6の中心の中空部分の上端部分には、被検レンズWの下面(レンズ面Wb)を吸着保持する吸着手段(不図示)が設けられている。
(First embodiment)
A first embodiment of the present invention will be described in detail with reference to the drawings. 1 is a perspective view showing a schematic configuration of the eccentricity measuring apparatus, and FIG. 2 is a side view. 3 to 6 are front views showing in a stepwise manner the process of correcting the inclination and lateral deviation of the lens to be examined with respect to the rotation axis.
As shown in FIGS. 1 and 2, the eccentricity measuring apparatus 1 has a spindle 2 that constitutes a rotary drive mechanism together with a drive source (not shown), and an upper part of the spindle 2 is orthogonal to the rotation axis 2 a of the spindle 2. An αβ swinging stage 3 (tilting adjustment mechanism) that can move in a tilt direction (αβ direction in the figure) with respect to a plane (horizontal plane) is fixed. The αβ swing stage 3 is configured by vertically stacking an α-axis direction table 3a movable in the α-direction and a β-axis direction table 3b movable in the β-direction, and swinging each of the tables 3a and 3b. The center is installed so as to coincide with the rotation axis 2 a of the spindle 2. On the αβ swing stage 3, an XY stage 4 that is movable in the horizontal direction (XY direction in the figure) is fixed. The XY stage 4 is a moving mechanism configured by stacking an X-axis direction table 4a that can move in parallel in the X-axis direction and a Y-axis direction table 4b that can move in parallel in the Y direction. Further, a lens holder fixing member 5 is fixed on the XY stage 4. A cylindrical lens holder 6 (lens holding member) is detachably fixed on the lens holder fixing member 5, and the lower surface of the lens W to be tested (on the upper end portion of the hollow portion at the center of the lens holder 6). Adsorption means (not shown) for adsorbing and holding the lens surface Wb) is provided.

ここで、レンズホルダ固定部材5にレンズホルダ6を固定する手段としては、例えば、レンズホルダ固定部材5の中央で、かつ回転軸2aと一致する位置に雄ネジを設け、この雄ネジと同径及び同ピッチの雌ネジをレンズホルダ6の下部の内周部に設けることがあげられる。また、レンズホルダ6の高さは、レンズホルダ6に保持させた被検レンズWと、レンズホルダ6のそれぞれの傾き及び横ずれがなく、被検レンズWの光軸が回転軸2aと一致したときに、被検レンズWの上面(レンズ面Wa)の曲率中心と、αβ揺動ステージ3の揺動中心とが一致するように定められている。   Here, as means for fixing the lens holder 6 to the lens holder fixing member 5, for example, a male screw is provided in the center of the lens holder fixing member 5 and at a position coinciding with the rotation shaft 2a, and has the same diameter as this male screw. In addition, a female screw having the same pitch is provided on the inner peripheral portion of the lower portion of the lens holder 6. The height of the lens holder 6 is such that the test lens W held by the lens holder 6 and the lens holder 6 are not inclined and laterally shifted, and the optical axis of the test lens W coincides with the rotation axis 2a. In addition, the center of curvature of the upper surface (lens surface Wa) of the lens W to be tested and the center of swing of the αβ swing stage 3 are determined to coincide with each other.

また、レンズホルダ6の上方、つまり被検レンズWの上方には、スピンドル2の回転軸2aに対する被検レンズWの両レンズ面Wa,Wbの偏心を確認するために用いられる偏心検出手段7が設置されている。図2に示すように、偏心検出手段7は、測定用光源11を備え、測定用光源11から出射される光の光路上には、チャート(以下、ターゲットという)12、採光レンズ13、ハーフプリズム14が順番に配置されており、測定用光源11からの光をターゲット12に照射することで得られる像(ターゲット像)を採光レンズ13に入射させ、ハーフプリズム14の反射によって被検レンズWに入射させるようになっている。さらに、ハーフプリズム14の上方には、被検レンズWで反射する反射光であって、ハーフプリズム14を透過する光を集光してターゲット像を結像させる結像レンズ15と、結像されるターゲット像を拡大する拡大レンズ16と、拡大して結像されるターゲット像を映すテレビカメラ17とが順番に配置されている。このテレビカメラ17の出力信号は、コンピュータ18に接続されている。コンピュータ18は、画像処理回路が組み込まれており、被検レンズWで反射するターゲット像を画像処理することで反射したターゲット像の画像をモニタ19に表示できるように構成されている。偏心検出手段7は、結像したターゲット像位置に物点位置を合わせられるように、図示しない手段で被検レンズWに対して接近、又は離隔可能となっている。   In addition, above the lens holder 6, that is, above the lens W to be tested, an eccentricity detecting means 7 used for confirming the eccentricity of both lens surfaces Wa and Wb of the lens W to be tested with respect to the rotating shaft 2 a of the spindle 2. is set up. As shown in FIG. 2, the eccentricity detection means 7 includes a measurement light source 11, and a chart (hereinafter referred to as a target) 12, a daylighting lens 13, and a half prism are arranged on the optical path of light emitted from the measurement light source 11. 14 are arranged in order, and an image (target image) obtained by irradiating the light from the measurement light source 11 to the target 12 is made incident on the daylighting lens 13, and is reflected on the test lens W by the reflection of the half prism 14. It is made to enter. Further, above the half prism 14, an image is formed with an imaging lens 15 that focuses reflected light that is reflected by the lens W to be tested and passes through the half prism 14 to form a target image. A magnifying lens 16 for enlarging the target image to be enlarged and a television camera 17 for projecting the target image to be magnified and formed are arranged in order. The output signal of the television camera 17 is connected to the computer 18. The computer 18 incorporates an image processing circuit, and is configured to display the image of the reflected target image on the monitor 19 by performing image processing on the target image reflected by the lens W to be examined. The decentering detecting means 7 can approach or be separated from the lens W to be measured by means not shown so that the object point position can be adjusted to the imaged target image position.

さらに、図1に示すように、被検レンズWの側方には、被検レンズWの光軸に対する被検レンズWの外周面Wcの横ずれを測定する外周振れ測定手段8が設けられている。外周振れ測定手段8は、光源8aと受光部8bとが被検レンズWを側方から挟むように配設されている。光源8aは、被検レンズWの外周面Wcによって光の一部が遮蔽されるように光を照射し、受光部8bは、この光を受光して光量に応じた信号を出力することで被検レンズWの外周振れを非接触で測定可能になっている。また、外周振れ測定手段8は、被検レンズWの位置に合わせて高さを調整できるように図示しない手段で、被検レンズWの光軸に沿って上下移動可能になっている。   Further, as shown in FIG. 1, on the side of the test lens W, there is provided an outer shake measuring means 8 for measuring a lateral shift of the outer peripheral surface Wc of the test lens W with respect to the optical axis of the test lens W. . The peripheral shake measuring means 8 is arranged such that the light source 8a and the light receiving portion 8b sandwich the lens W to be tested from the side. The light source 8a emits light so that a part of the light is shielded by the outer peripheral surface Wc of the test lens W, and the light receiving unit 8b receives this light and outputs a signal corresponding to the amount of light. It is possible to measure the outer peripheral shake of the test lens W in a non-contact manner. The peripheral shake measuring means 8 is a means (not shown) so that the height can be adjusted according to the position of the test lens W, and can be moved up and down along the optical axis of the test lens W.

このような偏心測定装置1を用いて行われる被検レンズWの光軸に対する外周面Wcの中心軸の横ずれ量の測定方法について説明する。
まず、作業者が、測定したい被検レンズWに対応するレンズホルダ6の雌ネジをレンズホルダ固定部材5の雄ネジにねじ込んで固定する。そして、固定したレンズホルダ6に被検レンズWを吸着保持させる。このとき、被検レンズWの光軸は、スピンドル2の回転軸2aに対して傾きをもつと共に、レンズホルダ6の位置によっては、横方向にずれた状態となっている。ここで、図3に示すように、被検レンズWのレンズ面Wbの曲率中心とスピンドル2の回転軸2aの間のずれ量であって、回転軸2aと直交する方向のずれ量(以下、横ずれ量とする)をΔ、回転軸2aに対する被検レンズWの光軸の傾き角度をθと定義する。
A method for measuring the lateral deviation amount of the central axis of the outer peripheral surface Wc with respect to the optical axis of the lens W to be tested, which is performed using such an eccentricity measuring apparatus 1, will be described.
First, the operator screws and fixes the female screw of the lens holder 6 corresponding to the lens W to be measured to the male screw of the lens holder fixing member 5. Then, the test lens W is held by suction on the fixed lens holder 6. At this time, the optical axis of the lens W to be tested is inclined with respect to the rotation axis 2 a of the spindle 2 and is shifted laterally depending on the position of the lens holder 6. Here, as shown in FIG. 3, the amount of deviation between the center of curvature of the lens surface Wb of the lens W to be examined and the rotation axis 2a of the spindle 2 and in the direction perpendicular to the rotation axis 2a (hereinafter, referred to as “the amount of deviation”) is referred to as lateral deviation amount) delta, the inclination angle of the optical axis of the lens W with respect to the rotation shaft 2a is defined as theta 0.

次に、図4に示すように、被検レンズWのレンズ面Wbの曲率中心と回転軸2aとが一致(Δ=0)した状態において、被検レンズWのレンズ面Wa及びレンズ面Wbの曲率中心間の距離をL、被検レンズWのレンズ面Waの曲率中心と回転軸2aとの横ずれ量をXと定義すると、次式が成り立つ。
=L×sinθ (1)
Next, as shown in FIG. 4, in the state where the center of curvature of the lens surface Wb of the test lens W and the rotation axis 2a coincide (Δ = 0), the lens surface Wa and the lens surface Wb of the test lens W are the distance between the center of curvature L, and the amount of lateral deviation of the rotation axis 2a and the center of curvature of the lens surface Wa of the lens W is defined as X 0, the following equation holds.
X 0 = L × sin θ 0 (1)

ここで、偏心検出手段7を被検レンズWに対して近接又は離隔させて、被検レンズWのレンズ面Waで反射したターゲット像がモニタ19で観察できるようにした後、スピンドル2を回転させると、Δ+Xに比例した半径を有する円上をターゲット像が回転する。この状態では、ターゲット像は偏心した状態で観察される。そこで、モニタ19に表示されるターゲット像を観ながら、XYステージ4によって被検レンズWをΔ+X分だけ水平に移動させると、被検レンズWのレンズ面Waの曲率中心はスピンドル2の回転軸2aに一致するため、ターゲット像の回転振れを止めることができる。このとき、図5に示すように、被検レンズWのレンズ面Wa及びレンズ面Wbの曲率中心とαβ揺動ステージ3の揺動中心との距離をそれぞれR、Rとし、レンズ面Wbの曲率中心とαβ揺動ステージ3の揺動中心とを結んだ線とスピンドル2の回転軸2aとの間の傾き角度をφとすると、次式が成り立つ。
sinφ=X/R (2)
Here, the eccentricity detecting means 7 is moved close to or away from the lens W to be observed so that the target image reflected by the lens surface Wa of the lens W can be observed on the monitor 19, and then the spindle 2 is rotated. When, on a circle having a radius proportional to delta + X 0 target image is rotated. In this state, the target image is observed in an eccentric state. Accordingly, when the test lens W is moved horizontally by Δ + X 0 while watching the target image displayed on the monitor 19, the center of curvature of the lens surface Wa of the test lens W is the rotation axis of the spindle 2. Since it corresponds to 2a, the rotational shake of the target image can be stopped. At this time, as shown in FIG. 5, the distances between the curvature centers of the lens surface Wa and the lens surface Wb of the lens W to be examined and the oscillation center of the αβ oscillation stage 3 are R 1 and R 2 , respectively. When the inclination angle between the center of curvature and the rotation axis 2a of the αβ swinging stage 3 of the swing center and a line connecting the spindles 2 of the phi 1, the following expression holds.
sinφ 1 = X 0 / R 2 (2)

次に、偏心検出手段7を被検レンズWに対して接近又は離隔させて、被検レンズWのレンズ面Wbで反射したターゲット像がモニタ19で観察できるようにした後、スピンドル2を回転させると、被検レンズWの光軸の傾きθに比例した半径を有する円上をターゲット像が回転する。そこで、モニタ19に表示されるターゲット像を観ながら、αβ揺動ステージ3によって被検レンズWをφだけ傾斜させると、被検レンズWのレンズ面Wbの曲率中心はスピンドル2の回転軸2aに一致し、これによってターゲット像の回転振れを止めることができる。このとき、図6に示すように、被検レンズWのレンズ面Waの曲率中心と回転軸2aとの横ずれ量をXとすると、次式が成り立つ。
sinφ=X/R (3)
ここで、(2)式と(3)式から次式が成り立つ。
=(R/R)×X (4)
Next, the decentering detection means 7 is moved closer to or away from the test lens W so that the target image reflected by the lens surface Wb of the test lens W can be observed on the monitor 19, and then the spindle 2 is rotated. Then, the target image rotates on a circle having a radius proportional to the optical axis inclination θ 0 of the lens W to be examined. Therefore, while watching the target image displayed on the monitor 19, when tilting the sample lens W by phi 1 by αβ swinging stage 3, the center of curvature of the lens surface Wb of the lens W is the rotating shaft 2a of the spindle 2 Thus, the rotational shake of the target image can be stopped. At this time, as shown in FIG. 6, when the lateral deviation amount of the center of curvature and the rotation axis 2a of the lens surface Wa of the lens W and X 1, the following expression holds.
sinφ 1 = X 1 / R 1 (3)
Here, the following equation is established from the equations (2) and (3).
X 1 = (R 1 / R 2 ) × X 0 (4)

(4)式からは、R<Rのとき、X<Xの関係が成り立つ。このため、被検レンズWのレンズ面Waが回転軸2aと一致しているとき、被検レンズWのレンズ面Wa及びレンズ面Wbの曲率中心と、αβ揺動ステージ3の揺動中心との距離の関係で、レンズ面Waの距離の方が揺動中心に近いとき、αβ揺動ステージ3による被検レンズWの角度修正後のレンズ面Wbの曲率中心と回転軸2aとの横ずれ量Xは、角度修正前の横ずれ量Xよりも小さくなる。また、αβ揺動ステージ3による被検レンズWの角度修正後の光軸の傾き角度をθとすると、次式が成り立つ。
=L×sinθ (5)
From the equation (4), when R 1 <R 2 , the relationship X 1 <X 0 is established. For this reason, when the lens surface Wa of the test lens W coincides with the rotation axis 2 a, the center of curvature of the lens surface Wa and the lens surface Wb of the test lens W and the swing center of the αβ swing stage 3. When the distance of the lens surface Wa is closer to the center of swing due to the distance, the lateral deviation amount X between the center of curvature of the lens surface Wb after the angle correction of the lens W to be tested by the αβ swing stage 3 and the rotary shaft 2a 1 is smaller than the lateral shift amount X 0 before angle modification. Further, when the inclination angle of the optical axis after the angle modification of the lens W by αβ swinging stage 3 and theta 1, the following expression holds.
X 1 = L × sin θ 1 (5)

(1)式及び(5)式と、X>Xとから、θ>θの関係が成り立つ。したがって、αβ揺動ステージ3による角度修正後の被検レンズWの光軸の傾きθは、角度修正前の角度θよりも小さくなる。
また、(4)式からは、R→0のとき、X及びθは小さくなることがわかる。前記の通り、レンズホルダ6の高さは、被検レンズWの光軸が回転軸2aと一致したとき、被検レンズWのレンズ面Waの曲率中心と、αβ揺動ステージ3の揺動中心とが一致するように構成されているため、Rの値は被検レンズWを最初にレンズホルダ6に保持した時の傾きで決まり、次式で表される。
=L×(1−cosθ) (6)
From the expressions (1) and (5) and X 0 > X 1 , the relation θ 0 > θ 1 is established. Therefore, the inclination θ 1 of the optical axis of the test lens W after the angle correction by the αβ swing stage 3 is smaller than the angle θ 0 before the angle correction.
Further, from the equation (4), it can be seen that when R 1 → 0, X 1 and θ 1 become smaller. As described above, the height of the lens holder 6 is such that the center of curvature of the lens surface Wa of the test lens W and the swing center of the αβ swing stage 3 when the optical axis of the test lens W coincides with the rotation axis 2a. since it is configured such bets are matched, the value of R 1 is determined by the slope of the time held in the first lens holder 6 to the sample lens W, it is expressed by the following equation.
R 1 = L × (1-cos θ 0 ) (6)

被検レンズWをレンズホルダ6に保持するときには、作業者が被検レンズWの傾きが小さくなるように設置すればRを小さい値にすることができる。したがって、偏心検出手段7で観察しながらXYステージ4によるレンズ面Waの曲率中心位置の修正と、αβ揺動ステージ3によるレンズ面Wbの曲率中心位置の修正作業とを数回繰り返せば、スピンドル2の回転軸2aに対する被検レンズWの光軸の傾き及び横ずれは、無視できる値まで小さくすることができる。なお、被検レンズWで反射するターゲット像を移動させる際の目標とする中心位置は、ターゲット像の軌跡をコンピュータ18で画像処理し、演算することで求めても良い。 When the test lens W is held in the lens holder 6, R 1 can be set to a small value if the operator installs the test lens W so that the tilt of the test lens W is small. Therefore, if the correction of the center of curvature of the lens surface Wa by the XY stage 4 and the correction of the center of curvature of the lens surface Wb by the αβ swing stage 3 are repeated several times while observing with the eccentricity detecting means 7, the spindle 2 The inclination and lateral deviation of the optical axis of the lens W to be measured with respect to the rotation axis 2a can be reduced to a negligible value. Note that the target center position when the target image reflected by the lens W is moved may be obtained by performing image processing on the trajectory of the target image with the computer 18 and calculating.

このようにして、被検レンズWの光軸とスピンドル2の回転軸2aとを一致させた後、外周振れ測定手段8を被検レンズWの高さに合わせ、スピンドル2を回転させる。被検レンズWの回転時に外周面Wcの位置が変位する場合には、受光部8bに受光される光の光量が変化するので、外周振れ測定手段8の受光部8bで得られる光量から、被検レンズWの光軸に対する外周面Wcの中心軸の横ずれ量を測定することができる。そして、この外周面Wcの横ずれ量が予め定められている許容範囲内であるか否かを確認する。   In this way, after the optical axis of the test lens W and the rotation axis 2a of the spindle 2 are matched, the outer peripheral shake measuring means 8 is adjusted to the height of the test lens W and the spindle 2 is rotated. When the position of the outer peripheral surface Wc is displaced during rotation of the test lens W, the amount of light received by the light receiving unit 8b changes, so that the amount of light obtained by the light receiving unit 8b of the outer peripheral shake measuring means 8 is The lateral deviation amount of the central axis of the outer peripheral surface Wc with respect to the optical axis of the test lens W can be measured. Then, it is confirmed whether or not the lateral deviation amount of the outer peripheral surface Wc is within a predetermined allowable range.

また、曲率の異なる被検レンズWについて偏心測定を行う際には、その被検レンズWの曲率に合わせたレンズホルダ6をレンズホルダ固定部材5に装着し、前記と同様の手順で測定を行う。   Further, when performing decentration measurement on the test lens W having different curvatures, the lens holder 6 matched to the curvature of the test lens W is mounted on the lens holder fixing member 5 and measurement is performed in the same procedure as described above. .

この実施の形態によれば、偏心検出手段7で被検レンズWの光軸を実測しながら、αβ揺動ステージ3及びXYステージ4を操作して調整をすることで、被検レンズWの光軸をスピンドル2の回転軸2aに一致させることができる。したがって、被検レンズWの光軸に対する外周面Wcの中心軸の横ずれ量を高精度に測定することができる。
また、外周面Wcの横ずれ量の測定に非接触の外周振れ測定手段8を用いているため、微小な被検レンズWであっても、外周振れ測定時に被検レンズWの光軸がずれてしまうことはない。
According to this embodiment, while the optical axis of the test lens W is actually measured by the eccentricity detecting means 7, the αβ swing stage 3 and the XY stage 4 are operated and adjusted, whereby the light of the test lens W is adjusted. The axis can coincide with the rotation axis 2 a of the spindle 2. Therefore, the lateral deviation amount of the central axis of the outer peripheral surface Wc with respect to the optical axis of the lens W can be measured with high accuracy.
In addition, since the non-contact outer peripheral shake measuring means 8 is used for measuring the lateral deviation amount of the outer peripheral surface Wc, the optical axis of the test lens W is shifted during the outer peripheral shake measurement even for the minute test lens W. There is no end.

(第2の実施の形態)
本発明の第2の実施の形態について図面を参照して詳細に説明する。なお、図7は偏心測定装置の概略構成を示す斜視図であり、図8は側面図である。図9は被検レンズをレンズホルダに載せた状態を示す平面図である。図8中の断面は図9に示すAOB線に沿った断面である。この実施の形態において、第1の実施の形態と同じ構成要素には同一の符号を付してある。また、重複する説明は省略する。
(Second Embodiment)
A second embodiment of the present invention will be described in detail with reference to the drawings. 7 is a perspective view showing a schematic configuration of the eccentricity measuring apparatus, and FIG. 8 is a side view. FIG. 9 is a plan view showing a state in which the test lens is placed on the lens holder. The cross section in FIG. 8 is a cross section along the AOB line shown in FIG. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals. In addition, overlapping explanation is omitted.

図7から図9に示すように、偏心測定装置20は、被検レンズWを保持するレンズホルダ6を有し、レンズホルダ6の縮径された下部外周面に雄ねじが形成されている。この雄ねじは、同じ外径及び同じピッチの雌ねじを内周面に有する丸アリ21に着脱可能となっている。丸アリ21は、αβ揺動ステージ3の上面と、αβ揺動ステージ3に固定された円形部材22とで形成される凹部内で、水平方向(図中のXY方向)に移動可能に支持されており、2つの進退自在な移動つまみ23と、1つの押圧部材24により、傾斜面とされた外周面が挟持された状態で保管されている。移動つまみ23は、円形部材22に形成されたねじ部にねじ込まれており、回動によって丸アリ21に対して進退自在となっている。押圧部材24には、円形部材22の外周側面に固定された筒部材24a内の圧縮バネ25により、丸アリ21を常に2つの移動つまみ23に押し付ける力が作用している。2つの移動つまみ23と押圧部材24とは、円形部材22の中心に向かって120°の角度をなすように設けられており、2つの移動つまみ23の操作により被検レンズWを水平方向に移動可能となっている。   As shown in FIGS. 7 to 9, the eccentricity measuring device 20 includes a lens holder 6 that holds the lens W to be tested, and a male screw is formed on a lower outer peripheral surface of the lens holder 6 whose diameter is reduced. This male screw is attachable to and detachable from a round ant 21 having a female screw having the same outer diameter and the same pitch on the inner peripheral surface. The round ant 21 is supported so as to be movable in the horizontal direction (XY direction in the figure) in a recess formed by the upper surface of the αβ swing stage 3 and the circular member 22 fixed to the αβ swing stage 3. It is stored in a state in which the inclined outer peripheral surface is sandwiched between two movable knobs 23 that can be moved forward and backward and one pressing member 24. The moving knob 23 is screwed into a threaded portion formed on the circular member 22 and can move forward and backward with respect to the round ant 21 by rotation. A force that always presses the round ant 21 against the two moving knobs 23 acts on the pressing member 24 by a compression spring 25 in the cylindrical member 24 a fixed to the outer peripheral side surface of the circular member 22. The two moving knobs 23 and the pressing member 24 are provided so as to form an angle of 120 ° toward the center of the circular member 22, and the test lens W is moved in the horizontal direction by operating the two moving knobs 23. It is possible.

また、被検レンズWの光軸に対する外周面の中心軸の横ずれ量を測定する外周振れ測定手段として、ピックテスタ26が設けられている。ピックテスタ26は、被検レンズWの位置に合わせて、その高さを変えられるように図示しない手段で被検レンズWの光軸方向に上下移動可能となっている。   Further, a pick tester 26 is provided as an outer peripheral shake measuring means for measuring the lateral deviation amount of the central axis of the outer peripheral surface with respect to the optical axis of the lens W to be tested. The pick tester 26 can be moved up and down in the direction of the optical axis of the lens W by means not shown so that its height can be changed according to the position of the lens W.

次に、この実施の形態における被検レンズWの光軸に対する外周面Wcの中心軸の横ずれ量の測定方法について説明する。
第1の実施の形態のXYステージの代わりに、2つの移動つまみ23を回して丸アリ21の位置を移動させて、被検レンズWを水平方向に移動させて位置を調整する。被検レンズWの光軸をスピンドル2の回転軸2aに一致させる工程は、第1の実施の形態と同様である。
また、第1の実施の形態と同様にして、被検レンズWの光軸とスピンドル2の回転軸2aとを一致させた後に、ピックテスタ26の検出端子26aを被検レンズWの外周面Wcに接触させて、スピンドル2を回転させ、被検レンズWの光軸に対する外周面Wcの中心軸の横ずれ量を測定する。
Next, a method of measuring the lateral deviation amount of the central axis of the outer peripheral surface Wc with respect to the optical axis of the lens W to be tested in this embodiment will be described.
Instead of the XY stage of the first embodiment, the two movement knobs 23 are turned to move the position of the round ant 21, and the test lens W is moved in the horizontal direction to adjust the position. The process of making the optical axis of the lens W to be tested coincide with the rotation axis 2a of the spindle 2 is the same as that in the first embodiment.
Similarly to the first embodiment, after the optical axis of the test lens W is aligned with the rotation axis 2a of the spindle 2, the detection terminal 26a of the pick tester 26 is placed on the outer peripheral surface Wc of the test lens W. Contact is made and the spindle 2 is rotated to measure the lateral deviation of the central axis of the outer peripheral surface Wc with respect to the optical axis of the lens W to be tested.

この実施の形態によれば、被検レンズWを水平移動させる移動機構の高さを薄くすることができ、αβ揺動ステージ3の揺動中心と丸アリ21上面の間を広く取れることから、大きな曲率の凹部をもつ被検レンズWの測定にも対応することができる。   According to this embodiment, the height of the moving mechanism for moving the lens W to be horizontally moved can be reduced, and the space between the rocking center of the αβ rocking stage 3 and the upper surface of the round ant 21 can be widened. It is also possible to cope with the measurement of the test lens W having a concave portion with a large curvature.

なお、本発明は前記の実施の形態に限定されずに広く応用することができる。例えば、第1の実施の形態において、外周振れ測定手段8の代わりにピックテスタ26を用いても良い。また、被検レンズWの水平移動とあおりの調整とを行う機構は、実施の形態に限定されるものではない。さらに、コンピュータ18の制御によってαβ揺動ステージ3及びXYステージ4、移動つまみ23を駆動させても良い。   Note that the present invention can be widely applied without being limited to the above-described embodiment. For example, in the first embodiment, a pick tester 26 may be used in place of the peripheral runout measuring means 8. Further, the mechanism for performing the horizontal movement and tilt adjustment of the test lens W is not limited to the embodiment. Further, the αβ swing stage 3, the XY stage 4, and the movement knob 23 may be driven under the control of the computer 18.

本発明の実施の形態に係る偏心測定装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the eccentricity measuring apparatus which concerns on embodiment of this invention. 偏心装置の概略構成を示す側面図である。It is a side view which shows schematic structure of an eccentric apparatus. レンズホルダに被検レンズを保持させた状態を示す正面図である。It is a front view which shows the state which hold | maintained the to-be-tested lens to the lens holder. 被検レンズの上側のレンズ面の曲率中心と回転軸とが一致するように被検レンズを水平移動させた状態を示す正面図である。It is a front view which shows the state which moved the test lens horizontally so that the center of curvature of the upper lens surface of a test lens and a rotating shaft may correspond. 被検レンズの下側のレンズ面の曲率中心と回転軸とが一致するように被検レンズを水平移動させた状態を示す正面図である。It is a front view which shows the state which moved the to-be-tested lens horizontally so that the center of curvature of the lens surface of the to-be-tested lens and a rotating shaft may correspond. 被検レンズの上側のレンズ面の曲率中心と回転軸とが一致するように被検レンズの角度調整をした状態を示す正面図である。It is a front view which shows the state which adjusted the angle of the to-be-tested lens so that the center of curvature of the lens surface above a to-be-tested lens and a rotating shaft might correspond. 本発明の実施の形態に係る偏心測定装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the eccentricity measuring apparatus which concerns on embodiment of this invention. 偏心装置の概略構成を示す側面図である。It is a side view which shows schematic structure of an eccentric apparatus. 被検レンズをレンズホルダに載せた状態の平面図である。It is a top view of the state which mounted the to-be-tested lens on the lens holder. 従来の偏心測定装置の概略構成図である。It is a schematic block diagram of the conventional eccentricity measuring apparatus. 従来の偏心測定装置の概略構成図である。It is a schematic block diagram of the conventional eccentricity measuring apparatus.

符号の説明Explanation of symbols

1 偏心測定装置
2 スピンドル(回転駆動機構)
2a 回転軸
3 αβ揺動ステージ(あおり調整機構)
4 XYステージ(移動機構)
6 レンズホルダ(レンズ保持部材)
7 偏心検出手段
8 外周振れ測定手段
W 被検レンズ
Wa レンズ面
Wc 外周面

1 Eccentricity measuring device 2 Spindle (rotary drive mechanism)
2a Rotating shaft 3 αβ swing stage (tilting adjustment mechanism)
4 XY stage (movement mechanism)
6 Lens holder (Lens holding member)
7 Eccentricity detection means 8 Outer circumference shake measurement means W Test lens Wa Lens surface Wc Outer circumference surface

Claims (1)

回転駆動機構の回転軸に対するレンズ保持部材の水平方向の位置を調整する移動機構と、前記回転駆動機構の前記回転軸に対する前記レンズ保持部材及び前記移動機構の水平方向のあおりを調整するあおり調整機構と、前記レンズ保持部材により保持された被検レンズ両面の偏心を観察する偏心検出手段により、前記被検レンズの光軸を前記回転駆動機構の前記回転軸と一致させて、前記被検レンズの光軸に対する外周面の中心軸の振れ量を測定し、
かつ、前記被検レンズの光軸を前記回転駆動機構の前記回転軸と一致させるに際し、前記被検レンズを水平移動させて一方のレンズ面の曲率中心と前記回転軸とを一致させる工程と、前記被検レンズのあおりを調整して他方のレンズ面の曲率中心と前記回転軸とを一致させる工程と、を交互に実施する
ことを特徴とする偏心測定方法。
A moving mechanism that adjusts the horizontal position of the lens holding member with respect to the rotation shaft of the rotation driving mechanism, and a tilt adjustment mechanism that adjusts the horizontal tilt of the lens holding member and the moving mechanism with respect to the rotation shaft of the rotation driving mechanism. And an eccentricity detecting means for observing the eccentricity of both surfaces of the test lens held by the lens holding member so that the optical axis of the test lens coincides with the rotation axis of the rotation drive mechanism, and Measure the deflection of the central axis of the outer peripheral surface relative to the optical axis ,
And, when matching the optical axis of the lens to be tested with the rotation axis of the rotation drive mechanism, horizontally moving the lens to be tested to match the center of curvature of one lens surface with the rotation axis, A method of measuring eccentricity , wherein the step of adjusting the tilt of the lens to be tested so that the center of curvature of the other lens surface coincides with the rotation axis is performed alternately .
JP2005057072A 2005-03-02 2005-03-02 Eccentricity measurement method Active JP4718208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057072A JP4718208B2 (en) 2005-03-02 2005-03-02 Eccentricity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057072A JP4718208B2 (en) 2005-03-02 2005-03-02 Eccentricity measurement method

Publications (2)

Publication Number Publication Date
JP2006242680A JP2006242680A (en) 2006-09-14
JP4718208B2 true JP4718208B2 (en) 2011-07-06

Family

ID=37049256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057072A Active JP4718208B2 (en) 2005-03-02 2005-03-02 Eccentricity measurement method

Country Status (1)

Country Link
JP (1) JP4718208B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345849B (en) * 2017-08-25 2023-08-18 江苏金海创科技有限公司 Lens detection and calibration tool and method
CN108572060B (en) * 2018-04-23 2020-12-01 福建浩蓝光电有限公司 Optical lens manufacturing equipment with fixed clamping structure
CN115266045B (en) * 2022-09-27 2023-01-06 江苏浩纳光电股份有限公司 Automatic eccentricity measuring machine for optical lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142433A (en) * 1987-11-28 1989-06-05 Minolta Camera Co Ltd Apparatus and method for measuring physical value of cylindrical lens
JP3597302B2 (en) * 1996-04-22 2004-12-08 オリンパス株式会社 Eccentricity measuring device

Also Published As

Publication number Publication date
JP2006242680A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US7458168B2 (en) Concentricity measuring apparatus and method, squareness measuring apparatus and method, and concentricity-squareness measuring apparatus and method
EP1103784A2 (en) Elliposometer, sample positioning mechanism, and polarization angular adjusting mechanism, used in the elliposometer
KR20140011346A (en) Optical anisotropic parameter measurement device, measurement method and measurement program
JP4718208B2 (en) Eccentricity measurement method
JP2009063314A (en) Substrate position detecting device, substrate position regulating device, ellipsometer and film thickness measuring equipment
JP2003057026A (en) Alignment adjusting apparatus for probe, measuring machine equipped therewith and alignment adjusting method for probe
JP4815273B2 (en) Optical element rotation holding device
JP5591025B2 (en) Centering method and centering device, lens centering method, lens centering device, frame cutting method and frame cutting device
CN213812183U (en) Optical lens piece eccentricity detection device
JP7181028B2 (en) Machining equipment maintenance method and machining equipment
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP2007046971A (en) Instrument and method for measuring eccentricity of lens
US6744510B2 (en) Ellipsometer and precision auto-alignment method for incident angle of the ellipsometer without auxiliary equipment
JPH07229811A (en) Eccentricity measuring apparatus for aspherical lens
JPH09288041A (en) Measuring apparatus for decentration
JP2005055202A (en) Eccentricity measuring device, lens mounting method, and eccentricity measuring method for lens
JP3345149B2 (en) Aspherical lens eccentricity measuring device and centering device
JP2000009663A (en) Crystal orientation-measuring device
JP2006208175A (en) Eccentricity measuring method and eccentricity measuring device
JPH11108793A (en) Lens eccentricity measuring method and lens eccentricity measuring device
JP2011143509A (en) Device and method for centering, and machine and method for centering
JP2009177166A (en) Inspection device
JP2005274510A (en) Apparatus and method for measuring eccentricity
JPH11211611A (en) Eccentricity measuring apparatus
JPH0783609A (en) Device for aligning body to be examined of interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R151 Written notification of patent or utility model registration

Ref document number: 4718208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250