JPH1194700A - Measuring device and method for lens - Google Patents

Measuring device and method for lens

Info

Publication number
JPH1194700A
JPH1194700A JP27330997A JP27330997A JPH1194700A JP H1194700 A JPH1194700 A JP H1194700A JP 27330997 A JP27330997 A JP 27330997A JP 27330997 A JP27330997 A JP 27330997A JP H1194700 A JPH1194700 A JP H1194700A
Authority
JP
Japan
Prior art keywords
lens
optical axis
light
image
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27330997A
Other languages
Japanese (ja)
Inventor
Nobuo Oguma
信夫 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27330997A priority Critical patent/JPH1194700A/en
Publication of JPH1194700A publication Critical patent/JPH1194700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make measurable an afocal lens with high accuracy by measuring and correcting the inclination and displacement of the optical axis of a lens to be examined relative to the optical axis of a measuring device. SOLUTION: A light beam from a light source 11 is transmitted through a patterned plate 13 and converted by a collimator 14 into a parallel beam, and the parallel beam is made incident upon a moving lens 18 and focused on the center P1 of curvature of the first face of a lens O to be examined, and the light beam reflected by the first face of the lens O to be examined is reflected by a half mirror 15 and is focused as P12 on an area sensor 16 provided in a position where it becomes symmetrical to the patterned plate. Then, the lens O to be examined is rotated about the center of the optical axis to describe a first circle using the image on the area sensor 16. Next, the image on the moving lens 18 is focused on the center of curvature of the final face o of the lens O to be examined, and a second circle is described similarly. From the center positions of the first and second circles and the moving distance of the moving lens, the inclination and amount of displacement of the optical axis of the lens O to be examined are calculated to correct the optical axis of the lens O to be examined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カメラのファイン
ダ、双眼鏡又は望遠鏡等のアフォーカル光学系のMTF
などを測定する方法及び装置に関し、特に、被検レンズ
の光軸を測定光軸に一致させることができる技術に関す
る。
The present invention relates to an MTF for an afocal optical system such as a camera viewfinder, binoculars or a telescope.
More particularly, the present invention relates to a technique capable of matching an optical axis of a lens to be measured with an optical axis of measurement.

【0002】[0002]

【従来の技術】カメラのファインダ等のレンズ系の測定
を行うものとして、図4に示すイギリスのイーリング社
のテレスコープ測定装置が知られている。これは、被検
レンズのMTFを測定するものである。
2. Description of the Related Art As a device for measuring a lens system such as a viewfinder of a camera, there is known a telescope measuring device of Ealing Company, UK shown in FIG. This measures the MTF of the lens to be measured.

【0003】図4において、光源1から射出された光
は、スリット2を通過し、コリメートレンズ3で平行光
束にされ、ファインダレンズ等の被検レンズ4で虚像P
´から射出される発散光束となり、結像レンズ5でP点
に結像する。この像を拡大レンズ6で受光素子7上に結
像させ、マイクロコンピュータで光量分布をフーリエ変
換し、アフォーカル光学系のMTFを測定している。
In FIG. 4, light emitted from a light source 1 passes through a slit 2, is converted into a parallel light beam by a collimating lens 3, and is converted into a virtual image P by a test lens 4 such as a finder lens.
And the divergent light beam emitted from ′ is formed at the point P by the imaging lens 5. This image is formed on the light receiving element 7 by the magnifying lens 6, and the light quantity distribution is Fourier-transformed by the microcomputer to measure the MTF of the afocal optical system.

【0004】上記の測定においては、測定装置の光軸と
被検レンズの光軸とを重ね合わせて測定する必要があ
る。しかし、上記の装置では、被検レンズの光軸位置を
測定装置の光軸に合わせることはできても、双方の軸が
傾いているのを調整することができなかった。
In the above-mentioned measurement, it is necessary to superpose the optical axis of the measuring device and the optical axis of the lens to be measured. However, in the above-described apparatus, the position of the optical axis of the lens to be measured can be adjusted to the optical axis of the measuring apparatus, but the inclination of both axes cannot be adjusted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の事実
から考えられたもので、被検レンズの光軸の傾き角を精
度よく測定し、傾きを修正してMTF等のレンズ性能の
測定ができる装置及び方法を提供することを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been conceived in view of the above facts. The present invention measures the tilt angle of the optical axis of a lens to be measured with high accuracy, corrects the tilt, and measures the performance of a lens such as MTF. It is an object of the present invention to provide an apparatus and a method capable of performing the following.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明のレンズ測定装置は、光源と、該光源から光
を受けるパターン板と、該パターン板を前側焦点位置と
するコリメータと、上記パターン板とコリメータとの間
に設けられたハーフミラーと、該ハーフミラーに対して
上記パターン板と対称位置に設けられたエリアセンサ
と、上記コリメータからの光束内にあって被検レンズを
光軸と直交する面内に移動自在な試料台と、該試料台と
上記コリメータとの間に着脱可能にかつ光軸方向に移動
自在に設けられた移動レンズと、被検レンズを光軸中心
に回転する回転ステージと、被検レンズの光軸を調整す
る自動ゴニオステージと、被検レンズから射出された光
束が入射する結像レンズと、該結像レンズの結像点近傍
に置かれ結像レンズの光軸方向に進退自在な受光素子
と、装置全体を制御する制御装置とを有することを特徴
としている。
To achieve the above object, a lens measuring apparatus according to the present invention comprises a light source, a pattern plate receiving light from the light source, a collimator having the pattern plate as a front focal position, A half mirror provided between the pattern plate and the collimator; an area sensor provided at a position symmetrical to the pattern plate with respect to the half mirror; and a lens to be inspected in the light beam from the collimator. A sample stage movable in a plane orthogonal to the axis, a movable lens detachably provided between the sample stage and the collimator and movably provided in the optical axis direction, and a lens to be measured centered on the optical axis. A rotating stage that rotates, an automatic goniometer that adjusts the optical axis of the lens to be inspected, an imaging lens into which the light beam emitted from the lens to be incident enters, and an image that is placed near the imaging point of the imaging lens lens And retractably photodetectors in the optical axis direction, is characterized by a control device for controlling the entire apparatus.

【0007】また、上記エリアセンサの出力を解析する
第1演算回路と、上記受光素子の出力を解析する第2演
算回路と、上記試料台、自動ゴニオステージ及び回転ス
テージを制御するコントローラとが上記制御装置に接続
されている構成とすることができる。
A first arithmetic circuit for analyzing the output of the area sensor, a second arithmetic circuit for analyzing the output of the light receiving element, and a controller for controlling the sample stage, the automatic gonio stage, and the rotating stage are provided. It can be configured to be connected to the control device.

【0008】また、上記被検レンズから射出された光束
を遮蔽する着脱可能な遮蔽板を設けた構成とすることが
望ましい。
It is preferable that a detachable shielding plate for shielding a light beam emitted from the lens to be inspected is provided.

【0009】また、本発明のレンズ測定方法としては、
光源の光をパターン板に透過し、該透過した光束をコリ
メータにより平行光束とし、該平行光束を移動レンズに
入射して被検レンズの第1面の曲率中心に結像させ、被
検レンズの第1面で反射された光束をハーフミラーで反
射させてパターン板と対称になる位置に設けたエリアセ
ンサに結像させ、被検レンズを光軸中心に回転させて上
記エリアセンサの像で第1の円を描く工程と、上記コリ
メータからの平行光束を移動レンズに入射して被検レン
ズの第2面の曲率中心に結像させ、被検レンズの最終面
で反射された光束を上記ハーフミラーで反射させて上記
エリアセンサに結像させ、被検レンズを光軸中心に回転
させて上記エリアセンサの像で第2の円を描く工程と、
第1と第2の円の中心位置と、そのときの移動レンズの
移動距離とから被検レンズの光軸の傾き及びずれ量を求
め、被検レンズの光軸を修正する工程と、を有すること
を特徴としている。
The lens measuring method of the present invention includes:
The light from the light source is transmitted to the pattern plate, the transmitted light is converted into a parallel light by a collimator, and the parallel light is incident on a moving lens to form an image on the center of curvature of the first surface of the lens to be measured. The light beam reflected by the first surface is reflected by a half mirror to form an image on an area sensor provided at a position symmetrical with the pattern plate, and the test lens is rotated about the optical axis to obtain a second image based on the image of the area sensor. (1) a step of drawing a circle, and the parallel light beam from the collimator is incident on the moving lens to form an image on the center of curvature of the second surface of the test lens, and the light beam reflected on the final surface of the test lens is converted into the half light beam. Reflecting on a mirror to form an image on the area sensor, rotating the test lens about the optical axis, and drawing a second circle on the image of the area sensor;
Calculating the inclination and displacement of the optical axis of the test lens from the center positions of the first and second circles and the moving distance of the moving lens at that time, and correcting the optical axis of the test lens. It is characterized by:

【0010】[0010]

【発明の実施の形態】以下に本発明の実施例を図面によ
り説明する。図1は、本発明の測定装置の1実施例の構
成を示す図である。光源11は、光軸X−Xに平行な筒
体12に支持され、この筒体12には、パターン板13
と、コリメータ14とが一体に組み込まれている。パタ
ーン板13には、スリット13aが開けられ、このスリ
ット13aがコリメータ14の前側焦点に重なる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of one embodiment of the measuring device of the present invention. The light source 11 is supported by a cylindrical body 12 parallel to the optical axis XX.
And the collimator 14 are integrated. A slit 13 a is formed in the pattern plate 13, and the slit 13 a overlaps a front focal point of the collimator 14.

【0011】光源11とコリメータ14との間にはハー
フミラー15が配置され、ハーフミラーのパターン板1
3と鏡面対称な位置にはエリアセンサ16がある。コリ
メータ14の後方には、順に移動レンズ18、被検レン
ズO、結像レンズ19、受光素子20がそれぞれ配置さ
れる。
A half mirror 15 is disposed between the light source 11 and the collimator 14, and the half mirror pattern plate 1 is provided.
An area sensor 16 is provided at a position which is mirror-symmetrical to the position 3. A moving lens 18, a test lens O, an imaging lens 19, and a light receiving element 20 are sequentially arranged behind the collimator 14.

【0012】コリメータ14は取付台21で装置本体2
2に、また、移動レンズ18は移動レンズステージ24
にそれぞれ固定され、移動レンズ18は移動レンズステ
ージ24によって測定装置の光軸X−X上を前後に移動
可能となっている。
The collimator 14 is mounted on the mounting body 21 by the apparatus main body 2.
2 and the moving lens 18 is a moving lens stage 24.
And the movable lens 18 can be moved back and forth on the optical axis XX of the measuring device by the movable lens stage 24.

【0013】被検レンズOは、上下左右、すなわち、光
軸X−Xと直交する面内を移動できる試料台25に取り
付けられ、試料台25は光軸X−Xを中心に回転可能な
回転ステージ26に取り付けられ、回転ステージ26は
自動ゴニオステージ28に取り付けられ、自動ゴニオス
テージ28が装置本体22に固定されている。
The test lens O is mounted on a sample stage 25 which can move up, down, left and right, that is, in a plane orthogonal to the optical axis XX, and the sample stage 25 is rotatable about the optical axis XX. The rotary stage 26 is mounted on a stage 26, and the rotary stage 26 is mounted on an automatic gonio stage 28, and the automatic gonio stage 28 is fixed to the apparatus main body 22.

【0014】被検レンズOの結像レンズ19側には、取
り外しが自在な遮蔽板29がある。結像レンズ19は結
像レンズ取付台30により装置本体22に固定され、受
光素子20は受光素子保持台31に取り付けられ、受光
素子保持台31は自動ステージ32を介して装置本体に
取り付けられている。
On the imaging lens 19 side of the lens O to be inspected, there is a detachable shielding plate 29. The imaging lens 19 is fixed to the apparatus main body 22 by an imaging lens mounting base 30, the light receiving element 20 is mounted on a light receiving element holding base 31, and the light receiving element holding base 31 is mounted on the apparatus main body via an automatic stage 32. I have.

【0015】エリアセンサ16は第1演算回路34を経
て、受光素子20は第2演算回路35を経てマイクロコ
ンピュータからなる制御装置36に接続され、試料台2
5、移動レンズステージ24、自動ステージ32、自動
ゴニオステージ28、回転ステージ26は、コントロー
ラ38を経て制御装置36に接続される。制御装置36
には、制御内容などを示すためのディスプレイ39が設
けられている。
The area sensor 16 is connected via a first arithmetic circuit 34, and the light receiving element 20 is connected via a second arithmetic circuit 35 to a control device 36 comprising a microcomputer.
5. The moving lens stage 24, the automatic stage 32, the automatic goniometer stage 28, and the rotary stage 26 are connected to a control device 36 via a controller 38. Control device 36
Is provided with a display 39 for showing control contents and the like.

【0016】次に、本発明による被検レンズの光軸の調
整方法を説明する。光源11から射出された光束は、パ
ターン板13のスリット13aを通過し、コリメータ1
4で平行光束となり、移動レンズ18を透過して結像す
る。制御装置36は、コントローラ38を介して移動レ
ンズステージ24を光軸X−X方向に移動し、移動レン
ズ18による像が被検レンズOの第1面の曲率中心P1
に結像するように調整する。結像点からの光は、第1面
で反射され、反射光束は、来た光路を戻り、ハーフミラ
ー15に達する。そしてこのハーフミラー15で反射さ
れ、パターン板13と対称な位置に設けられたエリアセ
ンサ16上に点P12として結像する。
Next, a method for adjusting the optical axis of the lens to be inspected according to the present invention will be described. The light beam emitted from the light source 11 passes through the slit 13 a of the pattern plate 13 and
At 4, the light beam becomes a parallel light beam, passes through the moving lens 18 and forms an image. The controller 36 moves the movable lens stage 24 in the optical axis XX direction via the controller 38, and the image by the movable lens 18 is moved to the center of curvature P1 of the first surface of the lens O to be measured.
Adjust to form an image. Light from the image forming point is reflected by the first surface, and the reflected light flux returns to the half mirror 15 by returning along the optical path. Then, the light is reflected by the half mirror 15 and forms an image as a point P12 on an area sensor 16 provided at a position symmetrical to the pattern plate 13.

【0017】次に、制御装置36はコントローラ38を
介して回転ステージ26を駆動し、回転ステージ26は
被検レンズOを、光軸を中心として回転する。すると、
エリアセンサ16上に結像していた点P12は、図2に
示すように、偏心量の回転半径Z1の円を描く。
Next, the controller 36 drives the rotary stage 26 via the controller 38, and the rotary stage 26 rotates the lens O to be measured about the optical axis. Then
The point P12 imaged on the area sensor 16 draws a circle having an eccentric amount of a rotation radius Z1, as shown in FIG.

【0018】次に、制御装置36はコントローラ38を
介して移動レンズステージ24を駆動し、移動レンズの
像が被検レンズの最終面の曲率中心P2に結像するよう
にする。エリアセンサ16には点P22が結像する。そ
して、回転ステージ26を回転し、偏心量の回転半径Z
2の円を描く。
Next, the controller 36 drives the movable lens stage 24 via the controller 38 so that the image of the movable lens is formed on the center of curvature P2 of the final surface of the lens to be inspected. A point P22 forms an image on the area sensor 16. Then, the rotation stage 26 is rotated, and the rotation radius Z of the eccentric amount is
Draw a circle of 2.

【0019】図3に示すように、被検レンズOの第1面
と最終面の偏心中心O1とO2の座標を求め、O1から
O2に移動したときの移動レンズ18の移動量Lを求め
ると、装置の光軸X−Xと、被検レンズOの光軸との傾
きθzは、 θz=(O1の座標−O2の座標)/移動量L より求めることができる。また、軸のずれ量δは、O
1,O2の中点と光軸との距離で求めることができる。
As shown in FIG. 3, the coordinates of the eccentric centers O1 and O2 of the first surface and the final surface of the lens O to be inspected are obtained, and the moving amount L of the moving lens 18 when moving from O1 to O2 is obtained. The inclination θz between the optical axis XX of the apparatus and the optical axis of the lens O to be inspected can be determined by the following formula: θz = (coordinate of O1−coordinate of O2) / movement amount L. In addition, the amount of axis deviation δ is O
It can be obtained from the distance between the midpoint of 1, O2 and the optical axis.

【0020】そこで、試料台25と自動ゴニオステージ
28とでずれ量δと傾きθzとを補正する。具体的には
エリアセンサ16の出力から第1演算回路34がO1,
O2の座標を検出し、コントローラ38が移動量Lを算
出する。この結果から制御装置36がθzとδを算出
し、コントローラ38を介して試料台25と自動ゴニオ
ステージ28に指示を出す。こうすることによって、被
検レンズOの光軸と測定装置の光軸X−X−とは完全に
重なり合う。この後、移動レンズ18と遮蔽板29とを
取り外し、コリメータ14からの光束を被検レンズOに
入射させ、被検レンズOから射出された光束を受光素子
20上に結像させ、光像P0をフーリエ変換することに
より被検レンズのMTFを測定する。
Therefore, the shift amount δ and the inclination θz are corrected between the sample stage 25 and the automatic gonio stage 28. Specifically, the first arithmetic circuit 34 outputs O1,
The coordinates of O2 are detected, and the controller 38 calculates the movement amount L. The controller 36 calculates θz and δ from the result, and issues an instruction to the sample stage 25 and the automatic goniostage 28 via the controller 38. By doing so, the optical axis of the lens O to be inspected and the optical axis XX- of the measuring device completely overlap. Thereafter, the moving lens 18 and the shielding plate 29 are removed, the light beam from the collimator 14 is made incident on the lens O to be tested, and the light beam emitted from the lens O is formed on the light receiving element 20 to form the light image P0. Is subjected to Fourier transform to measure the MTF of the lens to be measured.

【0021】[0021]

【発明の効果】以上に説明したように本発明によれば、
被検レンズの光軸の測定装置の光軸に対する傾きを精度
よく計測でき、かつ修正できるので、被検レンズの測定
が高精度で測定できる。
According to the present invention as described above,
Since the inclination of the optical axis of the test lens with respect to the optical axis of the measuring device can be accurately measured and corrected, the measurement of the test lens can be performed with high accuracy.

【0022】遮蔽板を設ける構成とすれば、被検レンズ
以外からの反射光などを遮蔽でき、光軸の傾きの測定が
やりやすくなる。
With the configuration in which the shielding plate is provided, it is possible to shield reflected light from the lens other than the lens to be inspected, and it becomes easy to measure the inclination of the optical axis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のレンズ測定装置の1実施例を示す構成
図である。
FIG. 1 is a configuration diagram showing one embodiment of a lens measuring device of the present invention.

【図2】エリアセンサの拡大図である。FIG. 2 is an enlarged view of an area sensor.

【図3】被検レンズの光軸の傾きθzを求める方法を説
明する図である。
FIG. 3 is a diagram for explaining a method of obtaining a tilt θz of an optical axis of a test lens.

【図4】従来のレンズ測定装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional lens measuring device.

【符号の説明】[Explanation of symbols]

O 被検レンズ 11 光源 13 パターン板 14 コリメータ 15 ハーフミラー 16 エリアセンサ 18 移動レンズ 19 結像レンズ 20 受光素子 25 試料台 26 回転ステージ 28 自動ゴニオステージ 29 遮蔽板 34 第1演算回路 35 第2演算回路 36 制御装置 38 コントローラ O lens to be inspected 11 light source 13 pattern plate 14 collimator 15 half mirror 16 area sensor 18 moving lens 19 imaging lens 20 light receiving element 25 sample table 26 rotation stage 28 automatic goniometer stage 29 shielding plate 34 first operation circuit 35 second operation circuit 36 control device 38 controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源と、該光源から光を受けるパターン
板と、該パターン板を前側焦点位置とするコリメータ
と、上記パターン板とコリメータとの間に設けられたハ
ーフミラーと、該ハーフミラーに対して上記パターン板
と対称位置に設けられたエリアセンサと、上記コリメー
タからの光束内にあって被検レンズを光軸と直交する面
内に移動自在な試料台と、該試料台と上記コリメータと
の間に着脱可能にかつ光軸方向に移動自在に設けられた
移動レンズと、被検レンズを光軸中心に回転する回転ス
テージと、被検レンズの光軸を調整する自動ゴニオステ
ージと、被検レンズから射出された光束が入射する結像
レンズと、該結像レンズの結像点近傍に置かれ結像レン
ズの光軸方向に進退自在な受光素子と、装置全体を制御
する制御装置とを有することを特徴とするレンズの測定
装置。
1. A light source, a pattern plate receiving light from the light source, a collimator having the pattern plate as a front focal position, a half mirror provided between the pattern plate and the collimator, An area sensor provided at a position symmetrical with respect to the pattern plate, a sample table in a light beam from the collimator, the sample lens being movable in a plane orthogonal to the optical axis, and the sample table and the collimator A movable lens provided detachably between the lens and the optical axis direction, a rotating stage that rotates the test lens around the optical axis, and an automatic gonio stage that adjusts the optical axis of the test lens, An imaging lens on which a light beam emitted from a lens to be detected enters, a light receiving element placed near an imaging point of the imaging lens and capable of moving back and forth in the optical axis direction of the imaging lens, and a control device for controlling the entire apparatus Have An apparatus for measuring a lens, comprising:
【請求項2】 上記エリアセンサの出力を解析する第1
演算回路と、上記受光素子の出力を解析する第2演算回
路と、上記試料台、自動ゴニオステージ及び回転ステー
ジを制御するコントローラとが上記制御装置に接続され
ていることを特徴とする請求項1記載のレンズの測定装
置。
2. A first method for analyzing the output of the area sensor.
2. The controller according to claim 1, wherein an arithmetic circuit, a second arithmetic circuit for analyzing an output of the light receiving element, and a controller for controlling the sample stage, the automatic gonio stage, and the rotary stage are connected to the control device. The lens measuring device according to the above.
【請求項3】 上記被検レンズから射出された光束を遮
蔽する着脱可能な遮蔽板を設けたことを特徴とする請求
項1又は2記載のレンズの測定装置。
3. The lens measuring apparatus according to claim 1, further comprising a detachable shielding plate for shielding a light beam emitted from the lens to be inspected.
【請求項4】 光源の光をパターン板に透過し、該透過
した光束をコリメータにより平行光束とし、該平行光束
を移動レンズに入射して被検レンズの第1面の曲率中心
に結像させ、被検レンズの第1面で反射された光束をハ
ーフミラーで反射させてパターン板と対称になる位置に
設けたエリアセンサに結像させ、被検レンズを光軸中心
に回転させて上記エリアセンサの像で第1の円を描く工
程と、 上記コリメータからの平行光束を移動レンズに入射して
被検レンズの第2面の曲率中心に結像させ、被検レンズ
の最終面で反射された光束を上記ハーフミラーで反射さ
せて上記エリアセンサに結像させ、被検レンズを光軸中
心に回転させて上記エリアセンサの像で第2の円を描く
工程と、 第1と第2の円の中心位置と、そのときの移動レンズの
移動距離とから被検レンズの光軸の傾き及びずれ量を求
め、被検レンズの光軸を修正する工程と、 を有することを特徴とするレンズの測定方法。
4. A light from a light source is transmitted through a pattern plate, the transmitted light is converted into a parallel light by a collimator, and the parallel light is incident on a moving lens to form an image on the center of curvature of the first surface of the lens to be measured. A light beam reflected by the first surface of the test lens is reflected by a half mirror to form an image on an area sensor provided at a position symmetrical to the pattern plate, and the test lens is rotated around the optical axis to form the area. Drawing a first circle with the image of the sensor; and projecting a parallel light beam from the collimator into the moving lens to form an image at the center of curvature of the second surface of the lens to be inspected and reflected by the final surface of the lens to be inspected. Reflecting the reflected light beam by the half mirror to form an image on the area sensor, rotating the test lens about the optical axis, and drawing a second circle on the image of the area sensor; The position of the center of the circle and the movement of the moving lens at that time Distance calculated slope and shift amount of the optical axis of the lens and a method of measuring a lens, characterized in that and a step of correcting the optical axis of the lens.
JP27330997A 1997-09-22 1997-09-22 Measuring device and method for lens Pending JPH1194700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27330997A JPH1194700A (en) 1997-09-22 1997-09-22 Measuring device and method for lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27330997A JPH1194700A (en) 1997-09-22 1997-09-22 Measuring device and method for lens

Publications (1)

Publication Number Publication Date
JPH1194700A true JPH1194700A (en) 1999-04-09

Family

ID=17526084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27330997A Pending JPH1194700A (en) 1997-09-22 1997-09-22 Measuring device and method for lens

Country Status (1)

Country Link
JP (1) JPH1194700A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994336A2 (en) * 1998-10-12 2000-04-19 Hoya Corporation Spectacle lens evaluation method and evaluation device
US6222621B1 (en) 1998-10-12 2001-04-24 Hoyo Corporation Spectacle lens evaluation method and evaluation device
US7627449B2 (en) 2005-12-23 2009-12-01 Hon Hai Precision Industry Co., Ltd. Apparatus for measuring eccentricity of optical module
KR100930368B1 (en) 2008-01-22 2009-12-08 주식회사 코렌 Measuring system for optical lens and method for evaluating lens characteristics using same
CN109186961A (en) * 2018-10-16 2019-01-11 天津中精微仪器设备有限公司 A kind of lens focus measuring device
CN113588213A (en) * 2021-04-29 2021-11-02 上海鱼微阿科技有限公司 Binocular camera optical axis calibration method and device for VR test

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994336A2 (en) * 1998-10-12 2000-04-19 Hoya Corporation Spectacle lens evaluation method and evaluation device
EP0994336A3 (en) * 1998-10-12 2000-05-31 Hoya Corporation Spectacle lens evaluation method and evaluation device
US6222621B1 (en) 1998-10-12 2001-04-24 Hoyo Corporation Spectacle lens evaluation method and evaluation device
US7627449B2 (en) 2005-12-23 2009-12-01 Hon Hai Precision Industry Co., Ltd. Apparatus for measuring eccentricity of optical module
KR100930368B1 (en) 2008-01-22 2009-12-08 주식회사 코렌 Measuring system for optical lens and method for evaluating lens characteristics using same
CN109186961A (en) * 2018-10-16 2019-01-11 天津中精微仪器设备有限公司 A kind of lens focus measuring device
CN113588213A (en) * 2021-04-29 2021-11-02 上海鱼微阿科技有限公司 Binocular camera optical axis calibration method and device for VR test

Similar Documents

Publication Publication Date Title
US9945938B2 (en) Self-calibrating laser tracker and self-calibration method
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
US8760666B2 (en) Method and apparatus for measuring spacings between optical surfaces of an optical system
EP2549222B1 (en) Use of an abscissa calibration jig, abscissa calibration method and laser interference measuring apparatus
JP2003503726A (en) Apparatus and method for evaluating targets larger than a sensor measurement aperture
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
JPH0593888A (en) Method and device for determining optical axis of off-set mirror
JP5517097B2 (en) Refractive index measuring device and refractive index measuring method
JPH02161332A (en) Device and method for measuring radius of curvature
JPH1194700A (en) Measuring device and method for lens
CN107305119A (en) The scaling method and test platform of a kind of inclining test for the long optical flat of standard
JPH1089935A (en) Device for measuring aspherical interference
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JPH0360260B2 (en)
JP4007473B2 (en) Wavefront shape measurement method
JP5380889B2 (en) Refractive index measuring method, dispersion measuring method, refractive index measuring device, and dispersion measuring device
JP3167870B2 (en) Apparatus and method for measuring eccentricity of aspherical lens
JP2686146B2 (en) Interferometer
JP3437479B2 (en) Birefringence measurement device
JP2000230883A (en) Decentering measuring apparatus and its adjusting method
JPH0534120A (en) Method and apparatus for measuring shape of surface
JP2591143B2 (en) 3D shape measuring device
JPH08166209A (en) Polygon mirror evaluating device
JP2006090950A (en) Measuring system of inclination of surface to be tested
JP3066056B2 (en) Method and apparatus for measuring eccentricity of lens