JP3437479B2 - Birefringence measurement device - Google Patents

Birefringence measurement device

Info

Publication number
JP3437479B2
JP3437479B2 JP05816499A JP5816499A JP3437479B2 JP 3437479 B2 JP3437479 B2 JP 3437479B2 JP 05816499 A JP05816499 A JP 05816499A JP 5816499 A JP5816499 A JP 5816499A JP 3437479 B2 JP3437479 B2 JP 3437479B2
Authority
JP
Japan
Prior art keywords
lens
inspected
optical system
light receiving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05816499A
Other languages
Japanese (ja)
Other versions
JP2000258339A (en
Inventor
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP05816499A priority Critical patent/JP3437479B2/en
Publication of JP2000258339A publication Critical patent/JP2000258339A/en
Application granted granted Critical
Publication of JP3437479B2 publication Critical patent/JP3437479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複屈折測定装置に
関し、詳しくは、レーザプリンタ等の光書き込み用レン
ズ、カメラレンズ、光ピックアップ用のレンズ等のプラ
スチックレンズの評価を行なうためにその複屈折を測定
する複屈折測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringence measuring device, and more particularly, to a birefringence for evaluating a plastic lens such as an optical writing lens for a laser printer, a camera lens, a lens for an optical pickup. The present invention relates to a birefringence measuring device for measuring.

【0002】[0002]

【従来の技術】従来のこの種のプラスチックレンズの複
屈折を測定する方法としては、位相変調法や回転検光子
法等が知られている。これらの方法にあっては、透明な
被検レンズに平行ビームを照射し、その透過光をフォト
ダイオード等の受光素子で受光して、被検レンズの複屈
折による透過光の偏光状態の変化を検知することにより
被検レンズの複屈折を測定するようにしている。
2. Description of the Related Art As a conventional method for measuring the birefringence of a plastic lens of this type, a phase modulation method, a rotation analyzer method and the like are known. In these methods, a transparent beam is irradiated onto a lens to be inspected, the transmitted light is received by a light receiving element such as a photodiode, and the polarization state of the transmitted light is changed by birefringence of the lens to be inspected. By detecting, the birefringence of the lens to be inspected is measured.

【0003】特に、位相変調法では、光弾性変調器を利
用して照射光を位相変調させ、被検レンズを透過した光
のビート信号と変調信号の位相差から複屈折を求めるも
のであり、また、回転検光子法では被検レンズの後に設
置した検光子を回転させながら検光子の後に設置した受
光素子によって透過光を受光し、検光子の回転に伴う受
光素子からの出力の変化によって複屈折を求めるもので
ある。
Particularly, in the phase modulation method, the irradiation light is phase-modulated using a photoelastic modulator, and the birefringence is obtained from the phase difference between the beat signal and the modulation signal of the light transmitted through the lens to be tested. In the rotating analyzer method, the transmitted light is received by the light receiving element installed after the analyzer while rotating the analyzer installed after the lens to be inspected, and the output from the light receiving element changes with the rotation of the analyzer. It seeks refraction.

【0004】また、その他の測定方法としては、拡大し
た平行光を被検レンズに照射し、その透過光をCCDカ
メラ等の2次元センサで受光して被検レンズの複屈折を
求めるという複屈折の面計測方法がある(このような計
測方法としては、特開平4−58138号公報、特開平
6−147986号公報、特開平7−77490号公報
参照)。
Further, as another measuring method, a birefringence is obtained in which a magnified parallel light is applied to a lens to be inspected and the transmitted light is received by a two-dimensional sensor such as a CCD camera to obtain birefringence of the lens to be inspected. There are surface measurement methods described in Japanese Patent Application Laid-Open No. 4-58138, Japanese Patent Application Laid-Open No. 6-147986, and Japanese Patent Application Laid-Open No. 7-77490.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
位相変調法や回転検光子法にあっては、例えば、細い平
行ビームを被検レンズに照射してフォトダイオードで受
光する、所謂、点計測であるため、被検レンズの全面を
測定するためには、被検レンズや測定装置を調整する必
要がある上に、平面でない球面、あるいは非球面レンズ
(非平行板)を測定する場合に、そのセッティングが困
難であるという不具合が発生してしまった。
However, in the former phase modulation method and rotation analyzer method, for example, in so-called point measurement, in which a thin parallel beam is applied to the lens to be detected and is received by a photodiode. Therefore, in order to measure the entire surface of the lens to be inspected, it is necessary to adjust the lens to be inspected and the measuring device, and when measuring a spherical surface or an aspherical lens (non-parallel plate) that is not a flat surface, I had a problem that the setting was difficult.

【0006】また、後者の面計測方法にあっては、面計
測であるため、被検レンズの調整を行なう必要はない
が、光書き込み用のレンズ等のような口径の大きなレン
ズやレンズのNAが大きい場合に、レンズの中央部と周
縁部とで屈折の差が大きくなり、透過像に光学的な歪み
が生じて測定値と被検レンズ上での位置との対応がとれ
ないという問題が発生してしまう。
Further, in the latter surface measuring method, since the surface measurement is performed, it is not necessary to adjust the lens to be inspected, but a lens having a large aperture such as a lens for optical writing or the NA of the lens is used. When the value is large, the difference in refraction between the central part and the peripheral part of the lens becomes large, and optical distortion occurs in the transmitted image, which causes a problem that the measured value and the position on the lens under test cannot be matched. Will occur.

【0007】また、被検レンズの周縁部を透過した光線
が重なり合ったり、周縁部を透過した光線が受光素子ま
での光学系の経路の中でケラレて受光素子まで到達せず
に、透過像の被検レンズ周縁部に相当する部分が影にな
ったりするという問題が発生してしまった。
Further, the light rays transmitted through the peripheral portion of the lens to be inspected are overlapped with each other, or the light rays transmitted through the peripheral portion are not vignetted in the optical system path to the light receiving element and do not reach the light receiving element. There has been a problem that a portion corresponding to the peripheral portion of the lens to be inspected becomes a shadow.

【0008】すなわち、被検レンズの全面に亘って正確
な複屈折を測定することができなかったのである。
That is, it was not possible to accurately measure the birefringence over the entire surface of the lens to be inspected.

【0009】また、レンズの全面に亘って複屈折を正確
に測定しようとする場合には、被検レンズの周縁部およ
び中央部と受光素子とが略結像関係になっている必要が
ある。何故なら、そのような結像関係になっていない
と、ピントのずれた(ピンぼけ)歪んだ被検レンズの像
が得られてしまうため、被検レンズの周縁に相当する部
分が太く観察されてどこが周縁なのか分からなくなり、
また、被検レンズの表面上にわずかな傷やごみがある場
合に、それらが太く大きく観察されて被検レンズの透過
像に光量ムラができるため、測定される複屈折位相差の
絶対値および分布に誤差を生じさせてしまうからであ
る。
Further, in order to accurately measure the birefringence over the entire surface of the lens, it is necessary that the peripheral edge portion and the central portion of the lens to be inspected and the light receiving element have a substantially image forming relationship. The reason is that if such an imaging relationship is not established, an image of the lens under test that is out of focus (out of focus) will be obtained, so the portion corresponding to the periphery of the lens under test is observed thick. I don't know where is the edge,
In addition, when there are slight scratches or dust on the surface of the lens to be inspected, they are observed as thick and large and uneven light amount can occur in the transmitted image of the lens to be inspected, so the absolute value of the birefringence phase difference measured and This is because it causes an error in the distribution.

【0010】特に、NAの大きなレンズの場合には、レ
ンズの中央部と周縁部で受光素子までの距離(光学系の
光軸方向長さ)の差が大きくなり、一方の部分にピント
を合わせた場合に、他方の部分のピンぼけの度合いが激
しくなるため、それによる測定誤差が大きくなってしま
う。
In particular, in the case of a lens having a large NA, the difference in the distance to the light receiving element (length in the optical axis direction of the optical system) between the central portion and the peripheral portion of the lens becomes large, and one portion is focused. In that case, the degree of out-of-focus of the other portion becomes severe, and the measurement error due to it becomes large.

【0011】ここで、被検レンズの表面近傍と受光素子
とを略結像関係にするためには、結像光学系の間隔を可
変にしてフォーカシング調整を行なっても良いが、その
場合には、結像光学系の倍率がレンズの測定される場所
によって異なってしまい、レンズの像の大きさが異なっ
てしまうので、レンズ全面に対する複屈折の分布を把握
しようとすると、測定結果の複屈折分布を二次元画像と
して拡大、縮小したりする等して処理するのに時間がか
かる上に、データの加工をすることになることから測定
値の信頼性も低下してしまう。
Here, in order to make the vicinity of the surface of the lens to be inspected and the light receiving element have a substantially image-forming relationship, the distance between the image-forming optical systems may be varied to perform the focusing adjustment. , The magnification of the imaging optical system varies depending on the location where the lens is measured, and the size of the image of the lens varies, so when trying to grasp the distribution of birefringence over the entire surface of the lens, the birefringence distribution of the measurement result It takes a long time to process the image as a two-dimensional image by enlarging or reducing it, and since the data is processed, the reliability of the measured value also decreases.

【0012】そこで本発明は、被検レンズの全面に亘っ
て高精度に複屈折を測定することができるとともに、測
定結果の処理による測定時間が増大することおよび測定
値の信頼性が低下することを防止することができる複屈
折測定装置を提供することを目的としている。
Therefore, according to the present invention, the birefringence can be measured with high accuracy over the entire surface of the lens to be inspected, the measurement time is increased by processing the measurement result, and the reliability of the measured value is lowered. An object of the present invention is to provide a birefringence measuring device capable of preventing the above.

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明は、
上記課題を解決するために、光源と、該光源から照射さ
れた光を所定の偏光状態に変化させる第1の偏光手段
と、該第1の偏光手段によって偏光された光を発散また
は収束させて被検レンズに入射する照射光学系と、略光
学系の回りに回転可能に設けられるとともに、前記被検
レンズを透過した光の偏光状態を等角度毎に可変させる
第2の偏光手段と、該第2の偏光手段を透過した光を受
光する受光手段と、前記第2の偏光手段と受光手段の間
に介装され、該第2の偏光手段を透過する光を受光手段
の受光面上に結像させる結像光学系と、前記受光手段に
よって等角度毎に受光された受光データに基づいて前記
被検レンズの複屈折を演算する演算手段と、を備えた複
屈折測定装置において、前記結像光学系および受光手段
を一体的に保持する保持部材と、該保持部材を光学系の
光軸方向および該光軸方向と略直交する方向に移動させ
る保持部材制御手段と、前記被検レンズ面の奥行き方向
における厚みデータを入力する入力手段とを設け、前記
保持部材制御手段は、前記入力手段から入力された厚み
データに基づき、前記結像光学系に対向する被検レンズ
の表面近傍と前記受光素子の受光面が常に略結像関係に
なるように、前記保持部材を光学系の光軸方向および該
光軸方向と略直交する方向に一体的に移動させることを
特徴としている。
The invention according to claim 1 is
In order to solve the above problems, a light source, a first polarization unit that changes the light emitted from the light source into a predetermined polarization state, and a light beam that is polarized by the first polarization unit are diverged or converged. An irradiation optical system that is incident on the lens to be inspected, a second polarization unit that is rotatably provided around the optical system, and that changes the polarization state of the light that has passed through the lens to be inspected at equal angles. Light receiving means for receiving the light transmitted through the second polarizing means, and light interposed between the second polarizing means and the light receiving means for transmitting the light passing through the second polarizing means on the light receiving surface of the light receiving means. A birefringence measuring apparatus comprising: an image forming optical system for forming an image; and a calculation means for calculating a birefringence of the lens to be inspected based on received light data received by the light receiving means at equal angles. Holds the image optical system and the light receiving unit as one A holding member, a holding member control means for moving the holding member in the optical axis direction of the optical system and a direction substantially orthogonal to the optical axis direction, and an input means for inputting thickness data of the lens surface to be tested in the depth direction. Based on the thickness data input from the input unit, the holding member control unit always has a substantially image-forming relationship between the surface of the lens to be inspected facing the image forming optical system and the light receiving surface of the light receiving element. As described above, the holding member is integrally moved in the optical axis direction of the optical system and in a direction substantially orthogonal to the optical axis direction.

【0014】その場合、被検レンズの厚みデータに基づ
き、結像光学系に対向する被検レンズの表面近傍と受光
素子の受光面が常に略結像関係になるように、保持部材
を光学系の光軸方向および光軸方向と略直交する方向に
一体的に移動させることにより、被検レンズの複屈折を
測定するので、被検レンズの中央部および周縁部に拘ら
ず測定結果に対するピンぼけの影響を小さくすることが
できる。
In this case, based on the thickness data of the lens to be inspected, the holding member is used as an optical system so that the vicinity of the surface of the lens to be inspected facing the imaging optical system and the light receiving surface of the light receiving element are always in a substantially image forming relationship. Since the birefringence of the lens to be measured is measured by integrally moving the lens in the optical axis direction and in a direction substantially orthogonal to the optical axis direction, the blurring of the measurement result regardless of the center portion and the peripheral portion of the lens is detected. The impact can be reduced.

【0015】また、結像光学系および受光素子を被検レ
ンズに対して一体的に移動させるため、結像光学系の倍
率を常に一定にすることができ、被検レンズの全面に対
する複屈折の分布を知るために測定結果を処理するのを
不要にできる。
Further, since the image forming optical system and the light receiving element are moved integrally with the lens to be inspected, the magnification of the image forming optical system can always be kept constant, and the birefringence of the entire surface of the lens to be inspected can be suppressed. It is not necessary to process the measurement results to know the distribution.

【0016】この結果、被検レンズの全面に亘って高精
度に複屈折を測定することができるとともに、測定結果
の処理による測定時間が増大することおよび測定値の信
頼性が低下することを防止することができる。
As a result, the birefringence can be measured with high accuracy over the entire surface of the lens to be inspected, and it is possible to prevent the measurement time from being increased and the reliability of the measured value from being lowered. can do.

【0017】また、被検レンズの厚みデータに基づき、
結像光学系に対向する被検レンズの表面近傍と受光素子
の受光面が常に略結像関係になるように、保持部材を光
学系の光軸方向および光軸方向と略直交する方向に一体
的に移動させることにより、被検レンズの複屈折を測定
するので、簡素、かつ低コストな装置構成で簡単に複屈
折を測定することができる。
Further, based on the thickness data of the lens to be inspected,
The holding member is integrated in the optical axis direction of the optical system and in a direction substantially orthogonal to the optical axis direction so that the vicinity of the surface of the lens to be tested facing the imaging optical system and the light receiving surface of the light receiving element are always in a substantially image forming relationship. Since the birefringence of the lens to be measured is measured by moving the lens automatically, the birefringence can be easily measured with a simple and low-cost device configuration.

【0018】具体的には、被検レンズの全面と受光素子
との結像関係を保つには、受光素子および結像光学系を
光学系の光軸方向と直交する方向に移動させ、被検レン
ズの測定場所が変わる度に被検レンズの表面のピントが
合うように受光素子および結像光学系を光学系の光軸方
向に移動させる必要がある。
Specifically, in order to maintain the image forming relationship between the entire surface of the lens to be inspected and the light receiving element, the light receiving element and the image forming optical system are moved in a direction orthogonal to the optical axis direction of the optical system to be inspected. It is necessary to move the light receiving element and the imaging optical system in the optical axis direction of the optical system so that the surface of the lens to be inspected is in focus each time the lens measurement location changes.

【0019】その場合に、受光素子および結像光学系の
移動に関しては、受光素子から被検レンズ表面までの距
離を検知する検知手段を別途設けて、その距離が所定量
になるように受光素子および結像光学系を移動すること
が考えられ、また、受光素子で撮像した被検レンズの画
像を処理してピンぼけの具合を確認しながらピンぼけが
改善される方向に受光素子および結像光学系を移動させ
ることも考えられる。
In this case, regarding the movement of the light receiving element and the imaging optical system, a detecting means for detecting the distance from the light receiving element to the surface of the lens to be inspected is separately provided, and the light receiving element is adjusted so that the distance becomes a predetermined amount. It is conceivable to move the image forming optical system and the image receiving optical element and the image forming optical system in a direction in which the defocus is improved while processing the image of the lens to be inspected picked up by the light receiving element to check the degree of defocus. It is also possible to move.

【0020】ところが、受光素子から被検レンズ表面ま
での距離を検知する手段を設けると、装置構成が複雑か
つ、コスト高なものになり、また、画像処理を施すと処
理に時間がかかって測定時間が長くなってしまう。
However, if a means for detecting the distance from the light receiving element to the surface of the lens to be inspected is provided, the apparatus structure becomes complicated and costly, and if image processing is performed, it takes time to perform the measurement. It takes a long time.

【0021】請求項1記載の発明では、予め、被検レン
ズの厚みデータを入力し、そのデータに基づいて結像光
学系に対向する被検レンズの表面近傍と受光素子の受光
面が常に略結像関係になるように、保持部材を光学系の
光軸方向および光軸方向と略直交する方向に一体的に移
動させるので、簡素、かつ低コストな装置構成で簡単に
複屈折を測定することができる。
According to the first aspect of the present invention, the thickness data of the lens to be inspected is input in advance, and the vicinity of the surface of the lens to be inspected facing the imaging optical system and the light receiving surface of the light receiving element are always substantially based on the data. Since the holding member is integrally moved in the optical axis direction of the optical system and in a direction substantially orthogonal to the optical axis direction so as to form an image-forming relationship, the birefringence can be easily measured with a simple and low-cost device configuration. be able to.

【0022】請求項2記載の発明は、上記課題を解決す
るために、請求項1記載の発明において、前記被検レン
ズと第1の偏光素子の間に前記被検レンズに平行な光束
を照射する平行光学系を介装するとともに、前記被検レ
ンズを光学系の光軸方向と略直交する方向に移動させる
被検レンズ制御手段を設け、前記入力手段から入力され
た厚みデータに基づき、前記結像光学系に対向する被検
レンズの表面近傍と前記受光素子の受光面が常に略結像
関係になるように、被検レンズ制御手段が光学系の光軸
方向と略直交する方向に移動するとともに、前記保持部
材制御手段が光学系の光軸方向に移動することを特徴と
している。
In order to solve the above-mentioned problems, the invention of claim 2 irradiates a light flux parallel to the lens to be inspected between the lens to be inspected and the first polarizing element in the invention of claim 1. While providing a parallel optical system to provide a test lens control means for moving the test lens in a direction substantially orthogonal to the optical axis direction of the optical system, based on the thickness data input from the input means, The test lens control means is moved in a direction substantially orthogonal to the optical axis direction of the optical system so that the vicinity of the surface of the test lens facing the imaging optical system and the light receiving surface of the light receiving element always have a substantially imaging relationship. In addition, the holding member control means moves in the optical axis direction of the optical system.

【0023】このようにしたのは、被検レンズの全面に
亘って複屈折の高精度な測定を安価、かつ容易に実現さ
せることができる測定装置を得るためである。
This is done in order to obtain a measuring device which can easily and inexpensively realize highly accurate measurement of birefringence over the entire surface of the lens to be inspected.

【0024】以下、その理由を説明する。The reason will be described below.

【0025】被検レンズの焦点距離が長い場合に、被検
レンズに発散または収束光を照射して被検レンズの透過
光を平行化しようとすると、測定装置が大型化してしま
う。したがって、このようなときには被検レンズに照射
する光を予め平行化しておき、被検レンズに平行光を照
射することで測定装置の大型化を防止する。そして、そ
のときに被検レンズの全面を測定する場合は、結像光学
系および受光手段を光学系の光軸と略直交する方向に移
動させずに固定し、その代わりに被検レンズを光学系の
光軸と略垂直な方向に移動させながら被検レンズの全面
を観察する。
If the test lens has a long focal length and the diverging or converging light is applied to the test lens to collimate the transmitted light of the test lens, the measuring apparatus becomes large. Therefore, in such a case, the light to be radiated to the lens to be inspected is preliminarily collimated, and the parallel light is radiated to the lens to be inspected to prevent the measuring device from becoming large. Then, at that time, when measuring the entire surface of the lens to be inspected, the imaging optical system and the light receiving means are fixed without moving in a direction substantially orthogonal to the optical axis of the optical system, and instead, the lens to be inspected is optically moved. The entire surface of the lens to be inspected is observed while moving in a direction substantially perpendicular to the optical axis of the system.

【0026】請求項2記載の発明は、被検レンズの光学
系の光軸方向における厚みデータと、被検レンズの光学
系光軸と略直交する方向における位置(被検レンズの主
走査方向におけるレンズ高さ)のデータから、結像光学
系および受光手段が光学系の光軸方向に移動すべき量を
計算し、その分だけ結像光学系および受光手段を移動さ
せる。
According to a second aspect of the invention, the thickness data in the optical axis direction of the optical system of the lens to be inspected and the position in the direction substantially orthogonal to the optical axis of the optical system of the lens to be inspected (in the main scanning direction of the lens to be inspected). From the lens height data, the amount by which the imaging optical system and the light receiving means should move in the optical axis direction of the optical system is calculated, and the imaging optical system and the light receiving means are moved accordingly.

【0027】すなわち、結像光学系および受光手段を光
学系の光軸方向に、被検レンズを光軸と略直交する方向
にそれぞれ移動させながら被検レンズの表面近傍と受光
素子との結像関係を保ちつつ、被検レンズの全面を測定
することにより、被検レンズの全面に亘って複屈折の高
精度な測定を安価、かつ容易に実現させることができる
測定装置を得ることができるのである。
That is, while the imaging optical system and the light receiving means are moved in the optical axis direction of the optical system, and the lens under test is moved in a direction substantially orthogonal to the optical axis, an image is formed between the surface of the lens under test and the light receiving element. By measuring the entire surface of the lens to be inspected while maintaining the relationship, it is possible to obtain a measuring device that can inexpensively and easily realize highly accurate measurement of birefringence over the entire surface of the lens to be inspected. is there.

【0028】[0028]

【発明の実施の形態】以下、本発明を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings.

【0029】図1、2は本発明に係る複屈折測定装置の
第1実施形態を示す図である。
1 and 2 are views showing a first embodiment of a birefringence measuring apparatus according to the present invention.

【0030】まず、構成を説明する。図1において、1
は半導体レーザ(光源)であり、このレーザ光源1から
の直線偏光の光ビームはλ/4板(第1の偏光手段)2
によって円偏光に変換されるようになっている。この円
偏光は顕微鏡対物レンズと同等の作用を有するレンズ
(照射光学系)3によって発散光に変換された後、被検
レンズ4に入射されるようになっており、この被検レン
ズ4は図示しないホルダーに保持されている。なお、被
検レンズ4としては、レーザプリンタ等の光書き込み用
レンズ、カメラレンズ、光ピックアップ用のレンズ等の
プラスチックレンズが用いられる。
First, the structure will be described. In FIG. 1, 1
Is a semiconductor laser (light source), and the linearly polarized light beam from the laser light source 1 is a λ / 4 plate (first polarizing means) 2
Is converted into circularly polarized light. This circularly polarized light is converted into divergent light by a lens (irradiation optical system) 3 having the same function as that of a microscope objective lens, and is then incident on a lens 4 to be inspected. Not held in the holder. As the lens 4 to be inspected, a plastic lens such as a lens for optical writing such as a laser printer, a camera lens, a lens for an optical pickup or the like is used.

【0031】また、レンズ3はステージ5に搭載されて
おり、このステージ5にはスペイシャルフィルタとして
作用するピンホール6が搭載され、ステージ5は図示し
ないステッピングモータに駆動されることにより光学系
の光軸方向に移動可能になっている。
Further, the lens 3 is mounted on a stage 5, a pinhole 6 acting as a spatial filter is mounted on the stage 5, and the stage 5 is driven by a stepping motor (not shown) to form an optical system. It is movable along the optical axis.

【0032】このステッピングモータには回転原点位置
センサが設けられており、レンズ3と被検レンズ4の間
隔を既知の距離に設定し、その状態をステージ5の移動
原点とすることにより、ステッピングモータに供給する
パルス数をカウントすることでステージ5の移動に伴う
レンズ3と被検レンズ4の間隔の変化を検知することが
可能となる。
This stepping motor is provided with a rotation origin position sensor. The distance between the lens 3 and the lens 4 to be inspected is set to a known distance, and the state is set as the movement origin of the stage 5. It is possible to detect the change in the distance between the lens 3 and the lens 4 to be inspected due to the movement of the stage 5 by counting the number of pulses supplied to.

【0033】また、被検レンズ4を透過した光はレンズ
3を式1を満たすような位置に設置する、すなわち、レ
ンズ3と被検レンズ4とでアフォーカル系を構成するこ
とで平行光束にすることができる。
Further, the light transmitted through the lens 4 to be inspected is set to a position where the lens 3 satisfies the expression 1, that is, the lens 3 and the lens 4 to be inspected constitute an afocal system to form a parallel light beam. can do.

【数1】 但し、f0はレンズ3の焦点距離、f1は被検レンズ4の
焦点距離、Δはレンズ3と被検レンズ4の間隔を示す。
[Equation 1] Here, f0 is the focal length of the lens 3, f1 is the focal length of the lens 4 to be inspected, and Δ is the distance between the lens 3 and the lens 4 to be inspected.

【0034】また、被検レンズ4を透過して被検レンズ
4の複屈折によって円偏光に近い楕円偏光になった光束
はλ/4板(第2の偏光手段)7によって直線偏光に近
い楕円偏光に変換された後、偏光板(第2の偏光手段)
8によって偏光され、さらに、レンズ(結像光学系)9
によってCCDカメラ(受光手段)10の受光面に受光
(結像)される。
Further, the light beam which has passed through the lens 4 to be inspected and has become elliptical polarized light close to circularly polarized light due to the birefringence of the lens 4 to be inspected is elliptical close to linearly polarized light by the λ / 4 plate (second polarizing means) 7. After being converted into polarized light, a polarizing plate (second polarizing means)
Polarized by 8 and further lens (imaging optical system) 9
The light is received (imaged) on the light receiving surface of the CCD camera (light receiving means) 10.

【0035】レンズ9は被検レンズ4の中心(光軸)付
近の表面近傍とCCDカメラ10の間で略結像関係が成り
立つような位置に調整されており、その材質にはガラス
のようにその内部の複屈折が十分に除去されたものが使
用されている。
The lens 9 is adjusted to a position near the center (optical axis) of the lens 4 to be inspected and the CCD camera 10 so that a substantially image-forming relationship is established, and its material is like glass. The one in which the birefringence inside thereof is sufficiently removed is used.

【0036】また、符号11、12はλ/4板7および偏光
板8を光学系の光軸回りに回転させるためのステッピン
グモータであり、このモータ11、12には図示しない回転
原点位置センサが設けられ、モータ11、12に供給するパ
ルス数をカウントすることでλ/4板7および偏光板8
の回転角度を検知可能になっている。
Reference numerals 11 and 12 denote stepping motors for rotating the λ / 4 plate 7 and the polarizing plate 8 around the optical axis of the optical system. The motors 11 and 12 have rotation origin position sensors (not shown). The λ / 4 plate 7 and the polarizing plate 8 are provided by counting the number of pulses supplied to the motors 11 and 12.
The rotation angle of can be detected.

【0037】このモータ11、12はモータドライバ13によ
って駆動されるようになっており、このモータドライバ
13はコンピュータ(演算手段)14からの指令信号に基づ
いて駆動されるパルス発生器15からのパルスを受けてモ
ータ11、12を駆動するようになっている。
The motors 11 and 12 are driven by a motor driver 13.
Reference numeral 13 is adapted to drive the motors 11 and 12 by receiving a pulse from a pulse generator 15 which is driven based on a command signal from a computer (calculating means) 14.

【0038】また、CCDカメラ10によって撮像された
画像データは画像入力器16を通してコンピュータ14のメ
モリに取り込まれるようになっており、コンピュータ14
はこの画像データと回転原点位置センサからのセンサ1
1、12の回転角度情報に基づいて被検レンズ4の複屈折
位相差および主軸方位を演算するようになっている。
The image data picked up by the CCD camera 10 is designed to be taken into the memory of the computer 14 through the image input device 16.
This image data and sensor from the rotation origin position sensor 1
The birefringence phase difference and the principal axis azimuth of the subject lens 4 are calculated based on the rotation angle information of 1 and 12.

【0039】一方、λ/4板7、偏光板8、レンズ9お
よびCCDカメラ10はステージ17に一体的に保持されて
おり、このステージ17はモータドライバ13で駆動される
ステッピングモータ18によって光学系の光軸方向に移動
するようになっている。また、ステージ17はステージ19
に保持されており、このステージ19はガイド20に沿って
光学系の光軸と略直交する方向に移動するようにモータ
ドライバ13で駆動されるステッピングモータ21によって
駆動される。
On the other hand, the λ / 4 plate 7, the polarizing plate 8, the lens 9 and the CCD camera 10 are integrally held by a stage 17, and the stage 17 is driven by a motor driver 13 to drive an optical system by a stepping motor 18. It is designed to move in the optical axis direction. Also, stage 17 is stage 19
The stage 19 is driven by a stepping motor 21 driven by a motor driver 13 so as to move along the guide 20 in a direction substantially orthogonal to the optical axis of the optical system.

【0040】また、コンピュータ14はキーボード(入力
手段)を有しており、このキーボードからは被検レンズ
4の奥行き方向(光軸方向)における厚みデータを入力
するようになっている。
Further, the computer 14 has a keyboard (input means), and the thickness data in the depth direction (optical axis direction) of the lens 4 to be inspected is inputted from this keyboard.

【0041】コンピュータ14はこの厚み情報に基づいて
モータドライバ13に指令信号を出力することにより、モ
ータ18、21を制御し、レンズ9に対向する被検レンズ4
の表面近傍とCCDカメラ10の受光面が常に略結像関係
になるように、ステージ17および19を光学系の光軸方向
および光軸方向と略直交する方向に移動させるようにな
っている。
The computer 14 controls the motors 18 and 21 by outputting a command signal to the motor driver 13 based on this thickness information, and the lens 4 to be inspected facing the lens 9
The stages 17 and 19 are moved in the optical axis direction of the optical system and in a direction substantially orthogonal to the optical axis direction so that the vicinity of the surface and the light receiving surface of the CCD camera 10 are always in a substantially image-forming relationship.

【0042】本実施形態では、ステージ17、19が保持部
材を構成し、コンピュータ14、モータドライバ13および
モータ18、21が保持部材制御手段を構成している。
In this embodiment, the stages 17 and 19 form a holding member, and the computer 14, the motor driver 13 and the motors 18 and 21 form a holding member control means.

【0043】次に、被検レンズ4の複屈折を測定する方
法の原理を説明する。
Next, the principle of the method for measuring the birefringence of the lens 4 under test will be described.

【0044】なお、本実施形態では、半導体レーザ1の
偏光の方位は地面に対して水平に設定するとともに、λ
/4板2の方位(透過軸方位)は地面に水平な方向に対
して45゜に設定して被検レンズ4に円偏光を照射し、λ
/4板7および偏光板8の方位が地面に対して水平なと
きを測定における回転原点とする。
In this embodiment, the polarization direction of the semiconductor laser 1 is set to be horizontal with respect to the ground, and λ
The azimuth (transmission axis azimuth) of the / 4 plate 2 is set to 45 ° with respect to the horizontal direction on the ground, and the lens 4 to be inspected is irradiated with circularly polarized light.
The rotation origin in the measurement is when the azimuths of the / 4 plate 7 and the polarizing plate 8 are horizontal to the ground.

【0045】まず、被検レンズ4をホルダーにより所定
位置にセットした後、半導体レーザ1からの直線偏光を
照射すると、この直線偏光の光ビームがλ/4板2によ
って円偏光に変換され、円偏光がレンズ3によって発散
光に変換された後、被検レンズ4に入射される。
First, after the lens 4 to be inspected is set at a predetermined position by the holder, when linearly polarized light from the semiconductor laser 1 is irradiated, the linearly polarized light beam is converted into circularly polarized light by the λ / 4 plate 2 and circularly polarized. After the polarized light is converted into divergent light by the lens 3, it is incident on the lens 4 to be inspected.

【0046】ここで、ステージ5を光学系光軸方向に移
動させ、被検レンズ4に発散光を照射するレンズ3と被
検レンズ4との間隔を最適なものに設定する。
Here, the stage 5 is moved in the optical axis direction of the optical system, and the distance between the lens 3 for irradiating the lens 4 to be inspected with divergent light and the lens 4 to be inspected is set to an optimum one.

【0047】そして、ステッピングモータ11によってλ
/4板7の方位を回転原点から45゜回転した状態で偏光
板8を回転原点から(180/n)゜ずつ等角度毎に回転
させ、偏光板8が(180/n)゜回転する度にこの偏光
板8によって偏光された光束をレンズ9によってCCD
カメラ10に結像することにより、CCDカメラ10に画像
データが撮像される。なお、nは予め決めた測定ポイン
トである。
Then, by the stepping motor 11, λ
When the azimuth of the / 4 plate 7 is rotated by 45 ° from the rotation origin, the polarizing plate 8 is rotated by (180 / n) ° from the rotation origin at equal angles, and the polarizing plate 8 is rotated by (180 / n) °. The light beam polarized by the polarizing plate 8 is transferred to the CCD by the lens 9.
By forming an image on the camera 10, image data is picked up by the CCD camera 10. Note that n is a predetermined measurement point.

【0048】この画像データをコンピュータ14に取り込
んで偏光板8の回転角度データとn枚のCCDカメラ10
の画像データを取得する。次いで、λ/4板7の方位を
回転原点に戻した後、上述したものと同様に偏光板8を
回転原点から(180/n)゜ずつ回転させながらCCD
カメラ10の画像データをコンピュータ14に取り込んで偏
光板8の回転角度データとn枚の画像データを取得す
る。
This image data is loaded into the computer 14, the rotation angle data of the polarizing plate 8 and the n CCD cameras 10 are taken.
Get the image data of. Then, after returning the azimuth of the λ / 4 plate 7 to the origin of rotation, the polarizing plate 8 is rotated by (180 / n) ° from the origin of rotation in the same manner as described above, and the CCD is rotated.
The image data of the camera 10 is loaded into the computer 14 to obtain the rotation angle data of the polarizing plate 8 and the image data of n sheets.

【0049】そして、この取得した合計2×n枚の画像
データと偏光板8の回転角度データに基づいてコンピュ
ータ14は以下の演算処理によって被検レンズ4の複屈折
を求める。
Then, the computer 14 obtains the birefringence of the lens 4 to be inspected by the following arithmetic processing based on the acquired image data of 2 × n and the rotation angle data of the polarizing plate 8.

【0050】λ/4板7の方位を回転原点から45゜回転
させたときの偏光板8の回転に伴い、CCDカメラ10の
各画素にて検出される光強度I45は式2のようになる。
With the rotation of the polarizing plate 8 when the azimuth of the λ / 4 plate 7 is rotated by 45 ° from the rotation origin, the light intensity I45 detected by each pixel of the CCD camera 10 is given by the formula 2. .

【数2】 また、λ/4板7の方位を回転原点に戻したとき、偏光
板8の回転に伴い、CCDカメラ10の各画素にて検出さ
れる光強度I0は式3のようになる。
[Equation 2] Further, when the azimuth of the λ / 4 plate 7 is returned to the rotation origin, the light intensity I0 detected by each pixel of the CCD camera 10 according to the rotation of the polarizing plate 8 is given by Expression 3.

【数3】 式2、式3において、θは偏光板8の主軸方位、δは被
検レンズ4の複屈折位相差、φは被検レンズ4の主軸方
位である。偏光板8の回転に伴う光強度変化の位相をそ
れぞれφ45、φ0とすると、式2、式3よりφ45、φ0は
式4、式5のように表わされる。
[Equation 3] In Equations 2 and 3, θ is the principal axis azimuth of the polarizing plate 8, δ is the birefringence phase difference of the lens 4 to be inspected, and φ is the principal axis azimuth of the lens 4 to be inspected. Assuming that the phases of the light intensity change due to the rotation of the polarizing plate 8 are φ45 and φ0, respectively, φ45 and φ0 are expressed by Equation 4 and Equation 5 from Equations 2 and 3, respectively.

【数4】 [Equation 4]

【数5】 また、取り込んだCCDカメラ10の画像データと偏光板
8の回転角データとによってφ45、φ0は式6、式7に
よって計算される。
[Equation 5] Further, φ45 and φ0 are calculated by the equations 6 and 7 based on the captured image data of the CCD camera 10 and the rotation angle data of the polarizing plate 8.

【数6】 [Equation 6]

【数7】 したがって、式4、式5、式6、式7により、式8、式
9によって位相差δ、主軸方向φが求められる。
[Equation 7] Therefore, the phase difference δ and the principal axis direction φ are obtained by the equations 8 and 9 by the equation 4, the equation 5, the equation 6, and the equation 7.

【数8】 [Equation 8]

【数9】 次に、上述した複屈折の測定方法を踏まえて、被検レン
ズ4の奥行き方向における厚みデータに基づいてステー
ジ17、19を移動させながら被検レンズ4の複屈折を測定
する方法を説明する。
[Equation 9] Next, based on the above-described method of measuring birefringence, a method of measuring the birefringence of the lens 4 to be measured while moving the stages 17 and 19 based on the thickness data of the lens 4 to be measured in the depth direction will be described.

【0051】上述した被検レンズ4の複屈折の測定にあ
っては、被検レンズ4の複屈折により被検レンズ4の表
面近傍に発生した光弾性干渉縞の空間像が、偏光板8を
介してCCDカメラ10で撮像されるが、被検レンズ4に
照射した発散光は被検レンズ4によって略平行化されて
いるため、被検レンズ4近傍に発生する光弾性干渉縞の
空間像は被検レンズ4と略同じサイズ(面積)となる。
In the above-mentioned measurement of the birefringence of the lens to be inspected 4, the aerial image of the photoelastic interference fringes generated in the vicinity of the surface of the lens to be inspected 4 due to the birefringence of the lens to be inspected 4 shows the polarization plate 8. The CCD camera 10 captures an image through the divergent light, and the divergent light emitted to the lens 4 to be inspected is substantially collimated by the lens 4 to be inspected. It has substantially the same size (area) as the lens 4 to be inspected.

【0052】一方、測定光学系を構成するλ/4板7お
よび偏光板8はそのサイズが限られており、被検レンズ
4の口径が大きいとき光弾性干渉縞を一度に透過させる
ことができないので、その場合には被検レンズ4全面に
亘る複屈折の測定が不可能になる。
On the other hand, the λ / 4 plate 7 and the polarizing plate 8 constituting the measurement optical system are limited in size, and when the aperture of the lens 4 to be inspected is large, the photoelastic interference fringes cannot be transmitted at one time. Therefore, in that case, it becomes impossible to measure the birefringence over the entire surface of the lens 4 to be inspected.

【0053】ここで、光弾性干渉縞の空間像を一旦縮小
してからλ/4板7および偏光板8を透過させても良い
が、その場合には光学系が複雑かつ高価になる上に、光
弾性干渉縞の空間像が小さくなるので、測定における空
間的な分解能が落ちてしまう。そのため、図1の装置構
成では、偏光板8とCCDカメラ10を搭載したステージ
19を光学系の光軸と略直交する方向に移動させること
で、被検レンズと略同じサイズを有する光弾性干渉縞の
空間像を部分的に幾つかに分割してCCDカメラ10で観
察して測定を実施する。
Here, the aerial image of the photoelastic interference fringes may be once reduced and then transmitted through the λ / 4 plate 7 and the polarizing plate 8, but in that case, the optical system becomes complicated and expensive. Since the aerial image of the photoelastic interference fringes becomes small, the spatial resolution in the measurement deteriorates. Therefore, in the apparatus configuration of FIG. 1, a stage equipped with the polarizing plate 8 and the CCD camera 10
By moving 19 in a direction substantially orthogonal to the optical axis of the optical system, the aerial image of the photoelastic interference fringes having substantially the same size as the lens to be inspected is partially divided and observed by the CCD camera 10. Measure.

【0054】例えば、図2に示すように被検レンズ4に
おける被測定領域が観察できるようにモータ21によっ
てステージ19を光学系の光軸方向と略直交する方向に移
動して位相差、主軸方位を測定する。同様にして被測定
領域、被測定領域についてステージ19を移動して各
々測定する。
For example, as shown in FIG. 2, the stage 21 is moved by the motor 21 in a direction substantially orthogonal to the optical axis direction of the optical system so that the measured region of the lens 4 to be measured can be observed, and the phase difference and principal axis direction are changed. To measure. In the same manner, the measurement area and the stage 19 are moved with respect to the measurement area, and each measurement is performed.

【0055】このとき、測定光学系では被検レンズ4の
表面近傍とCCDカメラ10の結像面とで結像関係が成立
しないと被検レンズ4の全面に亘って高精度に複屈折を
測定することができない。
At this time, in the measuring optical system, if the image forming relationship between the surface of the lens 4 to be inspected and the image forming surface of the CCD camera 10 is not established, the birefringence is measured over the entire surface of the lens 4 to be inspected with high accuracy. Can not do it.

【0056】図1に示す被検レンズ4はレンズ9に対向
する面に曲率を有しているため、被検レンズ4の面の位
置がCCDカメラ10の撮像面に対して光学系の光軸方向
にずれてしまい、被検レンズ4の表面近傍とCCDカメ
ラ10の撮像面とで結像関係が成立しなくなる。
Since the lens 4 to be inspected shown in FIG. 1 has a curvature on the surface facing the lens 9, the position of the surface of the lens 4 to be inspected is relative to the image pickup surface of the CCD camera 10 by the optical axis of the optical system. However, the image forming relationship between the vicinity of the surface of the lens 4 to be inspected and the image pickup surface of the CCD camera 10 is not established.

【0057】このため、本実施形態では、ステージ19を
光学系の光軸に対して略直交する方向に移動させる度に
ステージ17を光学系の光軸方向に移動させて、被検レン
ズ4の表面近傍とCCDカメラ10の結像面とで結像関係
を成立させるようにする。
Therefore, in this embodiment, every time the stage 19 is moved in a direction substantially orthogonal to the optical axis of the optical system, the stage 17 is moved in the optical axis direction of the optical system to move the lens 4 to be inspected. An image forming relationship is established between the vicinity of the surface and the image forming surface of the CCD camera 10.

【0058】その具体的に方法を説明する。The method will be specifically described.

【0059】まず、被検レンズ4の奥行きの厚さデータ
を図外の測定装置で測定して入力装置にインプットす
る。この場合、レンズ9に対向する面の曲率面のデータ
をサンプリングしてこのデータを入力装置にインプット
することによって被検レンズ4の厚さデータをコンピュ
ータ14に与える。
First, the depth and thickness data of the lens 4 to be measured is measured by a measuring device (not shown) and input to the input device. In this case, the thickness data of the lens 4 to be tested is given to the computer 14 by sampling the data of the curvature surface of the surface facing the lens 9 and inputting this data to the input device.

【0060】コンピュータ14はこのデータに基づいてス
テージ19を光学系の光軸に対して略直交する方向に移動
させる度にステージ17を光学系の光軸方向に移動させる
のであるが、この際に以下の処理を行なう。
Based on this data, the computer 14 moves the stage 17 in the optical axis direction of the optical system each time the stage 19 is moved in the direction substantially orthogonal to the optical axis of the optical system. The following processing is performed.

【0061】被検レンズ4の中心付近(光軸)をステー
ジ19の移動原点とし、ステージ19の移動量を±hとす
る。また、レンズ9に対向する被検レンズ4の面の曲率
半径をRとすると、ステージ19の光学系の光軸と略直角
な方向への移動によって被検レンズ4の面が式10のdで
示される量だけ光学系光軸方向にずれる。
The vicinity of the center of the lens 4 to be inspected (optical axis) is the origin of movement of the stage 19, and the amount of movement of the stage 19 is ± h. Further, when the radius of curvature of the surface of the lens 4 to be inspected facing the lens 9 is R, the surface of the lens 4 to be inspected becomes d in Equation 10 due to movement of the stage 19 in a direction substantially perpendicular to the optical axis of the optical system. It is displaced in the direction of the optical axis of the optical system by the indicated amount.

【数10】 したがって、ステージ19が光学系光軸と略直交する方向
にhだけ移動したときに、ステージ17を光学光軸方向に
dだけ移動させてレンズ9およびCCDカメラ10を被検
レンズ4に対して任意の位置に移動させると、被検レン
ズ4の表面近傍とCCDカメラ10の受光面の結像関係を
成立するので、被測定領域〜における正確な複屈折
の測定を行なうことができる。
[Equation 10] Therefore, when the stage 19 moves by h in the direction substantially orthogonal to the optical system optical axis, the stage 17 is moved by d in the optical optical axis direction so that the lens 9 and the CCD camera 10 can be arbitrarily moved with respect to the lens 4 to be inspected. When it is moved to the position, the imaging relationship between the surface of the lens 4 to be inspected and the light receiving surface of the CCD camera 10 is established, so that accurate birefringence can be measured in the region to be measured.

【0062】なお、ステージ17を光学系の光軸方向に移
動させるには、上述した被検レンズ4の曲面のデータを
入力するのに代えて、被検レンズ4の表面とCCDカメ
ラ10の撮像面との距離を変化を検知する手段を設け、こ
の検知手段からの検知情報をコンピュータ14に入力して
上述したずれ量を把握しても良いし、CCDカメラ10で
撮像される像のピンぼけの度合いを確認しながらピンぼ
けが解消するように、キーボードからモータ18の移動量
を入力してステージ17を徐々に移動させるようにしても
良い。
In order to move the stage 17 in the optical axis direction of the optical system, instead of inputting the curved surface data of the lens 4 to be inspected as described above, the surface of the lens 4 to be inspected and the CCD camera 10 take an image. A means for detecting a change in the distance to the surface may be provided, and the detection information from this detection means may be input to the computer 14 to grasp the above-described amount of deviation, or the image captured by the CCD camera 10 may be out of focus. The stage 17 may be gradually moved by inputting the movement amount of the motor 18 from the keyboard so that the out-of-focus blur is eliminated while checking the degree.

【0063】このように本実施形態では、被検レンズ4
の厚みデータに基づき、レンズ9に対向する被検レンズ
4の表面近傍とCCDカメラ10の受光面が常に略結像関
係になるように、ステージ17、19を光学系の光軸方向お
よび光軸方向と略直交する方向に一体的に移動させるこ
とにより、被検レンズ4の複屈折を測定するので、被検
レンズ4の中央部および周縁部に拘らず測定結果に対す
るピンぼけの影響を小さくすることができる。
As described above, in this embodiment, the lens 4 under test is
Based on the thickness data of the stages, the stages 17 and 19 are arranged in the optical axis direction and the optical axis of the optical system so that the vicinity of the surface of the lens 4 to be inspected facing the lens 9 and the light receiving surface of the CCD camera 10 are always in a substantially image forming relationship. Since the birefringence of the lens 4 to be measured is measured by integrally moving the lens 4 in a direction substantially orthogonal to the direction, the influence of defocus on the measurement result should be reduced regardless of the central portion and the peripheral portion of the lens 4. You can

【0064】また、レンズ9およびCCDカメラ10を被
検レンズ4に対して一体的に移動させるため、レンズ9
の倍率を常に一定にすることができ、被検レンズ4の全
面に対する複屈折の分布を知るために測定結果を処理す
るのを不要にできる。
Since the lens 9 and the CCD camera 10 are moved integrally with the lens 4 to be inspected, the lens 9
Can always be made constant, and it is not necessary to process the measurement result in order to know the distribution of birefringence over the entire surface of the lens 4 under test.

【0065】この結果、被検レンズ9の全面に亘って高
精度に複屈折を測定することができるとともに、測定結
果の処理による測定時間が増大することおよび測定値の
信頼性が低下することを防止することができる。
As a result, it is possible to measure the birefringence over the entire surface of the lens 9 to be measured with high accuracy, and to increase the measurement time by processing the measurement result and reduce the reliability of the measured value. Can be prevented.

【0066】また、被検レンズ4の厚みデータに基づ
き、レンズ9に対向する被検レンズ4の表面近傍とCC
Dカメラ10の受光面が常に略結像関係になるように、ス
テージ17、19を光学系の光軸方向および光軸方向と略直
交する方向に一体的に移動させることにより、被検レン
ズ4の複屈折を測定するので、簡素、かつ低コストな装
置構成で簡単に複屈折を測定することができる。
Further, based on the thickness data of the lens 4 to be inspected, the vicinity of the surface of the lens 4 to be inspected facing the lens 9 and CC
The stages 17 and 19 are integrally moved in the optical axis direction of the optical system and in a direction substantially orthogonal to the optical axis direction so that the light receiving surface of the D camera 10 is always in a substantially image forming relationship. Since the birefringence is measured, the birefringence can be easily measured with a simple and low-cost device configuration.

【0067】また、本実施形態では、ステージ5を光学
系光軸方向に移動させ、被検レンズ4に発散光を照射す
るレンズ3と被検レンズ4との間隔を最適なものに設定
しているので、被検レンズ4を透過する光束を略平行化
することができ、光学的な歪みが小さく、また、被検レ
ンズ4の周縁部を透過した光線の重なり、あるいはケラ
レの少ない被検レンズ4の透過像(光弾性干渉縞像)を
得ることができる。
Further, in this embodiment, the stage 5 is moved in the optical axis direction of the optical system, and the interval between the lens 3 for irradiating the lens 4 to be inspected with divergent light and the lens 4 to be inspected is set to an optimum one. Since the light flux passing through the lens to be inspected 4 can be made substantially parallel, the optical distortion is small, and the light to be transmitted through the peripheral edge of the lens to be inspected 4 is not overlapped or vignetting is small. It is possible to obtain a transmission image of 4 (photoelastic interference fringe image).

【0068】図3は本発明に係る複屈折測定装置の第2
実施形態を示す図である。なお、本実施形態では、第1
実施形態と同様の構成には同一番号を付して説明を省略
する。
FIG. 3 shows a second embodiment of the birefringence measuring device according to the present invention.
It is a figure which shows embodiment. In the present embodiment, the first
The same configurations as those of the embodiment are denoted by the same reference numerals and the description thereof will be omitted.

【0069】本実施形態では、図3に示すようにレンズ
3と被検レンズ4の間に、被検レンズ4に平行な光束を
照射するレンズ(平行光学系)31を介装するとともに、
被検レンズ4をステージ32で保持し、このステージ32を
モータドライバ13によって駆動されるステッピングモー
タ33によって光学系の光軸方向と略直交する方向に移動
させるようになっている。
In the present embodiment, as shown in FIG. 3, a lens (parallel optical system) 31 for irradiating a light beam parallel to the lens 4 to be inspected is interposed between the lens 3 and the lens 4 to be inspected, and
The lens 4 to be inspected is held by a stage 32, and the stage 32 is moved by a stepping motor 33 driven by a motor driver 13 in a direction substantially orthogonal to the optical axis direction of the optical system.

【0070】そして、コンピュータ14はキーボードから
入力された被検レンズ4の厚みデータに基づき、レンズ
9に対向する被検レンズ4の表面近傍とCCDカメラ10
の受光面が常に略結像関係になるように、ステージ17を
光学系の光軸方向に移動させるとともに、ステージ32を
光学系の光軸方向と略直交する方向に移動させるように
している。
Then, the computer 14 determines the vicinity of the surface of the lens 4 to be inspected facing the lens 9 and the CCD camera 10 based on the thickness data of the lens 4 to be inspected inputted from the keyboard.
The stage 17 is moved in the optical axis direction of the optical system and the stage 32 is moved in a direction substantially orthogonal to the optical axis direction of the optical system so that the light receiving surface of the optical system is always in a substantially image-forming relationship.

【0071】なお、本実施形態では、コンピュータ14、
モータドライバ13およびモータ33が被検レンズ制御手段
を構成している。
In this embodiment, the computer 14,
The motor driver 13 and the motor 33 constitute a lens control unit to be inspected.

【0072】本実施形態で、このように構成したのは、
以下の理由による。
In this embodiment, the structure is as follows.
The reason is as follows.

【0073】被検レンズ4の焦点距離が長い場合に、被
検レンズ4に発散または収束光を照射して被検レンズ4
の透過光を平行化しようとすると、測定装置が大型化し
てしまう。したがって、このようなときには被検レンズ
4に照射する光を予め平行化しておき、被検レンズ4に
平行光を照射することで測定装置の大型化を防止する。
そして、そのときに被検レンズ4の全面を測定する場合
は、レンズ9およびCCDカメラ10を光学系の光軸と略
直交する方向に移動させずに固定し、その代わりに被検
レンズ4を光学系の光軸と略垂直な方向に移動させなが
ら被検レンズ4の全面を観察する。
When the focal length of the lens 4 to be inspected is long, the lens 4 to be inspected is irradiated with diverging or converging light and the lens 4 to be inspected
If the transmitted light is collimated, the measuring device becomes large. Therefore, in such a case, the light to be radiated to the lens 4 to be inspected is preliminarily collimated, and the parallel light is radiated to the lens 4 to be inspected, thereby preventing an increase in size of the measuring apparatus.
Then, at that time, when measuring the entire surface of the lens 4 to be inspected, the lens 9 and the CCD camera 10 are fixed without being moved in a direction substantially orthogonal to the optical axis of the optical system, and the lens 4 to be inspected is used instead. The entire surface of the lens 4 to be inspected is observed while moving in a direction substantially perpendicular to the optical axis of the optical system.

【0074】本実施形態では、被検レンズ4の光学系の
光軸方向における厚みデータと、被検レンズ4の光学系
光軸と略直交する方向における位置(被検レンズ4の主
走査方向におけるレンズ高さ)のデータから、レンズ9
およびCCDカメラ10が光学系の光軸方向に移動すべき
量を計算し、その分だけレンズ9およびCCDカメラ10
を移動させる。
In this embodiment, the thickness data in the optical axis direction of the optical system of the subject lens 4 and the position in the direction substantially orthogonal to the optical system optical axis of the subject lens 4 (in the main scanning direction of the subject lens 4) From the lens height data, the lens 9
And the amount by which the CCD camera 10 should move in the optical axis direction of the optical system is calculated, and the lens 9 and the CCD camera 10 are calculated accordingly.
To move.

【0075】すなわち、レンズ9およびCCDカメラ10
を光学系の光軸方向に、被検レンズ4を光軸と略直交す
る方向にそれぞれ移動させながら被検レンズ4の表面近
傍とCCDカメラ10との結像関係を保ちつつ、被検レン
ズ4の全面を測定することにより、被検レンズ4の全面
に亘って複屈折の高精度な測定を安価、かつ容易に実現
させることができる測定装置を得ることができるのであ
る。
That is, the lens 9 and the CCD camera 10
Is moved in the direction of the optical axis of the optical system, and the lens 4 to be inspected is moved in a direction substantially orthogonal to the optical axis, while the imaging relationship between the vicinity of the surface of the lens 4 to be inspected and the CCD camera 10 is maintained. By measuring the entire surface of the measurement target lens 4, it is possible to obtain a measuring device that can easily and accurately realize high-precision measurement of birefringence over the entire surface of the lens 4 to be tested.

【0076】[0076]

【発明の効果】請求項1記載の発明によれば、被検レン
ズの全面に亘って高精度に複屈折を測定することができ
るとともに、測定結果の処理による測定時間が増大する
ことおよび測定値の信頼性が低下することを防止するこ
とができる。また、簡素、かつ低コストな装置構成で簡
単に複屈折を測定することができる。
According to the first aspect of the present invention, the birefringence can be measured with high accuracy over the entire surface of the lens to be inspected, and the measurement time increases due to the processing of the measurement result and the measured value. It is possible to prevent the reliability of the device from decreasing. Further, the birefringence can be easily measured with a simple and low-cost device configuration.

【0077】請求項2記載の発明によれば、結像光学系
および受光手段を光学系の光軸方向に、被検レンズを光
軸と略直交する方向にそれぞれ移動させながら被検レン
ズの表面近傍と受光素子との結像関係を保ちつつ、被検
レンズの全面を測定することにより、被検レンズの全面
に亘って複屈折の高精度な測定を安価、かつ容易に実現
させることができる測定装置を得ることができる。
According to the second aspect of the present invention, the surface of the lens to be inspected is moved while moving the imaging optical system and the light receiving means in the optical axis direction of the optical system and the lens to be inspected in a direction substantially orthogonal to the optical axis. By measuring the entire surface of the lens under test while maintaining the imaging relationship between the vicinity and the light receiving element, it is possible to easily and inexpensively realize highly accurate birefringence measurement over the entire surface of the lens under test. A measuring device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る複屈折測定装置の第1実施形態を
示す図であり、その概略構成図である。
FIG. 1 is a diagram showing a first embodiment of a birefringence measuring device according to the present invention, and is a schematic configuration diagram thereof.

【図2】第1実施形態の被検レンズの測定領域を示す図
である。
FIG. 2 is a diagram showing a measurement region of a lens to be inspected according to the first embodiment.

【図3】本発明に係る複屈折測定装置の第2実施形態を
示す図であり、その概略構成図である。
FIG. 3 is a diagram showing a second embodiment of the birefringence measuring device according to the present invention, and is a schematic configuration diagram thereof.

【符号の説明】[Explanation of symbols]

1 半導体レーザ(光源) 2 λ/4板(第1の偏光手段) 3 レンズ(照射光学系) 4 被検レンズ 7 λ/4板(第2の偏光手段) 8 偏光板(第2の偏光手段) 9 レンズ(結像光学系) 10 CCDカメラ(受光手段) 13 モータドライバ(保持部材制御手段、被検レンズ
制御手段) 14 コンピュータ(演算手段、保持部材制御手段、被
検レンズ制御手段) 17、19 ステージ(保持部材) 18、21 ステッピングモータ(保持部材制御手段) 31 レンズ(平行光学系) 32 ステージ(被検レンズ制御手段) 33 ステッピングモータ(被検レンズ制御手段)
1 Semiconductor Laser (Light Source) 2 λ / 4 Plate (First Polarizing Means) 3 Lens (Irradiation Optical System) 4 Test Lens 7 λ / 4 Plate (Second Polarizing Means) 8 Polarizing Plate (Second Polarizing Means) ) 9 lens (imaging optical system) 10 CCD camera (light receiving means) 13 motor driver (holding member control means, test lens control means) 14 computer (calculation means, holding member control means, test lens control means) 17, 19 Stage (holding member) 18, 21 Stepping motor (holding member control means) 31 Lens (parallel optical system) 32 Stage (lens control means for test) 33 Stepping motor (lens control means for test)

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01J 3/00 - 3/52 G01J 4/00 - 4/04 G01M 11/00 - 11/08 実用ファイル(PATOLIS) 特許ファイル(PATOLIS) WPI(DIALOG)Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01J 3/00-3/52 G01J 4/00-4 / 04 G01M 11/00-11/08 Practical file (PATOLIS) Patent file (PATOLIS) WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源と、 該光源から照射された光を所定の偏光状態に変化させる
第1の偏光手段と、 該第1の偏光手段によって偏光された光を発散または収
束させて被検レンズに入射する照射光学系と、 略光学系の回りに回転可能に設けられるとともに、前記
被検レンズを透過した光の偏光状態を等角度毎に可変さ
せる第2の偏光手段と、 該第2の偏光手段を透過した光を受光する受光手段と、 前記第2の偏光手段と受光手段の間に介装され、該第2
の偏光手段を透過する光を受光手段の受光面上に結像さ
せる結像光学系と、 前記受光手段によって等角度毎に受光された受光データ
に基づいて前記被検レンズの複屈折を演算する演算手段
と、を備えた複屈折測定装置において、 前記結像光学系および受光手段を一体的に保持する保持
部材と、 該保持部材を光学系の光軸方向および該光軸方向と略直
交する方向に移動させる保持部材制御手段と、 前記被検レンズ面の奥行き方向における厚みデータを入
力する入力手段とを設け、 前記保持部材制御手段は、前記入力手段から入力された
厚みデータに基づき、前記結像光学系に対向する被検レ
ンズの表面近傍と前記受光素子の受光面が常に略結像関
係になるように、前記保持部材を光学系の光軸方向およ
び該光軸方向と略直交する方向に一体的に移動させるこ
とを特徴とする複屈折測定装置。
1. A light source, a first polarization means for changing the light emitted from the light source into a predetermined polarization state, and a lens to be inspected for diverging or converging the light polarized by the first polarization means. An illumination optical system that is incident on the optical system, a second polarization unit that is rotatably provided around the optical system, and that changes the polarization state of the light that has passed through the lens under test at equal angles. A light receiving means for receiving the light transmitted through the polarizing means; and a second light receiving means interposed between the second polarizing means and the light receiving means.
And an image forming optical system for forming an image on the light receiving surface of the light receiving means by the light transmitting means, and the birefringence of the lens under test is calculated based on the light receiving data received by the light receiving means at equal angles. In a birefringence measuring device including a computing means, a holding member that integrally holds the imaging optical system and the light receiving means, and the holding member that is substantially orthogonal to the optical axis direction of the optical system and the optical axis direction. Holding member control means for moving in the direction, and an input means for inputting thickness data in the depth direction of the lens surface to be inspected, the holding member control means, based on the thickness data input from the input means, The holding member is arranged in the optical axis direction of the optical system and substantially orthogonal to the optical axis direction so that the vicinity of the surface of the lens to be inspected facing the imaging optical system and the light receiving surface of the light receiving element always have a substantially image forming relationship. Integrated in the direction Birefringence measuring apparatus characterized by moving the.
【請求項2】前記被検レンズと第1の偏光素子の間に前
記被検レンズに平行な光束を照射する平行光学系を介装
するとともに、前記被検レンズを光学系の光軸方向と略
直交する方向に移動させる被検レンズ制御手段を設け、 前記入力手段から入力された厚みデータに基づき、前記
結像光学系に対向する被検レンズの表面近傍と前記受光
素子の受光面が常に略結像関係になるように、被検レン
ズ制御手段が光学系の光軸方向と略直交する方向に移動
するとともに、前記保持部材制御手段が光学系の光軸方
向に移動することを特徴とする請求項1記載の複屈折測
定装置。
2. A parallel optical system for irradiating a light beam parallel to the lens to be inspected is interposed between the lens to be inspected and the first polarizing element, and the lens to be inspected is arranged in an optical axis direction of the optical system. A test lens control means for moving in a direction substantially orthogonal to the test piece is provided, and based on the thickness data input from the input means, the vicinity of the surface of the test lens facing the imaging optical system and the light receiving surface of the light receiving element are always The subject lens control means moves in a direction substantially orthogonal to the optical axis direction of the optical system, and the holding member control means moves in the optical axis direction of the optical system so as to be in a substantially imaging relationship. The birefringence measuring device according to claim 1.
JP05816499A 1999-03-05 1999-03-05 Birefringence measurement device Expired - Fee Related JP3437479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05816499A JP3437479B2 (en) 1999-03-05 1999-03-05 Birefringence measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05816499A JP3437479B2 (en) 1999-03-05 1999-03-05 Birefringence measurement device

Publications (2)

Publication Number Publication Date
JP2000258339A JP2000258339A (en) 2000-09-22
JP3437479B2 true JP3437479B2 (en) 2003-08-18

Family

ID=13076366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05816499A Expired - Fee Related JP3437479B2 (en) 1999-03-05 1999-03-05 Birefringence measurement device

Country Status (1)

Country Link
JP (1) JP3437479B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW561254B (en) * 2001-09-26 2003-11-11 Nikon Corp Aberration measuring device, aberration measuring method, regulation method for optical system, and exposure system provided with optical system regulated by the regulation method
CN114323580A (en) * 2021-12-21 2022-04-12 西安工业大学 Multidirectional synchronous phase shift transverse shearing interference device and measurement method

Also Published As

Publication number Publication date
JP2000258339A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
JP4647867B2 (en) Apparatus and method used to evaluate a target larger than the sensor measurement aperture
US8314939B2 (en) Reference sphere detecting device, reference sphere position detecting device, and three-dimensional-coordinate measuring device
JPH0117523B2 (en)
JP3421299B2 (en) Apparatus and method for measuring viewing angle dependence and location dependence of luminance
TW200907318A (en) Eccentricity amount measuring device
CN106767545A (en) A kind of high accuracy high-space resolution angel measuring instrument and angle measurement method
JP4751156B2 (en) Autocollimator and angle measuring device using the same
US7518712B2 (en) Tilted edge for optical-transfer-function measurement
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP4603177B2 (en) Scanning laser microscope
US9442006B2 (en) Method and apparatus for measuring the shape of a wave-front of an optical radiation field
WO2021067237A1 (en) Beamsplitter based ellipsometer focusing system
JP3437479B2 (en) Birefringence measurement device
KR101505745B1 (en) Dual detection confocal reflecting microscope and method of detecting information on height of sample using same
JP2001056303A (en) X-ray stress measuring apparatus
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
JPH1068674A (en) Measuring device of lens system and mtf measuring method of lens system
JP2000097805A (en) Double refraction measuring method and device
JPH11132940A (en) Apparatus and method for measurement of birefringence
JPH1194700A (en) Measuring device and method for lens
CN109470145A (en) Polarization Modulation high resolution Stereo Vision Measurement System and method
CN109470147A (en) Adaptive high resolution stereo visual system and measurement method
JP3456695B2 (en) Birefringence measuring method and apparatus therefor
JP2597711B2 (en) 3D position measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees