JP2000097805A - Double refraction measuring method and device - Google Patents

Double refraction measuring method and device

Info

Publication number
JP2000097805A
JP2000097805A JP11111614A JP11161499A JP2000097805A JP 2000097805 A JP2000097805 A JP 2000097805A JP 11111614 A JP11111614 A JP 11111614A JP 11161499 A JP11161499 A JP 11161499A JP 2000097805 A JP2000097805 A JP 2000097805A
Authority
JP
Japan
Prior art keywords
lens
light
optical system
transmitted
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11111614A
Other languages
Japanese (ja)
Other versions
JP4148592B2 (en
Inventor
Nobuhiro Morita
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11161499A priority Critical patent/JP4148592B2/en
Publication of JP2000097805A publication Critical patent/JP2000097805A/en
Application granted granted Critical
Publication of JP4148592B2 publication Critical patent/JP4148592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double refraction measuring method and device capable of providing an image having little effect of optical distortion and transmitted through a lens under test, performing accurate double refraction measurement overt the whole surface of the lens, facilitating the change of kinds of lens and improving the flexibility. SOLUTION: This method and device comprise an illumination optical system 2 for applying divergent light in a given polarized state to a lens 1 under test, a light applying side displacement means 11 for adjusting a position of the illumination optical system 2 to the lens 1 in the optical-axis direction, a polarizing element 15 for changing a polarized state of the transmitted light from the lens 1, a rotating means 21 for rotating the polarizing element 15 almost in the direction of the transmitted light, a rotation angle detecting means 25 for detecting a rotation angle of the polarizing element 15, an array type photodetector 12 for receiving the light transmitted through the polarizing element 15, an image focusing optical system 13 for focusing the light transmitted through the polarizing element 15 on the photodetector 12, and a computing means 23 for computing a double refraction of the lens 1 on the basis of the rotation angle detected and a light receiving output being detected by the photodetector 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタ等
に用いられる光書込用或いはピックアップ用などに用い
られるプラスチックスレンズ等の被検レンズの複屈折を
測定する複屈折測定装置及び複屈折測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringence measuring apparatus and a birefringence measuring apparatus for measuring birefringence of a lens to be measured such as a plastic lens used for optical writing or pickup used in a laser printer or the like. About the method.

【0002】[0002]

【従来の技術】従来、この種の被検レンズ等の被検物に
関する複屈折の測定方法としては、位相変調法や回転検
光子法が知られている。これらの方法にあっては、透明
な被検物に平行ビームを照射し、被検物からの透過光を
フォトダイオード等の受光素子で受光し、被検物の複屈
折による透過光の偏光状態の変化を検出することによ
り、被検物の複屈折を求めるものである。
2. Description of the Related Art Hitherto, as a method of measuring birefringence of a test object such as a test lens of this type, a phase modulation method and a rotation analyzer method are known. In these methods, a transparent object is irradiated with a parallel beam, the transmitted light from the object is received by a light-receiving element such as a photodiode, and the polarization state of the transmitted light due to the birefringence of the object. The birefringence of the test object is obtained by detecting the change in

【0003】位相変調法では、「光技術コンタクト」V
ol.27.No.3(1989年)中の「位相変調法
による複屈折測定と応用」P.127〜P.134等に
より報告されているように、光弾性変調器(PEM)を
利用して照射光を位相変調させ、透明な被検物を透過し
た光のビート信号と変調信号との位相から複屈折を求め
るようにしている。
In the phase modulation method, the "optical technology contact" V
ol. 27. No. 3 (1989), "Measurement and application of birefringence by phase modulation method" 127-P. 134, etc., the irradiation light is phase-modulated using a photoelastic modulator (PEM), and the birefringence is obtained from the phase of the beat signal and the modulation signal of the light transmitted through the transparent test object. I want to ask.

【0004】回転検光子法では、「光学的測定ハンドブ
ック」(1981年7月25日発刊、田幸敏治、辻内順
平、南茂夫編、朝倉書店)中の「偏光解析」P.256
〜P.265等に報告されているように、透明な被検物
の背面に置いた検光子を回転させながら検光子の背面の
受光素子で透過光を受光し、検光子の回転に伴う受光素
子からの受光出力の変化により複屈折を求めるようにし
ている。
[0004] In the rotating analyzer method, "Ellipsometry" in "Optical Measurement Handbook" (published July 25, 1981, edited by Toshiharu Tada, Junpei Tsujiuchi, Shigeo Minami, Asakura Shoten) is described in P.K. 256
~ P. 265, etc., the transmitted light is received by the light receiving element on the back of the analyzer while rotating the analyzer placed on the back of the transparent test object. The birefringence is determined from the change in the light receiving output.

【0005】さらに、特開平4−58138号公報、特
開平7−77490号公報等によれば、拡大した平行光
を透明な被検物に照射し、その透過光をCCDカメラ等
の2次元センサで受光することにより、被検物の複屈折
を求めるようにしており、複屈折の面計測を可能として
いる。
Further, according to Japanese Patent Application Laid-Open Nos. 4-58138 and 7-77490, a parallel test object is irradiated with an expanded parallel light, and the transmitted light is transmitted to a two-dimensional sensor such as a CCD camera. The birefringence of the test object is obtained by receiving the light at, and the surface measurement of the birefringence is enabled.

【0006】[0006]

【発明が解決しようとする課題】位相変調法、回転偏光
子法は、何れも、例えば細い平行ビームを被検物に照射
しフォトダイオ−ドで受光する、という所謂“点計測”
であるため、被検物の全面を測定するには被検物や測定
装置を調整する必要があり、特にレンズのような非平板
を被検物とするような場合には、被検レンズに照射した
光ビームが被検レンズで屈折されるため、被検物や測定
装置のセッティングが困難である。
In both of the phase modulation method and the rotating polarizer method, so-called "point measurement" in which, for example, a thin parallel beam is irradiated on an object and received by a photodiode.
Therefore, it is necessary to adjust the test object and the measuring device to measure the entire surface of the test object. Particularly, when a non-flat plate such as a lens is used as the test object, Since the irradiated light beam is refracted by the test lens, it is difficult to set the test object and the measuring device.

【0007】また、特開平4−58138号公報に開示
された技術は、“面計測”であるため、被検物等の調整
は不要であるものの、レーザプリンタ等で用いられる書
込用レンズ(通常はfθレンズ)などのように口径の大
きなレンズの場合、レンズの中央部と周縁部とで屈折力
の差が大きくなり、透過後に光学的な歪みを生じやすい
という問題がある。図17に示す例は、被検レンズ10
0とアフォーカル系を構成するように対物レンズ101
を配設した測定光学系構成で、被検レンズ100に対し
てコリメート光(平行光)102を照射し、被検レンズ
100を透過した光を対物レンズ101によりコリメー
トしてから測定光103として偏光素子を介して受光素
子側に導き、受光素子にて受光し、その受光出力に基づ
き測定するものである。
The technique disclosed in Japanese Patent Application Laid-Open No. 4-58138 is "surface measurement", and therefore does not require adjustment of a test object or the like. In the case of a lens having a large aperture, such as a lens (usually an fθ lens), there is a problem that the difference in refractive power between the central portion and the peripheral portion of the lens becomes large, and optical distortion tends to occur after transmission. The example shown in FIG.
0 and the objective lens 101 so as to form an afocal system.
Is arranged, and the collimated light (parallel light) 102 is irradiated on the test lens 100, the light transmitted through the test lens 100 is collimated by the objective lens 101, and then polarized as the measurement light 103. The light is guided to the light receiving element side via the element, the light is received by the light receiving element, and the measurement is performed based on the received light output.

【0008】この場合、被検レンズ100の中央部分を
通る光線102cと周縁部を通る光線102eとでは屈
折力が異なる。この結果、両レンズ100,101の焦
点を一致させて配設させた場合、たとえ対物レンズ10
1の収差が極めて小さい理想的なレンズであっても、被
検レンズ100の周縁部分を透過する光線102eが重
なり測定光103eとして受光素子側に向かうため、被
検レンズ100の全面に渡って鮮明な光弾性干渉縞画像
を得ることはできない。図18は図17に示したような
測定光学系にて受光素子104上に得られた光弾性干渉
縞105として、この画像105の端の部分105eで
は重なった光線による測定光103eの影響で他の部分
よりも明るくなったり、像に迷光の影響が発生している
部分106が存在する例を示している。このような極端
に明るくなった部分105eや迷光の影響が発生してい
る部分106の測定が困難となる。
In this case, the refractive power of the light beam 102c passing through the central portion of the test lens 100 is different from that of the light beam 102e passing through the peripheral portion. As a result, if the two lenses 100 and 101 are disposed so that their focal points are aligned, even if the objective lens 10
Even if the lens is an ideal lens having an extremely small aberration of 1, the light rays 102e passing through the peripheral portion of the test lens 100 overlap and travel toward the light receiving element as the measurement light 103e, so that the entire surface of the test lens 100 is sharp. A photoelastic interference fringe image cannot be obtained. FIG. 18 shows a photoelastic interference fringe 105 obtained on the light receiving element 104 by the measuring optical system as shown in FIG. An example is shown in which there is a portion 106 that is brighter than the portion and that an image is affected by stray light. It becomes difficult to measure the extremely bright portion 105e and the portion 106 where the influence of stray light is generated.

【0009】また、レーザプリンタ等で用いられる光書
込用レンズ200を被検レンズとする場合、実使用で
は、例えば図19に示すように、この光書込用レンズ2
00を透過する光線が光学系光軸に対して平行にならな
い場合が多い。図示例は、半導体レーザユニット201
から出射されたレーザ光がコリメートレンズ202、ポ
リゴンミラー203、レンズ204,205及び光書込
用レンズ200を経て感光体206面上の像面を露光走
査する系である。従って、光書込用レンズ200(被検
レンズ)を透過する光線が光学系光軸に対して平行にな
るような測定光学系の設定にて複屈折測定を実施する
と、光書込用レンズ200を透通する光線の透過経路が
実使用状態と大幅に異なることになる。複屈折は光線の
透過経路によってその大きさが変わってくるので、光書
込用レンズ200(被検レンズ)の実使用に近い状態で
測定を実施することが望ましい。そして、被検レンズの
透通光が光学系光軸に対して平行にならないと、偏光素
子に対して斜めに入射するようになり、この偏光素子は
一般に入射角依存性を有するため、測定誤差につなが
る。
When an optical writing lens 200 used in a laser printer or the like is used as a lens to be tested, in actual use, as shown in FIG.
In many cases, the light beam passing through 00 is not parallel to the optical axis of the optical system. The illustrated example is a semiconductor laser unit 201.
Is a system for exposing and scanning the image plane on the surface of the photoconductor 206 through the collimating lens 202, the polygon mirror 203, the lenses 204 and 205, and the optical writing lens 200. Therefore, when the birefringence measurement is performed with the setting of the measuring optical system such that the light beam transmitted through the optical writing lens 200 (test lens) is parallel to the optical axis of the optical system, the optical writing lens 200 The transmission path of the light beam passing through is greatly different from the actual use state. Since the size of the birefringence changes depending on the transmission path of the light beam, it is desirable to perform the measurement in a state close to the actual use of the optical writing lens 200 (test lens). If the transmitted light of the lens to be measured is not parallel to the optical axis of the optical system, the light enters the polarizing element obliquely, and since this polarizing element generally has an incident angle dependency, a measurement error Leads to.

【0010】さらに、前述の問題を克服するために、被
検レンズに光を照射する光学系と被検レンズとの間隔を
任意に設定可能とし、被検レンズ透過像を観察しながら
被検レンズと点光源(顕微鏡対物レンズの焦点)との間
隔を調整することによって、光学的な歪みの影響の小さ
な被検レンズ透過像(光弾性干渉縞像)を得ることがで
き、これにより、被検レンズ全面に渡って正確な複屈折
測定を可能にすると同時に、被検レンズの種類の変さら
に、も容易に対応可能で汎用性を向上させ得ることが要
望される。
Further, in order to overcome the above-mentioned problems, the distance between the optical system for irradiating the test lens with light and the test lens can be arbitrarily set, and the test lens can be observed while observing the transmitted image of the test lens. By adjusting the distance between the light source and the point light source (the focal point of the microscope objective lens), it is possible to obtain a transmitted image (photoelastic interference fringe image) of the test lens which is less affected by optical distortion. It is desired to be able to accurately measure birefringence over the entire surface of the lens, and at the same time, to be able to easily respond to changes in the type of lens to be inspected and to improve versatility.

【0011】この点を、さらに詳細に説明すると、最近
の書込光学系用レンズにおいては、主走査方向と副走査
方向(走査光学系用レンズの長手方向と短手方向)とで
焦点距離が異なるレンズを用いることがある。このよう
なレンズの複屈折を測定する場合、上述の装置にて被検
レンズに軸対称の球面波を照射して、被検レンズ透過光
を平行にすることは困難である。被検レンズを透過する
光束が平行光束でないと、受光素子の手前に配設される
偏光素子面に光が斜めに入射するが、偏光素子は面に対
して光がほぼ垂直に入射しないと正常に動作しないた
め、測定誤差を生じてしまう。また、上述の装置におい
ては、結像レンズを用いて被検レンズの表面近傍と受光
素子面とがほぼ結像関係になる(受光素子面上で被検レ
ンズの表面近傍にピントの合った像が得られる)ように
して測定を行なうが、被検レンズの主走査方向と副走査
方向とで焦点距離が異なると、主走査と副走査とで結像
位置が異なるため、受光素子上では歪んだ像が得られる
こととなり、被検レンズと得られる像面上での測定値と
の位置の対応がとれなくなる。
This point will be described in more detail. In recent lenses for writing optical systems, the focal length in the main scanning direction and the sub-scanning direction (longitudinal direction and short direction of the scanning optical system lens) are different. Different lenses may be used. When measuring the birefringence of such a lens, it is difficult to irradiate the test lens with an axisymmetric spherical wave using the above-described apparatus to make the transmitted light of the test lens parallel. If the light beam transmitted through the lens to be inspected is not a parallel light beam, the light is obliquely incident on the polarizing element surface disposed in front of the light receiving element. , A measurement error occurs. Further, in the above-described apparatus, an imaging lens is used to form an image-forming relationship between the vicinity of the surface of the lens to be inspected and the light receiving element surface. Is obtained), but if the focal length is different between the main scanning direction and the sub-scanning direction of the lens to be inspected, the image forming position is different between the main scanning and the sub-scanning. An image is obtained, and the position of the lens to be measured and the measured value on the obtained image plane cannot be corresponded.

【0012】そこで本発明の課題は、このような問題点
を解決するものである。即ち、本発明の第1の目的は、
光学的な歪みの影響の小さな被検レンズ透過像を得るこ
とができ、よって、被検レンズ全面に渡って正確に複屈
折測定を行うことができる上に、被検レンズの種類の変
さらに、も容易に対応可能で汎用性を向上させ得る複屈
折測定装置及び複屈折測定方法を提供することを目的と
する。
Accordingly, an object of the present invention is to solve such a problem. That is, the first object of the present invention is to
It is possible to obtain a transmitted image of the test lens having a small influence of optical distortion, and thus to accurately measure the birefringence over the entire surface of the test lens. It is an object of the present invention to provide a birefringence measuring device and a birefringence measuring method which can easily cope with the above and improve the versatility.

【0013】ついで、本発明の第2の目的は、光書込用
レンズのような被検レンズの場合でも、その被検レンズ
の全面に渡ってより測定誤差が小さくて正確な測定を行
える複屈折測定装置及び複屈折測定方法を提供すること
を目的とする。
A second object of the present invention is to provide a multi-function device capable of performing accurate measurement with a smaller measurement error over the entire surface of a test lens such as an optical writing lens. An object of the present invention is to provide a refraction measuring device and a birefringence measuring method.

【0014】さらに、本発明の第3の目的は、例えば被
検レンズの主走査方向と副走査方向との焦点距離が異な
るような場合に、照射光学系に主走査方向と副走査方向
とで焦点距離が異なるレンズによる補正光学系を付加
し、被検レンズを透過した光がほぼ平行になるようにす
ることで、より汎用性の高い複屈折測定装置を提供する
ことを目的とする。
Further, a third object of the present invention is to provide an irradiation optical system with a main scanning direction and a sub-scanning direction when the focal length of the lens to be inspected is different between the main scanning direction and the sub-scanning direction. An object of the present invention is to provide a more versatile birefringence measuring device by adding a correction optical system using lenses having different focal lengths so that light transmitted through a lens to be inspected is substantially parallel.

【0015】加えて、本発明の第4の目的は、被検レン
ズの焦点距離が長い場合などでも、非軸対称のレンズと
軸対称の一般的なレンズとを組合わせることにより、被
検レンズの種類の変更への対応の幅を広げることがで
き、より測定の汎用性を高めることができる複屈折測定
装置を提供することを目的とする。
In addition, a fourth object of the present invention is to combine a non-axisymmetric lens and a general axisymmetric lens even when the focal length of the lens to be inspected is long. It is an object of the present invention to provide a birefringence measuring device capable of expanding the range of adaptation to a change in the type of, and further increasing the versatility of measurement.

【0016】最後に、本発明の第5の目的は、被検レン
ズの焦点距離が長い場合は被検レンズと照射光学系との
間隔を大きくとらなくてはならないが、大きな間隔が必
要になると装置が大型化してしまうため、被検レンズを
ほぼ平行平板(レンズ面の曲率が無限大)と見なして、
照射光学系による照射光を予め平行光束にしてから被検
レンズに照射することが考えられるが、この場合、被検
レンズの全体の領域を測定しようとすると、被検レンズ
全体を覆うような直径の大きな(被検レンズの口径以
上)平行光束を照射させる必要がある。しかしながら、
被検レンズの口径を超えるような大口径の光束全体を一
様に平行化するには、複雑かつ高価な光学系を使用しな
くてはならずコストがかかる。従って、受光素子側の移
動による被検レンズ全体の領域分割測定が困難になる。
そこで、本発明は、被検レンズの焦点距離が長い場合で
も、被検レンズを光学系光軸とほぼ垂直な方向に移動さ
せることで被検レンズ全体の領域の分割測定を可能とす
る複屈折測定装置及び複屈折測定方法を提供することを
目的とする。
Finally, a fifth object of the present invention is to provide a large distance between the lens to be inspected and the irradiation optical system when the focal length of the lens to be inspected is long. Since the size of the device becomes large, the lens to be inspected is regarded as a substantially parallel plate (the curvature of the lens surface is infinite).
It is conceivable to irradiate the test lens with the irradiation light from the irradiation optical system before it is converted into a parallel light beam. It is necessary to irradiate a parallel light beam having a large diameter (more than the diameter of the test lens). However,
In order to uniformly collimate the entire light beam having a large diameter exceeding the diameter of the lens to be inspected, a complicated and expensive optical system must be used, which is costly. Therefore, it becomes difficult to perform the area division measurement of the entire test lens by moving the light receiving element side.
Accordingly, the present invention provides a birefringence that enables a divided measurement of the entire area of a test lens by moving the test lens in a direction substantially perpendicular to the optical system optical axis even when the focal length of the test lens is long. It is an object to provide a measuring device and a birefringence measuring method.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、所定の偏光状態で発散光を
被検レンズに照射させる照射光学系と、前記被検レンズ
に対する前記照射光学系の光軸方向の位置を移動調整す
る照射側変位手段と、前記被検レンズからの透過光の偏
光状態を変化させる偏光素子と、この偏光素子を前記透
過光のほぼ進行方向回りに回転させる回転手段と、この
回転手段による前記偏光素子の回転角度を検知する回転
角検知手段と、前記偏光素子を透過した光を受光するア
レイ状の受光素子と、前記偏光素子を透過した光を前記
受光素子上に結像させる結像光学系と、前記回転角検知
手段により検知された回転角度と前記受光素子により受
光検出される受光出力とに基づき前記被検レンズの複屈
折を算出する演算手投と、を備える複屈折測定装置を主
要な特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to an irradiation optical system for irradiating divergent light to a test lens in a predetermined polarization state, and an optical system for the test lens. An irradiation-side displacement unit that moves and adjusts the position of the irradiation optical system in the optical axis direction, a polarization element that changes the polarization state of the transmitted light from the lens to be measured, and Rotating means for rotating, rotation angle detecting means for detecting a rotation angle of the polarizing element by the rotating means, an array of light receiving elements for receiving light transmitted through the polarizing element, and light transmitted through the polarizing element. An image forming optical system for forming an image on the light receiving element, and a calculation for calculating a birefringence of the lens to be measured based on a rotation angle detected by the rotation angle detecting means and a light receiving output detected by the light receiving element. And projecting, the birefringence measurement apparatus equipped with a key feature.

【0018】請求項2記載の発明は、偏光素子と結像光
学系と受光素子とを一体として光軸にほぼ直交する方向
に移動調整する受光側変位手段を備える請求項1記載の
複屈折測定装置を主要な特徴とする。
According to a second aspect of the present invention, there is provided a birefringence measuring apparatus according to the first aspect, further comprising a light receiving side displacement means for integrally moving the polarizing element, the imaging optical system, and the light receiving element in a direction substantially perpendicular to the optical axis. The device is the main feature.

【0019】請求項3記載の発明は、受光側変位手段に
よる移動距離を検知する距離検知手段を備える請求項2
記載の複屈折測定装置を主要な特徴とする。
According to a third aspect of the present invention, there is provided a distance detecting means for detecting a moving distance by the light receiving side displacement means.
The described birefringence measuring device is a main feature.

【0020】請求項4記載の発明は、偏光素子と結像光
学系と受光素子とを一体として被検レンズからの透過光
の進行方向に対する角度を可変する角度可変手段と、そ
の角度を検知する角度検知手段とを備える請求項1,2
又は3記載の複屈折測定装置を主要な特徴とする。
According to a fourth aspect of the present invention, a polarizing element, an image forming optical system, and a light receiving element are integrated with each other to change an angle with respect to a traveling direction of light transmitted from a lens to be inspected, and the angle is detected. An angle detecting means, comprising:
Or, the birefringence measuring device described in 3 is a main feature.

【0021】請求項5記載の発明は、被検レンズの周縁
部分を透過する光を遮光する遮光部材と、この遮光部材
の位置を移動させる遮光部材移動手段とを備える請求項
1,2,3又は4記載の複屈折測定装置を主要な特徴と
する。
According to a fifth aspect of the present invention, there is provided a light shielding member for shielding light transmitted through the peripheral portion of the lens to be inspected, and light shielding member moving means for moving the position of the light shielding member. Or, the birefringence measuring device described in 4 is a main feature.

【0022】請求項6記載の発明は、所定位置に配設さ
れた被検レンズに対する照射光学系の光軸方向の距離を
任意に調整しながら前記被検レンズに対して前記照射光
学系による所定の偏光状態の発散光を照射し、前記被検
レンズからの透過光の偏光状態を変化させる偏光素子を
前記透過光のほぼ進行方向回りに回転させながらその回
転角度を検知し、この偏光素子を透過した光を結像光学
系によりアレイ状の受光素子のほぼ受光面上に結像さ
せ、検知された前記偏光素子の回転角度と前記受光素子
により受光検出された受光出力とに基づき前記被検レン
ズの複屈折を算出するようにした複屈折測定方法を主要
な特徴とする。
According to a sixth aspect of the present invention, the predetermined distance by the irradiation optical system with respect to the test lens is adjusted while arbitrarily adjusting the distance in the optical axis direction of the irradiation optical system with respect to the test lens disposed at a predetermined position. Irradiating the diverging light of the polarization state of, the polarization element that changes the polarization state of the transmitted light from the test lens is rotated about the traveling direction of the transmitted light, and the rotation angle is detected, and the polarization element is detected. The transmitted light is imaged substantially on the light receiving surface of the array of light receiving elements by an imaging optical system, and the test object is detected based on the detected rotation angle of the polarizing element and the received light output detected by the light receiving element. The main feature is a birefringence measuring method for calculating the birefringence of a lens.

【0023】請求項7記載の発明は、偏光素子と結像光
学系と受光素子とが一体として光軸にほぼ直交する方向
に移動調整自在であり、被検レンズ上の測定対象領域に
合わせて移動調整するようにした請求項6記載の複屈折
測定方法を主要な特徴とする。
According to a seventh aspect of the present invention, the polarizing element, the imaging optical system, and the light receiving element are integrally movable and adjustable in a direction substantially orthogonal to the optical axis, and can be adjusted in accordance with the measurement target area on the lens to be measured. The main feature is the method for measuring birefringence according to claim 6, wherein the movement is adjusted.

【0024】請求項8記載の発明は、偏光素子と結像光
学系と受光素子とが一体として被検レンズからの透過光
の進行方向に対して角度可変自在であり、被検レンズ上
の測定対象領域を透過する光の角度に合わせて角度調整
するようにした請求項6又は7記載の複屈折測定方法を
主要な特徴とする。
According to an eighth aspect of the present invention, the polarizing element, the imaging optical system, and the light receiving element are integrally formed so that the angle can be freely changed with respect to the traveling direction of the transmitted light from the test lens. The main feature is the method for measuring birefringence according to claim 6 or 7, wherein the angle is adjusted in accordance with the angle of light transmitted through the target area.

【0025】請求項9記載の発明は、被検レンズの周縁
部分を透過する光を遮光する遮光部材を備え、周縁部分
を透過して発生する迷光がなくなるように前記遮光部材
の位置を任意に調整設定するようにした請求項6,7又
は8記載の複屈折測定方法を主要な特徴とする。
According to a ninth aspect of the present invention, there is provided a light-shielding member for blocking light transmitted through the peripheral portion of the lens to be inspected, and the position of the light-shielding member is arbitrarily set so that stray light generated by transmitting through the peripheral portion is eliminated. The main feature of the method is the birefringence measurement method according to claim 6, 7 or 8, which is adjusted and set.

【0026】請求項10記載の発明は、所定の偏光状態
で発散光を被検レンズに照射させる照射光学系と、前記
被検レンズに対する前記照射光学系の光軸方向の位置を
移動調整する照射側変位手段と、前記被検レンズからの
透過光の偏光状態を変化させる偏光素子と、この偏光素
子を前記透過光のほぼ進行方向回りに回転させる回転手
段と、この回転手投による前記偏光素子の回転角度を検
知する回転角検知手役と、前記偏光素子を透過した光を
受光するアレイ状の受光素子と、前記偏光素子を透過し
た光を前記受光素子のほぼ受光面上に結像させる結像倍
率が可変の結像光学系と、これらの偏光素子と回転手段
と受光素子と結像光学系とを受光ユニットとして一体に
光軸にほぼ直交する方向に移動調整する受光側変位手段
と、前記回転角検知手段により検知された回転角度と前
記受光素子により受光検出される受光出力とに基づき前
記被検レンズの複屈折を算出する演算手段と、を備える
複屈折測定装置を主要な特徴とする。
According to a tenth aspect of the present invention, there is provided an irradiation optical system for irradiating a test lens with divergent light in a predetermined polarization state, and irradiation for moving and adjusting the position of the irradiation optical system with respect to the test lens in the optical axis direction. Side displacement means, a polarization element for changing the polarization state of the transmitted light from the lens to be measured, a rotation means for rotating the polarization element substantially in the traveling direction of the transmitted light, and the polarization element by hand-rotation A rotation angle detecting means for detecting a rotation angle of the light-receiving element, an array of light-receiving elements for receiving light transmitted through the polarizing element, and forming an image of the light transmitted through the polarizing element substantially on a light-receiving surface of the light-receiving element. An imaging optical system having a variable imaging magnification, and a light receiving side displacement unit that integrally adjusts the polarization element, the rotation unit, the light receiving element, and the imaging optical system as a light receiving unit in a direction substantially orthogonal to the optical axis; , The rotation angle detection Calculating means for calculating the birefringence of the lens under test based on the received light output which is received and detected by the rotation angle and the light receiving element is detected by means of the birefringence measurement apparatus equipped with a key feature.

【0027】請求項11記載の発明は、所定の偏光状態
で発散光を被検レンズに照射させる照射光学系と、前記
被検レンズに対する前記照射光学系の光軸方向の位置を
移動調整する照射側変位手段と、前記被検レンズからの
透過光の偏光状態を変化させる偏光素子と、この偏光素
子を前記透過光のほぼ進行方向回りに回転させる回転手
投と、この回転手段による前記偏光素子の回転角度を検
知する回転角検知手投と、前記偏光素子を透過した光を
受光するアレイ状の受光素子と、前記偏光素子を透過し
た光を前記受光素子のほぼ受光面上に結像させる結像光
学系とを1つのユニットとする複数個の受光ユニット
と、前記被検レンズからの透過光を分岐して前記各受光
ユニットに向けて入射させる分岐手段と、各受光ユニッ
トにおける前記回転角検知手投により検知された回転角
度と前記受光素子により受光検出される受光出力とに基
づき前記被検レンズの複屈折を算出する演算手段と、を
備える複屈折測定装置を主要な特徴とする。
According to an eleventh aspect of the present invention, there is provided an irradiation optical system for irradiating the test lens with divergent light in a predetermined polarization state, and irradiation for moving and adjusting the position of the irradiation optical system with respect to the test lens in the optical axis direction. Side displacement means, a polarizing element for changing the polarization state of the transmitted light from the lens to be measured, a rotating hand for rotating the polarizing element substantially in the traveling direction of the transmitted light, and the polarizing element by the rotating means A rotation angle detecting hand for detecting the rotation angle of the light, an array of light receiving elements for receiving the light transmitted through the polarizing element, and an image of the light transmitted through the polarizing element substantially on the light receiving surface of the light receiving element A plurality of light receiving units each having an imaging optical system as one unit; branching means for splitting transmitted light from the lens to be detected and entering each of the light receiving units; and the rotation angle in each light receiving unit. A birefringence measuring device mainly includes: a calculating means for calculating a birefringence of the test lens based on a rotation angle detected by the detection hand throw and a light reception output detected by the light receiving element.

【0028】請求項12記載の発明は、各受光ユニット
は、被検レンズの異なる被測定領域からの透過光を各々
受光するように分岐手段に対して配設されている請求項
11記載の複屈折測定装置を主要な特徴とする。
According to a twelfth aspect of the present invention, each of the light receiving units is disposed with respect to the branching means so as to receive the transmitted light from a different measurement area of the lens to be measured. The main feature is a refractometer.

【0029】請求項13記載の発明は、各結像光学系
は、各受光ユニット毎に独立して結像倍率が可変自在で
ある請求項11又は12記載の複屈折測定装置を主要な
特徴とする。
According to a thirteenth aspect of the present invention, the main feature of the birefringence measuring device according to the eleventh or twelfth aspect is that each imaging optical system is capable of changing the imaging magnification independently for each light receiving unit. I do.

【0030】請求項14記載の発明は、結像光学系は、
被検レンズからの透過光を受光素子のほぼ受光面上に結
像させたときに得られる前記被検レンズの透過像に基づ
き結像倍率が自動設定される請求項10又は13記載の
複屈折測定装置を主要な特徴とする。
According to a fourteenth aspect of the present invention, the imaging optical system comprises:
14. The birefringence according to claim 10, wherein an imaging magnification is automatically set based on a transmission image of the test lens obtained when the transmitted light from the test lens is formed on a light receiving surface of the light receiving element. The main feature is the measuring device.

【0031】請求項15記載の発明は、所定の偏光状態
で光を被検レンズに照射させる照射光学系と、前記被検
レンズに対する前記照射光学系の光軸方向の位置を移動
調整する照射側変位手投と、前記被検レンズの照射側に
配設されてこの被検レンズを透過した光束をほぼ平行光
とさせる補正光学系と、前記被検レンズからの透過光の
偏光状態を変化させる偏光素子と、この偏光素子を前記
透過光のほぼ進行方向回りに回転させる回転手段と、こ
の回転手段による前記偏光素子の回転角度を検知する回
転角検知手投と、前記偏光素子を透過した光を受光する
アレイ状の受光素子と、前記偏光素子を透過した光を前
記受光素子のほぼ受光面上に結像させる結像光学系と、
前記回転角検知手段により検知された回転角度と前記受
光素子により受光検出される受光出力とに基づき前記被
検レンズの複屈折を算出する演算手段と、を備える複屈
折測定装置を主要な特徴とする。
According to a fifteenth aspect of the present invention, there is provided an irradiation optical system for irradiating a test lens with light in a predetermined polarization state, and an irradiation side for moving and adjusting a position of the irradiation optical system with respect to the test lens in an optical axis direction. Displacement hand throwing, a correction optical system disposed on the irradiation side of the lens to be inspected to make a light beam transmitted through the lens to be substantially parallel light, and changing a polarization state of light transmitted from the lens to be inspected. A polarizing element, rotating means for rotating the polarizing element about a traveling direction of the transmitted light, rotation angle detection hand-detection for detecting a rotating angle of the polarizing element by the rotating means, and light transmitted through the polarizing element. An array-shaped light receiving element that receives light, an imaging optical system that forms an image of light transmitted through the polarizing element substantially on a light receiving surface of the light receiving element,
A birefringence measurement device comprising: a rotation angle detected by the rotation angle detection means; and a calculating means for calculating birefringence of the lens to be detected based on a light reception output detected by the light receiving element. I do.

【0032】請求項16記載の発明は、前記補正光学系
は、光学特性の異なる複数の光学素子の組み合わせより
なる請求項15記載の複屈折測定装置を主要な特徴とす
る。
The invention according to claim 16 is characterized by the birefringence measuring apparatus according to claim 15, wherein the correction optical system is a combination of a plurality of optical elements having different optical characteristics.

【0033】請求項17記載の発明は、前記被検レンズ
をその光軸に直交する方向に移動調整するレンズ変位手
段を備える請求項15又は16記載の複屈折測定装置を
主要な特徴とする。
The invention according to claim 17 is characterized in that the birefringence measuring apparatus according to claim 15 or 16 is provided with lens displacement means for moving and adjusting the test lens in a direction orthogonal to the optical axis thereof.

【0034】請求項18記載の発明は、所定位置で光軸
に直交する方向に移動調整自在に配設された被検レンズ
に対する照射光学系の光軸方向の距離を任意に調整した
後、前記被検レンズ上の測定対象領域に合せてこの被検
レンズの光軸に直交する方向の位置を調整しながら、前
記被検レンズの測定対象領域に対して前記照射光学系に
よる所定の偏光状態の光を補正光学系を通して前記被検
レンズに照射してほぼ平行光とされた透過光を出射さ
せ、前記被検レンズからの透過光の偏光状態を変化させ
る偏光素子を前記透過光のほぼ進行方向回りに回転させ
ながらその回転角度を検知し、この偏光素子を透過した
光を結像光学系によりアレイ状の受光素子のほぼ受光面
上に結像させ、検知された前記偏光素子の回転角度と前
記受光素子により受光検出された受光出力とに基づき前
記被検レンズの測定対象領域の複屈折を順次算出するよ
うにした複屈折測定方法を主要な特徴とする。
The invention according to claim 18 is that, after arbitrarily adjusting the distance in the optical axis direction of the irradiation optical system with respect to the test lens disposed so as to be movable at a predetermined position in a direction orthogonal to the optical axis, While adjusting the position of the test lens in the direction orthogonal to the optical axis in accordance with the measurement target area on the test lens, a predetermined polarization state of the irradiation optical system with respect to the measurement target area of the test lens is obtained. Light is applied to the test lens through the correction optical system to emit substantially parallel transmitted light, and a polarizing element that changes the polarization state of the transmitted light from the test lens is directed substantially in the traveling direction of the transmitted light. While rotating around, the rotation angle is detected, and the light transmitted through the polarization element is imaged substantially on the light receiving surface of the array of light receiving elements by an imaging optical system, and the detected rotation angle of the polarization element and Received by the light receiving element The birefringence measurement method as the sequentially calculates the birefringence of the measurement target region of the lens based on the detected light output is mainly characterized.

【0035】[0035]

【作用】上記のように構成された画像形成装置は、請求
項1記載の発明の複屈折測定装置及び請求項6記載の発
明の屈折測定方法によれば、基本的には、回転検光子法
に準じて、被検レンズを透過した透過光をその偏光状態
を変化させる偏光素子に入射させ、この偏光素子を回転
させながらアレイ状の受光素子で受光検出させることに
より被検レンズの複屈折を算出するが、被検レンズに発
散光を照射する照射光学系と被検レンズとの間隔を任意
に設定可能とし、被検レンズ透過像を観察しながら被検
レンズと照射光学系との間隔を調整することにより光学
的な歪みの影響の小さい被検レンズ透過像である光弾性
干渉縞が得られるようにしたので、被検レンズ全面に渡
って正確に複屈折測定を行うことができ、同時に、被検
レンズの種類の変さらに、も容易に対応でき、汎用性の
高い複屈折測定装置又は方法を提供することができる。
According to the birefringence measuring device of the first aspect and the refraction measuring method of the sixth aspect, the image forming apparatus configured as described above basically has a rotary analyzer method. According to the above, the transmitted light transmitted through the lens to be measured is incident on a polarizing element that changes the polarization state, and the birefringence of the lens to be tested is detected by rotating the polarizing element and receiving and detecting the light with an array of light receiving elements. The distance between the irradiation optical system that irradiates the test lens with the divergent light and the test lens can be set arbitrarily, and the distance between the test lens and the irradiation optical system can be calculated while observing the transmission image of the test lens. By adjusting it, a photoelastic interference fringe, which is a transmitted image of the test lens with little influence of optical distortion, can be obtained, so that birefringence measurement can be accurately performed over the entire surface of the test lens. The type of lens to be inspected Et al, even easily cope, it is possible to provide a high birefringence measuring apparatus or method versatile.

【0036】請求項2及び3記載の発明の複屈折測定装
置及び請求項7記載の発明の複屈折測定方法によれば、
偏光素子と結像光学系と受光素子とを一体として光軸に
ほぼ直交する方向、即ち、被検レンズの長手方向に移動
させて分割しながら測定できるようにしたので、被検レ
ンズ全体の複屈折の測定を分解能が低下することなく安
価に実現することができる。
According to the birefringence measuring device according to the second and third aspects and the birefringence measuring method according to the seventh aspect,
Since the polarizing element, the imaging optical system, and the light receiving element are integrally moved in a direction substantially perpendicular to the optical axis, that is, moved in the longitudinal direction of the lens to be measured, the measurement can be performed while dividing the lens. Refraction measurement can be realized at low cost without lowering the resolution.

【0037】請求項4記載の発明の複屈折測定装置及び
請求項8記載の発明の複屈折測定方法によれば、被検レ
ンズが光書込用に用いられる走査レンズのような場合で
あっても、基本的に、被検レンズと照射光学系との間隔
を任意に設定し得る構成によって実使用に近い状態に測
定系を設定し得る上に、被検レンズの透過光の進行方向
に対して偏光素子等を一体として角度調整することで垂
直に近い状態で入射させることができ、より正確な測定
を行うことができる。
According to the birefringence measuring device of the invention described in claim 4 and the birefringence measurement method of the invention described in claim 8, the lens to be inspected may be a scanning lens used for optical writing. Basically, the measurement system can be set to a state close to actual use by a configuration in which the distance between the test lens and the irradiation optical system can be set arbitrarily. By adjusting the angle integrally with the polarizing element and the like, the light can be incident in a state close to vertical, and more accurate measurement can be performed.

【0038】請求項5記載の発明の複屈折測定装置及び
請求項9記載の発明の複屈折測定方法によれば、被検レ
ンズの周縁部分を透過した光が迷光として受光素子に入
射すると、測定の邪魔となり得るが、このような周縁部
分に対して遮光部材を設けたので、迷光の影響をなくす
ことができ、測定不能領域をなくし、よって、被検レン
ズ全面に渡って測定可能とすることができ、特に、遮光
部材を遮光部材移動手段により適宜移動させることによ
り、被検レンズに即した形で完全に迷光の影響を除去す
ることができる。
According to the birefringence measuring device of the fifth aspect and the birefringence measuring method of the ninth aspect, when the light transmitted through the peripheral portion of the lens to be detected enters the light receiving element as stray light, the measurement is performed. However, since a light-blocking member is provided for such a peripheral portion, it is possible to eliminate the influence of stray light, to eliminate an unmeasurable area, and to enable measurement over the entire surface of the lens to be measured. In particular, by appropriately moving the light-shielding member by the light-shielding member moving means, it is possible to completely remove the influence of stray light in a form suitable for the lens to be inspected.

【0039】請求項10記載の発明によれば、所定の偏
光状態で発散光を被検レンズに照射させる照射光学系
と、前記被検レンズに対する前記照射光学系の光軸方向
の位置を移動調整する照射側変位手段と、前記被検レン
ズからの透過光の偏光状態を変化させる偏光素子と、こ
の偏光素子を前記透過光のほぼ進行方向回りに回転させ
る回転手段と、この回転手投による前記偏光素子の回転
角度を検知する回転角検知手役と、前記偏光素子を透過
した光を受光するアレイ状の受光素子と、前記偏光素子
を透過した光を前記受光素子のほぼ受光面上に結像させ
る結像倍率が可変の結像光学系と、これらの偏光素子と
回転手段と受光素子と結像光学系とを受光ユニットとし
て一体に光軸にほぼ直交する方向に移動調整する受光側
変位手段と、前記回転角検知手段により検知された回転
角度と前記受光素子により受光検出される受光出力とに
基づき前記被検レンズの複屈折を算出する演算手段とを
備えることとするので、請求項1記載の作用ならびに効
果が得られる他、一般に、偏光素子や受光素子にはサイ
ズ(素子の面積)に制約があり、光書込系に使用するレ
ンズのように口径の大きいレンズ全体からの透過光を受
光するには一般的な偏光素子や受光素子を用いたのでは
サイズ的に困難であり、サイズの大きな偏光素子や受光
素子を用いるとなるとその製造コストが嵩む。かといっ
て、一般的な偏光素子や受光素子のサイズに合わせて被
検レンズ全体からの透過光を光学的に締小させると、光
学系が複雑になる上に、光弾性干渉縞の空間像が小さく
なり、その分、測定の空間的な分解能が低下してしま
う。この点、偏光素子と結像光学系と受光素子とを受光
ユニットとして一体に光軸にほぼ直交する方向、即ち、
被検レンズの長手方向に移動させて分割しながら測定で
きるので、被検レンズ全体の複屈折の測定を分解能が低
下することなく安価に実現できる。この際、幾つかの被
検レンズを測定したり、1つの被検レンズに関して幾つ
かの被測定領域に分けて測定したりする場合、被検レン
ズによって或いは被検レンズの場所によって複屈折の発
生する状態が異なることがある。特に、干渉縞の間隔が
複屈折の発生状態によって異なってくるため、干渉縞の
間隔が受光素子の最小単位画素の大きさに近くなるか或
いは狭くなった領域では、測定の信頼性が低下する。こ
の点、結像光学系の結像倍率が可変であるので、被検レ
ンズによって、或いは、被検レンズの場所によって異な
る複屈折の発生状態に合わせて、その結像倍率を最適に
設定することにより、複屈折の発生状態に拘らず正確な
測定を行える。つまり、被検レンズ全面に渡って正確に
複屈折測定を行うことができ、同時に、被検レンズの種
類の変さらに、も容易に対応でき、汎用性の高い複屈折
測定装置を供することができる上に、被検レンズによっ
て、或いは、被検レンズの場所によって異なる複屈折の
発生状態に合わせて、結像光学系の結像倍率を最適に設
定することにより、複屈折の発生状態に拘らず正確な測
定を行わせることができる。
According to the tenth aspect, the irradiation optical system for irradiating the test lens with the divergent light in a predetermined polarization state, and the position of the irradiation optical system in the optical axis direction with respect to the test lens are adjusted. Irradiation side displacement means, a polarizing element for changing the polarization state of the transmitted light from the lens to be inspected, a rotating means for rotating the polarizing element substantially in the traveling direction of the transmitted light, A rotation angle detecting means for detecting the rotation angle of the polarizing element, an array of light receiving elements for receiving the light transmitted through the polarizing element, and connecting the light transmitted through the polarizing element to substantially the light receiving surface of the light receiving element; An imaging optical system with a variable imaging magnification to be imaged, and a light-receiving-side displacement that moves and adjusts the polarizing element, the rotating unit, the light-receiving element, and the imaging optical system as a light-receiving unit integrally in a direction substantially orthogonal to the optical axis. Means and said times The operation according to claim 1, further comprising: an arithmetic unit configured to calculate a birefringence of the test lens based on the rotation angle detected by the angle detection unit and a light reception output detected by the light receiving element. In addition to the effect, the polarizing element and the light receiving element are generally limited in size (element area), and are not suitable for receiving transmitted light from an entire lens having a large aperture such as a lens used in an optical writing system. It is difficult in terms of size to use a general polarizing element or light receiving element, and if a large polarizing element or light receiving element is used, the manufacturing cost increases. On the other hand, if the transmitted light from the entire test lens is optically reduced according to the size of a general polarizing element or light receiving element, the optical system becomes complicated, and the spatial image of the photoelastic interference fringes is increased. Is reduced, and the spatial resolution of the measurement is reduced accordingly. In this regard, the polarizing element, the imaging optical system, and the light receiving element are integrally formed as a light receiving unit in a direction substantially orthogonal to the optical axis, that is,
Since the measurement can be performed while moving the test lens in the longitudinal direction while dividing the test lens, the measurement of the birefringence of the entire test lens can be realized at low cost without lowering the resolution. At this time, when several lenses to be measured are measured or when one lens to be measured is divided into several areas to be measured, birefringence may be generated depending on the lens to be measured or the location of the lens to be measured. May be different. In particular, since the interval between the interference fringes differs depending on the state of occurrence of birefringence, the reliability of the measurement decreases in a region where the interval between the interference fringes is close to or smaller than the size of the minimum unit pixel of the light receiving element. . In this regard, since the imaging magnification of the imaging optical system is variable, it is necessary to optimally set the imaging magnification according to the state of birefringence that varies depending on the lens to be inspected or the location of the lens to be inspected. Thereby, accurate measurement can be performed regardless of the state of occurrence of birefringence. In other words, the birefringence measurement can be accurately performed over the entire surface of the lens to be inspected, and at the same time, the type of the lens to be inspected can be easily changed and a highly versatile birefringence measuring apparatus can be provided. Above, regardless of the state of occurrence of birefringence, by setting the imaging magnification of the imaging optical system optimally in accordance with the state of occurrence of birefringence depending on the lens to be inspected or the location of the lens to be inspected Accurate measurement can be performed.

【0040】請求項11記載の発明によれば、基本的に
は、請求項10記載の発明と同様であるが、複数の受光
ユニットを設けており、被検レンズからの透過光を分岐
手段により分岐して各受光ユニットに向けて入射させる
ので、被検レンズが光書込系に使用するレンズのように
口径の大きいレンズのような場合であっても、分解能を
低下させず、かつ、受光ユニット側を移動させることな
く被検レンズ全体を同時に測定することが可能となる。
つまり、複数の受光ユニットを備えているので、受光ユ
ニット側を移動させることなく被検レンズ全体を同時に
測定することができる。
According to the eleventh aspect of the invention, it is basically the same as the tenth aspect of the invention, except that a plurality of light receiving units are provided, and the transmitted light from the lens to be inspected is divided by the branching means. Since the light is branched and incident toward each light receiving unit, even if the lens to be measured is a lens having a large diameter such as a lens used in an optical writing system, the resolution is not reduced and the light is not received. It is possible to simultaneously measure the entire test lens without moving the unit side.
That is, since a plurality of light receiving units are provided, the entire lens to be measured can be measured simultaneously without moving the light receiving unit side.

【0041】請求項12記載の発明は、請求項11記載
の複屈折測定装置の各受光ユニットが、被検レンズの異
なる被測定領域からの透過光を各々受光するように分岐
手段に対して配設されているので、被検レンズ全体の同
時測定を効率及び操作性よく行える。
According to a twelfth aspect of the present invention, each of the light receiving units of the birefringence measuring device according to the eleventh aspect is arranged with respect to the branching means such that each of the light receiving units receives transmitted light from a different measurement area of the lens to be measured. Since it is provided, simultaneous measurement of the entire test lens can be performed with high efficiency and operability.

【0042】請求項13記載の発明によれば、1つの被
検レンズを幾つかの被測定領域に分けて同時に測定する
場合、同一の被検レンズにおいても、例えば、レンズ中
心付近とレンズ周縁部分とでは、レンズ成形における温
度の冷却速度が異なることから複屈折の発生の仕方が異
なることが多い。このため、例えばレンズの中心付近で
は光弾性干渉縞の間隔が広く、周縁部分では光弾性干渉
縞の間隔が狭く発生する場合があり、干渉縞の間隔が受
光素子の画素サイズに近くなり或いは画素サイズよりも
狭くなった領域では測定の信頼性が低下してしまう。こ
の点、各結像光学系の結像倍率は、各受光ユニット毎に
独立して可変自在であるので、被検レンズによって、或
いは、被検レンズの被測定領域における場所によって異
なる複屈折の発生状態に合わせて、各受光ユニット毎に
結像倍率を最適に設定することにより、複屈折の発生の
状態に拘らずより正確な測定を行える。
According to the thirteenth aspect of the present invention, when one test lens is divided into several test areas and measured simultaneously, even in the same test lens, for example, the vicinity of the lens center and the lens peripheral portion In many cases, since the cooling rate of the temperature in the lens molding is different, the way in which birefringence occurs is often different. For this reason, for example, the interval between the photoelastic interference fringes may be large near the center of the lens, and the interval between the photoelastic interference fringes may be small near the periphery, and the interval between the interference fringes may be close to the pixel size of the light receiving element, or In an area smaller than the size, the reliability of the measurement decreases. In this regard, since the imaging magnification of each imaging optical system can be changed independently for each light receiving unit, the occurrence of birefringence that varies depending on the lens to be measured or depending on the position of the lens to be measured in the measurement area. By setting the imaging magnification optimally for each light receiving unit in accordance with the state, more accurate measurement can be performed regardless of the state of occurrence of birefringence.

【0043】請求項14記載の発明によれば、被検レン
ズからの透過光を受光素子のほぼ受光面上に結像させた
ときに得られる被検レンズの透過像に基づき結像倍率が
自動設定される。適正な結像倍率が実際の被検レンズか
らの透過像における干渉縞の間隔データ等に基づき自動
的に設定されるので、測定装置としての操作性が向上す
る上に結像倍率の適正化を図ることもできる。
According to the fourteenth aspect of the present invention, the imaging magnification is automatically adjusted based on the transmitted image of the test lens obtained when the transmitted light from the test lens is formed substantially on the light receiving surface of the light receiving element. Is set. Since the appropriate imaging magnification is automatically set based on the interval data of interference fringes in the actual transmitted image from the lens to be inspected, etc., the operability as a measuring device is improved and the imaging magnification is optimized. You can also plan.

【0044】請求項15記載の発明によれば、基本的に
は、回転検光子法に準じて、被検レンズを透過した透過
光の偏光状態を変化させる偏光素子に入射させ、この偏
光素子を回転させながらアレイ状の受光素子で受光検出
させることにより被検レンズの複屈折を算出するが、被
検レンズに発散光を照射する照射光学系と被検レンズと
の間隔を任意に設定可能とし、被検レンズ透過像を観察
しながら被検レンズと照射光学系との間隔を調整するこ
とにより光学的な歪みの影響の小さい被検レンズ透過像
なる光弾性干渉縞が得られるので、被検レンズ全面に渡
って正確に複屈折測定を行える。このとき、被検レンズ
が主走査方向と副走査方向との焦点距離が異なるような
場合であっても、照射光学系の後段に例えば主走査方向
と副走査方向とで焦点距離が異なるレンズによる補正光
学系を付加し、被検レンズを透過した光束がほぼ平行に
なるようにすることで、偏光素子以降の光学素子の正常
動作を損なうことなく上記の複屈折測定が可能となり、
汎用性が高まる。
According to the fifteenth aspect of the invention, basically, according to the rotary analyzer method, the light is transmitted to the polarizing element for changing the polarization state of the transmitted light transmitted through the lens to be measured, and this polarizing element is The birefringence of the test lens is calculated by detecting the light received by the array of light receiving elements while rotating, but the distance between the irradiation optical system that irradiates the test lens with divergent light and the test lens can be set arbitrarily. By adjusting the distance between the test lens and the irradiation optical system while observing the transmission image of the test lens, it is possible to obtain a photoelastic interference fringe that is a transmission image of the test lens having a small influence of optical distortion. Birefringence can be accurately measured over the entire surface of the lens. At this time, even if the lens to be inspected has a different focal length between the main scanning direction and the sub-scanning direction, for example, a lens having a different focal length between the main scanning direction and the sub-scanning direction is provided downstream of the irradiation optical system. By adding a correction optical system and making the light flux transmitted through the test lens substantially parallel, the above-described birefringence measurement can be performed without impairing the normal operation of the optical element after the polarizing element,
Versatility increases.

【0045】請求項16記載の発明は、請求項15記載
の複屈折測定装置における前記補正光学系は、光学特性
の異なる複数の光学素子の組み合わせよりなるので、被
検レンズが主走査方向と副走査方向とで焦点距離が異な
る場合に限らず、焦点距離が長い場合であっても、例え
ば、非軸対称のレンズと軸対称の通常のレンズとの組み
合わせのように、光学特性の異なる複数の光学素子によ
り補正光学系を構成することにより、被検レンズの種類
の変更への対応も自在となり、汎用性が高まる。
According to a sixteenth aspect of the present invention, in the birefringence measuring apparatus according to the fifteenth aspect, the correction optical system is composed of a combination of a plurality of optical elements having different optical characteristics. Not only when the focal length is different from the scanning direction but also when the focal length is long, for example, a plurality of optical characteristics different from each other, such as a combination of a non-axisymmetric lens and a normal axisymmetric lens. By configuring the correction optical system with the optical element, it is possible to freely respond to a change in the type of the lens to be inspected, and the versatility is enhanced.

【0046】請求項17記載の発明は、請求項15又は
16記載の複屈折測定装置において、前記被検レンズを
その光軸に直交する方向に移動調整するレンズ変位手段
を備えるので、被検レンズの焦点距離が長い場合であっ
ても、被検レンズをその光軸に直交する方向に移動させ
ることにより、被検レンズ全体の領域の分割測定が可能
となる。これにより、被検レンズ全体の複屈折の測定を
分解能が低下することなく安価に実現できる。
According to a seventeenth aspect of the present invention, there is provided the birefringence measuring apparatus according to the fifteenth or sixteenth aspect, further comprising lens displacement means for moving and adjusting the test lens in a direction orthogonal to its optical axis. Even when the focal length of the lens is long, by moving the lens to be examined in a direction orthogonal to the optical axis, it is possible to perform a divided measurement of the entire area of the lens to be examined. This makes it possible to measure the birefringence of the entire test lens at low cost without lowering the resolution.

【0047】請求項18記載の発明の複屈折測定方法
は、所定位置で光軸に直交する方向に移動調整自在に配
設された被検レンズに対する照射光学系の光軸方向の距
離を任意に調整した後、前記被検レンズ上の測定対象領
域に合せてこの被検レンズの光軸に直交する方向の位置
を調整しながら、前記被検レンズの測定対象領域に対し
て前記照射光学系による所定の偏光状態の光を補正光学
系を通して前記被検レンズに照射してほぼ平行光とされ
た透過光を出射させ、前記被検レンズからの透過光の偏
光状態を変化させる偏光素子を前記透過光のほぼ進行方
向回りに回転させながらその回転角度を検知し、この偏
光素子を透過した光を結像光学系によりアレイ状の受光
素子のほぼ受光面上に結像させ、検知された前記偏光素
子の回転角度と前記受光素子により受光検出された受光
出力とに基づき前記被検レンズの測定対象領域の複屈折
を順次算出するようにしたので、基本的には、回転検光
子法に準じて、被検レンズを透過した透過光の偏光状態
を変化させる偏光素子に入射させ、この偏光素子を回転
させながらアレイ状の受光素子で受光検出させることに
より被検レンズの複屈折を算出するが、被検レンズに発
散光を照射する照射光学系と被検レンズとの間隔を任意
に設定可能とし、被検レンズ透過像を観察しながら被検
レンズと照射光学系との間隔を調整することにより光学
的な歪みの影響の小さい被検レンズ透過像なる光弾性干
渉縞が得られるので、被検レンズ全面に渡って正確に複
屈折測定を行える。このとき、被検レンズが主走査方向
と副走査方向との焦点距離が異なるような場合であって
も、照射光学系の後段に例えば主走査方向と副走査方向
とで焦点距離が異なるレンズによる補正光学系を付加
し、被検レンズを透過した光束がほぼ平行になるように
することで、偏光素子以降の光学素子の正常動作を損な
うことなく上記の複屈折測定が可能となり、汎用性が高
まる。加えて、被検レンズの焦点距離が長い場合であっ
ても、被検レンズをその光軸に直交する方向に移動させ
ることにより、被検レンズ全体の領域の分割測定が可能
となる。これにより、被検レンズ全体の複屈折の測定を
分解能が低下することなく安価に実現できる。
In the method for measuring birefringence according to the eighteenth aspect of the present invention, the distance in the optical axis direction of the irradiation optical system with respect to the lens to be inspected, which is disposed so as to be movable in a direction perpendicular to the optical axis at a predetermined position, can be arbitrarily set. After the adjustment, the irradiation optical system adjusts the position of the lens to be measured in the direction perpendicular to the optical axis while adjusting the position of the lens to be measured on the lens to be measured by adjusting the position of the lens to be measured on the lens to be measured. Light having a predetermined polarization state is applied to the lens under test through a correction optical system to emit substantially parallel transmitted light, and transmitted through the polarizing element that changes the polarization state of light transmitted from the lens under test. The rotation angle is detected while rotating about the traveling direction of the light, and the light transmitted through the polarizing element is imaged on the light receiving surface of an array of light receiving elements by an imaging optical system, and the detected polarization is detected. The rotation angle of the element and the Since the birefringence of the measurement target area of the lens to be measured is sequentially calculated based on the light receiving output detected and detected by the optical element, basically, the birefringence of the lens to be measured is transmitted through the lens to be measured according to the rotation analyzer method. The birefringence of the lens to be measured is calculated by causing the arrayed light-receiving elements to detect and detect light while rotating the polarizing element, and then diverging the light to the lens. Influence of optical distortion by adjusting the distance between the test lens and the irradiation optical system while observing the transmitted image of the test lens by arbitrarily setting the distance between the irradiation optical system and the test lens. Since a photoelastic interference fringe, which is a transmitted image of the test lens having a small value, can be obtained, the birefringence can be accurately measured over the entire surface of the test lens. At this time, even if the lens to be inspected has a different focal length between the main scanning direction and the sub-scanning direction, for example, a lens having a different focal length between the main scanning direction and the sub-scanning direction is provided downstream of the irradiation optical system. By adding a correction optical system so that the luminous flux transmitted through the lens to be inspected is almost parallel, the above-described birefringence measurement can be performed without impairing the normal operation of the optical element after the polarization element, and versatility is improved. Increase. In addition, even when the focal length of the test lens is long, by moving the test lens in a direction perpendicular to its optical axis, it is possible to perform a divided measurement of the entire area of the test lens. This makes it possible to measure the birefringence of the entire test lens at low cost without lowering the resolution.

【0048】[0048]

【発明の実施の形態】本発明の第一の実施の形態を図1
及び図2に基づいて説明する。本実施の形態で測定対象
とする被検レンズ1は図示しないホルダにより保持され
る。このような被検レンズ1に対して、まず、所定の偏
光状態で光を被検レンズ1に照射させる照射光学系2が
設けられている。この照射光学系2はランダム偏光の光
ビームを発する光源であるHe−Neレーザ3と、光量調整
用のNDフィルタ4と、偏向用のミラー5,6と、He−
Neレーザ3からの光を直線偏光に変換する偏光板7と、
この偏光板7による直線偏光を円偏光に変換するλ/4
板8と、レンズ9と、ピンホール10とにより構成され
ている。レンズ9は、顕微鏡における対物レンズと同等
の役目を果たすもので、被検レンズ1に対して発散光を
照射する。ピンホール10はスヘイシヤルフィルタとし
て作用する。これらのレンズ9とピンホール10とは光
軸方向に移動可能なステージ11に搭載されており、こ
のステージ11を駆動するためのステッピングモータ
(図示せず)の回転により光軸方向に進退移動する。こ
こに、ステージ11とステッピングモータ等とにより照
射側変位手段が構成されており、被検レンズ1に対する
レンズ9の光軸方向の位置(距離)が調整自在とされて
いる。また、このステッピングモータには回転原点位置
センサが設けられており、レンズ9と被検レンズ1との
距離を予め所定距離に設定し、その状態をステージ11
の移動原点としておけば、ステッピングモータに供給す
るパルス数を計数することで、ステージ11の移動に伴
うレンズ9と被検レンズ1との距離の変化を検知できる
(実際には、後述するパソコン中でのパルス数の計数動
作に基づきこの距離が検知される…距離検知手段)。
FIG. 1 shows a first embodiment of the present invention.
A description will be given based on FIG. The test lens 1 to be measured in the present embodiment is held by a holder (not shown). An irradiation optical system 2 for irradiating the test lens 1 with light in a predetermined polarization state is provided for the test lens 1. The irradiation optical system 2 includes a He-Ne laser 3 as a light source that emits a randomly polarized light beam, an ND filter 4 for adjusting a light amount, mirrors 5 and 6 for deflection, and a He-Ne laser.
A polarizing plate 7 for converting light from the Ne laser 3 into linearly polarized light;
Λ / 4 for converting linearly polarized light by the polarizing plate 7 to circularly polarized light
It is composed of a plate 8, a lens 9, and a pinhole 10. The lens 9 plays a role equivalent to that of an objective lens in a microscope, and irradiates the test lens 1 with divergent light. The pinhole 10 functions as a shale filter. The lens 9 and the pinhole 10 are mounted on a stage 11 that can move in the optical axis direction, and move forward and backward in the optical axis direction by rotation of a stepping motor (not shown) for driving the stage 11. . Here, an irradiation-side displacement unit is configured by the stage 11 and a stepping motor, and the position (distance) of the lens 9 with respect to the test lens 1 in the optical axis direction is adjustable. The stepping motor is provided with a rotation origin position sensor. The distance between the lens 9 and the test lens 1 is set to a predetermined distance in advance, and the state is set to the stage 11.
When the number of pulses supplied to the stepping motor is counted, a change in the distance between the lens 9 and the test lens 1 due to the movement of the stage 11 can be detected. This distance is detected based on the counting operation of the number of pulses in the step (distance detecting means).

【0049】また、被検レンズ1の透過出射側の光軸上
には、その透過光を受光するアレイ状の受光素子として
CCDカメラ12が設けられている。被検レンズ1とC
CDカメラ12との間には結像光学系13が設けられて
いる。この結像光学系13は、被検レンズ1を透過する
ことでその複屈折により円偏光に近い楕円偏光となった
光束を直線偏光に近い楕円偏光に変換するλ/4板14
と、偏光素子としての偏光板15とを経た光をCCDカ
メラ12に結像させるレンズ16により構成されてい
る。このレンズ16は被検レンズ1の表面近傍とCCD
カメラ12との間でほぼ結像関係が設立するようにその
位置が予め調整されている。また、レンズ16は材質的
にはガラスレンズのようにその内部の複屈折が十分に除
去されたものが用いられている。
A CCD camera 12 is provided on the optical axis on the transmitting and emitting side of the test lens 1 as an array of light receiving elements for receiving the transmitted light. Test lens 1 and C
An imaging optical system 13 is provided between the camera and the CD camera 12. The image forming optical system 13 converts a light beam, which has become elliptically polarized light close to circularly polarized light due to its birefringence, into the elliptically polarized light close to linearly polarized light, by passing through the test lens 1.
And a lens 16 that forms an image of light passing through a polarizing plate 15 as a polarizing element on a CCD camera 12. The lens 16 is located near the surface of the lens 1 to be inspected and a CCD.
The position is adjusted in advance so that an image-forming relationship is established with the camera 12. The lens 16 is made of a material such as a glass lens from which the internal birefringence has been sufficiently removed.

【0050】また、λ/4板14と偏光板15とに対し
ては、各々ほぼ光の進行方向回りに回転させるステッピ
ングモータ17,18及びギヤ系19,20が回転手段
21として設けられている。これらのステッピングモー
タ17,18には回転原点位置センサ(図示せず)が取
り付けられており、ステッピングモータ17,18のパ
ルス数を計数することによりλ/4板14、偏光板15
各々の回転角度の検知が可能とされている(実際には、
後述するパソコン中でのパルス数の計数動作に基づきλ
/4板14、偏光板15各々の回転角度が検知される…
回転角検知手段)。22はこれらのステッピングモータ
17,18を駆動するモータドライバであり、パソコン
23及びパルス発生器24からのパルスを受けてステッ
ピングモータ17,18を駆動する。
The λ / 4 plate 14 and the polarizing plate 15 are provided with stepping motors 17 and 18 and gear systems 19 and 20 for rotating the λ / 4 plate 14 and the polarizing plate 15 about the traveling direction of light. . A rotation origin position sensor (not shown) is attached to each of the stepping motors 17 and 18, and the λ / 4 plate 14 and the polarizing plate 15
Each rotation angle can be detected (actually,
Based on the operation of counting the number of pulses in the personal computer described later, λ
The rotation angle of each of the / 4 plate 14 and the polarizing plate 15 is detected ...
Rotation angle detecting means). A motor driver 22 drives the stepping motors 17 and 18 and drives the stepping motors 17 and 18 by receiving pulses from the personal computer 23 and the pulse generator 24.

【0051】また、CCDカメラ12により撮像された
画像データは、画像入力器25を通してパソコン23の
メモリ中に取り込まれ、該画像データ及びステッピング
モータ17,18の回転角度データを基に、所定の演算
方法によって被検レンズ1の複屈折位相差及び主軸方位
が計算される。このパソコン23中に含まれるCPUを
始めとする演算処理機能により被検レンズ1の複屈折を
算出する演算手段としての機能が実行される。ちなみ
に、CCDカメラ12により撮像された画像はパソコン
23のモニタ或いは専用のモニタに表示される。
The image data picked up by the CCD camera 12 is fetched into the memory of the personal computer 23 through the image input device 25, and a predetermined calculation is performed based on the image data and the rotation angle data of the stepping motors 17 and 18. The birefringence phase difference and principal axis direction of the test lens 1 are calculated by the method. An arithmetic processing function such as a CPU included in the personal computer 23 executes a function as an arithmetic means for calculating the birefringence of the lens 1 to be measured. Incidentally, the image captured by the CCD camera 12 is displayed on the monitor of the personal computer 23 or a dedicated monitor.

【0052】このような構成において、本実施の形態の
場合の複屈折測定装置の設定状態について説明する。ま
ず、偏光板7の方位は紙面に対して水平な方向に設定さ
れ、λ/4板8の方位は紙面に対して45度に設定され
ており、被検レンズ1に円偏光を照射し得る設定とされ
る。測定を行う前に、例えばλ/4板14の方位を紙面
に水平な方向に対して45度に設定し、被検レンズ1を
セットしていない状態で、偏光板15の方位を回転させ
ながらこの偏光板15からの透過光強度が最も小さくな
る(透過光が最も暗くなる)ように偏光板15の方位角
度を設定する。この方位角度を測定における回転原点と
して記憶させておく。この場合、被検レンズ1の位置
に、通常、複屈折が殆どないガラスレンズを仮にセット
して、偏光板15、CCDカメラ12に入射する光線を
コリメートするようにしてもよい。レンズ9と被検レン
ズ1との距離については、例えば、レンズ9と被検レン
ズ1とが物理的に最も接近する状態を移動原点としてお
き、この移動原点からステージ11を移動させること
で、レンズ9と被検レンズ1との距離を検知できる。本
実施の形態では、レンズ9の焦点と被検レンズ1の焦点
とをほぼ一致させた状態での測定例を示す。この状態で
は、通常、被検レンズ1の透過光はほぼ平行光となる
が、図8で説明したように被検レンズの周縁からの光線
が重なって観察されたり、被検レンズの透過像が歪んで
観察される場合には、被検レンズ1の透過像を観察しな
がら、レンズ9と被検レンズとの距離を調整することに
より光線の重なりを取り除ける。
In such a configuration, the setting state of the birefringence measuring device in the case of the present embodiment will be described. First, the azimuth of the polarizing plate 7 is set in a direction horizontal to the plane of the paper, and the azimuth of the λ / 4 plate 8 is set to 45 degrees with respect to the plane of the paper. It is set. Before performing the measurement, for example, the azimuth of the λ / 4 plate 14 is set to 45 degrees with respect to the direction parallel to the plane of the paper, and the azimuth of the polarizing plate 15 is rotated while the test lens 1 is not set. The azimuth angle of the polarizing plate 15 is set so that the transmitted light intensity from the polarizing plate 15 becomes the smallest (the transmitted light becomes the darkest). This azimuth angle is stored as the rotation origin in the measurement. In this case, a glass lens having almost no birefringence may be temporarily set at the position of the lens 1 to be inspected, and the light beam incident on the polarizing plate 15 and the CCD camera 12 may be collimated. Regarding the distance between the lens 9 and the lens 1 to be inspected, for example, a state in which the lens 9 and the lens 1 to be inspected physically approach each other is set as a movement origin, and the stage 11 is moved from this movement origin. The distance between the lens 9 and the test lens 1 can be detected. In the present embodiment, an example of measurement in a state where the focal point of the lens 9 and the focal point of the lens 1 to be inspected are almost matched will be described. In this state, the transmitted light of the test lens 1 is generally almost parallel light, but as described with reference to FIG. 8, light rays from the periphery of the test lens are observed in an overlapping manner, or the transmitted image of the test lens is In the case of distorted observation, the overlap of light beams can be removed by adjusting the distance between the lens 9 and the test lens while observing the transmitted image of the test lens 1.

【0053】また、書込光学系に関しては、光線が走査
ミラーで反射される位置を、図1におけるレンズ9の焦
点位置と想定し、書込光学系における走査ミラー面と被
検レンズとの距離に相当する間隔位置に、レンズ9と被
検レンズ1とを設定すれば、被検レンズ1内の光線の透
過経路に関して実使用に、より近い状態での測定が可能
となる。また、書込光学系が何枚かのレンズにより構成
されている場合は、さらに、実使用に近付けるため、書
込光学系を構成する他のレンズを光軸上に配設させるよ
うにしてもよい。
Further, regarding the writing optical system, the position where the light beam is reflected by the scanning mirror is assumed to be the focal position of the lens 9 in FIG. 1, and the distance between the scanning mirror surface and the test lens in the writing optical system. If the lens 9 and the test lens 1 are set at an interval position corresponding to the above, it is possible to measure the transmission path of the light beam in the test lens 1 in a state closer to the actual use. Further, when the writing optical system is composed of several lenses, another lens constituting the writing optical system may be arranged on the optical axis in order to further approximate actual use. Good.

【0054】実際の測定に際しては、まず、被検レンズ
1をホルダで保持させて所定の位置にセットし、λ/4
板14の方位が紙面に平行な方向に対して45度の状態
で、偏光板15を回転原点位置から(180/n)度ず
つ回転させる。nは予め設定された測定ポイント数であ
る。そこで、偏光板15が(180/n)度回転する毎
にCCDカメラ12で読み取ったCCD画像データをパ
ソコン23のメモリに取り込んで、偏光板15の回転角
度データとn枚のCCD画像データとを取得する。次
に、λ/4板14の方位を紙面に平行な方向に対して0
度にセットし、前述した場合と同様に、偏光板15を回
転原点位置から(180/n)度ずつ回転させながら、
CCD画像データをパソコン23のメモリに取り込んで
偏光板15の回転角度データとn枚のCCD画像データ
とを取得する。このようにしてパソコン23で取得した
2n枚のCCD画像データと偏光板15の回転角度デー
タとを基に、演算手段によって、以下の手順で演算処理
することで、被検レンズ1の複屈折を求める。
At the time of actual measurement, first, the test lens 1 is held by a holder and set at a predetermined position.
The polarizing plate 15 is rotated by (180 / n) degrees from the rotation origin position in a state where the direction of the plate 14 is 45 degrees with respect to the direction parallel to the paper surface. n is the number of measurement points set in advance. Therefore, every time the polarizing plate 15 rotates by (180 / n) degrees, the CCD image data read by the CCD camera 12 is fetched into the memory of the personal computer 23, and the rotation angle data of the polarizing plate 15 and the n CCD image data are converted. get. Next, the direction of the λ / 4 plate 14 is set to 0 with respect to the direction parallel to the paper surface.
In the same manner as described above, while rotating the polarizing plate 15 by (180 / n) degrees from the rotation origin position,
The CCD image data is taken into the memory of the personal computer 23 to acquire the rotation angle data of the polarizing plate 15 and the n pieces of CCD image data. The birefringence of the lens 1 to be inspected is calculated by the arithmetic unit based on the 2n CCD image data acquired by the personal computer 23 and the rotation angle data of the polarizing plate 15 in the following procedure. Ask.

【0055】いま、図1に示す測定装置における光学系
での偏光状態の変化の様子をミューラマトリックスを用
いて表すものとする。被検レンズ1に入射する円偏光の
ミューラマトリックスをL、被検レンズ1のミューテマ
トリックスをT、λ/4板14のミューラマトリックス
をQ、偏光板15のミューラマトリックスをAとし、スト
ークスパラメータSを求める。
Now, it is assumed that the state of change of the polarization state in the optical system in the measuring apparatus shown in FIG. 1 is represented using a Mueller matrix. Let L be the mueller matrix of the circularly polarized light incident on the lens 1 to be tested, T be the mute matrix of the lens 1 to be tested, Q be the mulle matrix of the λ / 4 plate 14, A be the mueller matrix of the polarizing plate 15, and be the Stokes parameter S. Ask.

【0056】まず、λ/4板14の方位を紙面に平行な
方向に対して45度にセットしたときのストークスパラ
メータS45は、(1)式で表される。
First, the Stokes parameter S 45 when the azimuth of the λ / 4 plate 14 is set at 45 degrees with respect to the direction parallel to the paper surface is expressed by the following equation (1).

【0057】[0057]

【数1】 (Equation 1)

【0058】(1)式より、CCDカメラ12に得られ
る光強度I45は(2)式のようになる。
From equation (1), the light intensity I 45 obtained by the CCD camera 12 is as shown in equation (2).

【0059】[0059]

【数2】 (Equation 2)

【0060】(1)(2)式において、θは偏光板15
の主軸方位、δは被検レンズ1の複屈折位相差、φは被
検レンズ1の主軸方位である。
In the equations (1) and (2), θ is the polarization plate 15
Is the birefringent phase difference of the lens 1 to be measured, and φ is the principal axis direction of the lens 1.

【0061】偏光板15をステッピングモータ18によ
り回転させると、これらの式中のθが変化し、CCDカ
メラ12で得られる(2)式の光強度I45が変化する。
図2に偏光板15の主軸方位の回転に伴う光強度I45
変化の様子を示す。但し、縦軸の光強度I45の値は最大
値を1、最小値を0で正規化してある。
When the polarizing plate 15 is rotated by the stepping motor 18, θ in these equations changes, and the light intensity I 45 of the equation (2) obtained by the CCD camera 12 changes.
FIG. 2 shows how the light intensity I 45 changes with the rotation of the main axis direction of the polarizing plate 15. However, the value of the light intensity I 45 on the vertical axis is normalized such that the maximum value is 1 and the minimum value is 0.

【0062】ここで、偏光板15の回転角度読取りの解
像カをR(ステッピングモータ18の1パルスに相当す
る回転角度)とすると、偏光板15の主軸方位の回転に
伴う光強度変化の位相φ45は、実測のCCD画像データ
と偏光板15の回転角データとから(3)式のように求
められる。
Here, assuming that the resolution for reading the rotation angle of the polarizing plate 15 is R (rotation angle corresponding to one pulse of the stepping motor 18), the phase of the light intensity change due to the rotation of the main axis direction of the polarizing plate 15 is obtained. φ 45 can be obtained from the actually measured CCD image data and the rotation angle data of the polarizing plate 15 as shown in Expression (3).

【0063】[0063]

【数3】 (Equation 3)

【0064】次に、λ/4板14の方位を紙面に水平な
方向に対して0度にセットしたときのストークスパラメ
ータSoは、(4)式で表される。
Next, the Stokes parameter So when the azimuth of the λ / 4 plate 14 is set to 0 ° with respect to the direction parallel to the plane of the paper is expressed by equation (4).

【0065】[0065]

【数4】 (Equation 4)

【0066】(4)式より、CCDカメラ12に得られ
る光強度I0は(5)式のようになる。
From equation (4), the light intensity I 0 obtained by the CCD camera 12 is as shown in equation (5).

【0067】[0067]

【数5】 (Equation 5)

【0068】(4)(5)式においても、θは偏光板1
5の主軸方位、δは被検レンズ1の複屈折位相差、φは
被検レンズ1の主軸方位である。
In equations (4) and (5), θ is
5 is the principal axis direction, δ is the birefringence phase difference of the lens 1 to be measured, and φ is the principal axis direction of the lens 1 to be measured.

【0069】偏光坂15の主軸方位の回転に伴う光強度
変化の位相φ0は、(3)式の場合と同様にして、
(6)式のように求められる。
The phase φ 0 of the light intensity change due to the rotation of the main axis direction of the polarization slope 15 is calculated as in the case of the equation (3).
It is obtained as in equation (6).

【0070】[0070]

【数6】 (Equation 6)

【0071】(2)式及び(5)式を変形して、位相φ
45 ,φ0を求めると、(7)(8)式で表される。
By transforming equations (2) and (5), the phase φ
When 45 and φ 0 are obtained, they are expressed by equations (7) and (8).

【0072】[0072]

【数7】 (Equation 7)

【0073】よって、(3)(6)(7)(8)式か
ら、(9)(10)式のように位相差δ、主軸方位φを
求めることができる。
Therefore, the phase difference δ and the principal axis direction φ can be obtained from the equations (3), (6), (7), and (8) as in the equations (9) and (10).

【0074】[0074]

【数8】 (Equation 8)

【0075】従って、本実施の形態によれば、基本的に
は、回転検光子法に準じて、被検レンズ1を透過した透
過光をその偏光状態を変化させる偏光板15に入射さ
せ、この偏光板15を回転させながらCCDカメラ12
で受光検出させることにより被検レンズ1の複屈折を算
出するが、被検レンズ1に発散光を照射する照射光学系
2のレンズ9と被検レンズ1との間隔を任意に設定可能
としており、被検レンズ透過像を観察しながら被検レン
ズ1とレンズ9との間隔を調整することにより光学的な
歪みの影響の小さい被検レンズ透過像なる光弾性干渉縞
を得ることができ、被検レンズ1の全面に渡って正確に
複屈折測定を行うことができる。同時に、被検レンズ1
の種類の変さらに、も容易に対応でき、汎用性の高い複
屈折測定装置又は方法となる。
Therefore, according to the present embodiment, basically, according to the rotation analyzer method, the transmitted light transmitted through the lens 1 to be measured is made incident on the polarizing plate 15 for changing its polarization state. While rotating the polarizing plate 15, the CCD camera 12
The birefringence of the lens 1 to be measured is calculated by detecting the light reception in the step (1). By adjusting the distance between the test lens 1 and the lens 9 while observing the transmission image of the test lens, it is possible to obtain a photoelastic interference fringe which is a transmission image of the test lens which is less affected by optical distortion. Birefringence measurement can be accurately performed over the entire surface of the inspection lens 1. At the same time, the test lens 1
Can easily cope with the change of the type, and a highly versatile birefringence measuring apparatus or method can be obtained.

【0076】本発明の第二の実施の形態を図3及び図4
に基づいて説明する。前記第一の実施の形態で示した部
分と同一部分は同一符号を用いて示し、説明も省略す
る。本実施の形態では、λ/4板14、偏光板15、レ
ンズ16、CCDカメラ12及び回転手段21がベース
31に搭載され、ガイド32により測定光学系の光軸に
対してほぼ直交する方向(図面上、矢印で示す上下方
向)に移動自在とされている。このベース31はステッ
ピングモータ33により変位駆動される。ここに、これ
らのベース31、ガイド32、ステッピングモータ33
等により、偏光板15とレンズ16とCCDカメラ12
とを一体として光軸に直交する方向に移動調整する受光
側変位手段34が構成されている。
FIGS. 3 and 4 show a second embodiment of the present invention.
It will be described based on. The same portions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the present embodiment, the λ / 4 plate 14, the polarizing plate 15, the lens 16, the CCD camera 12, and the rotating means 21 are mounted on the base 31, and the guide 32 guides the direction substantially perpendicular to the optical axis of the measuring optical system ( It is movable in the vertical direction indicated by the arrow in the drawing). The base 31 is driven to be displaced by a stepping motor 33. Here, these base 31, guide 32, stepping motor 33
The polarizing plate 15, the lens 16, and the CCD camera 12
And a light receiving side displacement means 34 for moving and adjusting in the direction orthogonal to the optical axis.

【0077】このような構成において、図3における測
定光学系では、レンズ16により被検レンズ1の近傍と
CCDカメラ12の撮像面とが結像関係にあるものとす
る。このため、被検レンズ1の複屈折により被検レンズ
1の近傍に発生した光弾性干渉縞の空間像が、偏光板1
5を介してCCDカメラ12により撮像されることにな
るが、被検レンズ1を照射した発散光は被検レンズによ
ってほぼコリメートされているため、被検レンズ1近傍
に発生する光弾性干渉縞の空間像は被検レンズ1とほぼ
同じサイズ(面積)になる。
In such a configuration, in the measuring optical system shown in FIG. 3, it is assumed that the lens 16 and the imaging surface of the CCD camera 12 have an image forming relationship in the vicinity of the lens 1 to be measured. For this reason, the spatial image of the photoelastic interference fringes generated near the test lens 1 due to the birefringence of the test lens 1
5, the divergent light illuminating the test lens 1 is almost collimated by the test lens 1, so that the photoelastic interference fringe generated near the test lens 1 The aerial image has substantially the same size (area) as the lens 1 to be measured.

【0078】一方、測定光学系を構成するλ/4板1
4、偏光板15はそのサイズ(面積)が最大でも直径5
0mm程度であり、それを超えるサイズの光弾性干渉縞
の空間像を一度に透過させることはできない。この結
果、被検レンズ1の口径が大きくなると、被検レンズ1
全面にわたる複屈折の測定が不可能となる。この点、光
弾性干渉縞の空間像を一旦縮小させてからλ/4板1
4、偏光板15を透過させるようにしてもよいが、この
場合、測定光学系が複雑になる上に、光弾性干渉縞の空
間像も小さくなるので、測定における空間的な分解能が
落ち、被検レンズ1の複屈折が大きい場合などは、光弾
性干渉縞の縞間隔がCCDカメラ12のがサイズよりも
狭くなってしまい、測定自体不可能になることもある。
On the other hand, the λ / 4 plate 1 constituting the measuring optical system
4. The size (area) of the polarizing plate 15 is at most 5 in diameter.
It is about 0 mm, and a spatial image of a photoelastic interference fringe having a size exceeding 0 mm cannot be transmitted at a time. As a result, when the diameter of the test lens 1 increases, the test lens 1
Measurement of birefringence over the entire surface becomes impossible. At this point, the λ / 4 plate 1 is obtained by temporarily reducing the spatial image of the photoelastic interference fringes.
4. The light may be transmitted through the polarizing plate 15, but in this case, the measurement optical system becomes complicated and the aerial image of the photoelastic interference fringes becomes small, so that the spatial resolution in the measurement is reduced, and When the birefringence of the inspection lens 1 is large, the fringe interval of the photoelastic interference fringes becomes smaller than the size of the CCD camera 12, and the measurement itself may not be possible.

【0079】このため、本実施の形態では、λ/4板1
4以降の光学系素子を一体にして、光学系光軸にほぼ直
交する方向に移動させることで、被検レンズ1とほぼ同
じサイズを持つ光弾性干渉縞の空間像を部分的に幾つか
に分割してCCDカメラ12で観察することで、測定を
行うものである。例えば、図4に示すように、まず、被
検レンズ1の被測定領域E1が観察できるようにステッ
ピングモータ33によりベース31を移動させ、この状
態で前記実施の形態で前述したように位相差及び主軸方
位を測定する。続いて、被検レンズ1の被測定領域E2
が観察できるようにステッピングモータ33によりベー
ス31を移動させ、この状態で同様に位相差及び主軸方
位を測定し、さらに、被検レンズ1の被測定領域E3が
観察できるようにステッピングモータ33によりベース
31を移動させ、この状態で同様に位相差及び主軸方位
を測定すればよい。
For this reason, in the present embodiment, the λ / 4 plate 1
By integrating the fourth and subsequent optical system elements and moving them in a direction substantially perpendicular to the optical system optical axis, a spatial image of photoelastic interference fringes having substantially the same size as the test lens 1 is partially formed. The measurement is performed by dividing and observing with the CCD camera 12. For example, as shown in FIG. 4, first, the base 31 is moved by the stepping motor 33 so that the measured area E1 of the lens 1 to be observed can be observed. Measure the main axis direction. Subsequently, the measured area E2 of the lens 1 to be measured
The base 31 is moved by the stepping motor 33 so that the object can be observed. In this state, the phase difference and the principal axis direction are measured in the same manner. Then, the phase difference and the principal axis direction may be measured in the same manner in this state.

【0080】なお、本実施の形態において、被検レンズ
1の被測定領域を決定する際は、例えば、ベース31を
移動させながら、CCDカメラ12で撮像しモニタした
光弾性干渉縞を観察することで、適当な領域を選択する
ようにしてもよい。或いは、ステッピングモ−タ33に
回転原点位置センサを取り付け、このステッピングモー
タ33に供給するパルス数によりベース31の移動距離
を検知できる構成とし、予め被測定領域を決定してお
き、その領域を観察できる位置までベース31を自動的
に移動させるようにしてもよい。後者の場合、実際には
パソコン23中でのパルス数の計数動作に基づきベース
31(従って、偏光板15等)の移動距離が検知される
(距離検知手段)。
In the present embodiment, when determining the area to be measured of the lens 1 to be measured, for example, it is necessary to observe the photoelastic interference fringes monitored and imaged by the CCD camera 12 while moving the base 31. Then, an appropriate area may be selected. Alternatively, a rotation origin position sensor is attached to the stepping motor 33 so that the moving distance of the base 31 can be detected by the number of pulses supplied to the stepping motor 33, and the area to be measured is determined in advance, and the area can be observed. The base 31 may be automatically moved to the position. In the latter case, the moving distance of the base 31 (therefore, the polarizing plate 15 or the like) is actually detected based on the operation of counting the number of pulses in the personal computer 23 (distance detecting means).

【0081】このようにして、本実施の形態によれば、
分解能を低下させることなく、被検レンズ1全体の複屈
折測定が可能となる。
As described above, according to the present embodiment,
The birefringence of the entire lens 1 to be measured can be measured without lowering the resolution.

【0082】本発明の第三の実施の形態を図5に基づい
て説明する。本実施の形態では、偏光板15、レンズ1
6等を搭載したベース31が角度可変手段となる回転ス
テージ35に搭載されて設けられている.これにより、
偏光板15等は被検レンズ1からの透過光の進行方向に
対する角度を可変可能とされている。また、特に図示し
ないが、この回転ステージ35による偏光板15等の向
き(角度)を検知する角度検知手段が設けられている。
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the polarizing plate 15 and the lens 1
A base 31 on which 6 and the like are mounted is mounted and provided on a rotary stage 35 serving as angle varying means. This allows
The angle of the polarizing plate 15 and the like with respect to the traveling direction of the transmitted light from the test lens 1 can be changed. Although not particularly shown, an angle detecting means for detecting the direction (angle) of the polarizing plate 15 or the like by the rotating stage 35 is provided.

【0083】前述のように、レンズの焦点と被検レンズ
1の焦点とをほぼ一致させた場合、被検レンズ1の透過
光は被検レンズ1の全面に渡って光学系光軸に対してほ
ぼ平行となるため、λ/4板14や偏光板15の向きを
回転させる必要はない。しかし、被検レンズ1が非球面
である場合や、図19で例示したような光書き込み系に
おける実使用状態により近付けるために、レンズ9と被
検レンズ1との間隔を上記設定(両焦点位置がほぼ一致
する設定)からずらした場合においては、被検レンズ1
を透過した光が光学系光軸に対して平行にならず、光学
系光軸に対する光線の進行角度が被検レンズ1の被測定
領域によって異なることになる。また、λ/4板14や
偏光板15には、光線の入射角度依存性があり、素子面
に対して光線が垂直に入射しないと所定の機能を果たさ
ず、測定誤差の一因となる。そこで、本実施の形態で
は、このような状況下では、λ/4坂14、偏光板1
5、レンズ16及びCCDカメラ12を回転ステージ3
5によって一体に回転させることで、被検レンズ1を透
過する光にこれらの光学素子を正対させるようにしたも
のである。
As described above, when the focal point of the lens and the focal point of the test lens 1 are substantially coincident, the transmitted light of the test lens 1 extends over the entire surface of the test lens 1 with respect to the optical axis of the optical system. Since they are substantially parallel, it is not necessary to rotate the directions of the λ / 4 plate 14 and the polarizing plate 15. However, the distance between the lens 9 and the lens 1 to be inspected is set as described above (both focal positions) when the lens 1 to be inspected is an aspheric surface or in order to make the lens 1 closer to the actual use state in the optical writing system as illustrated in FIG. Are substantially shifted from each other), the test lens 1
Is not parallel to the optical axis of the optical system, and the traveling angle of the light beam with respect to the optical axis of the optical system differs depending on the measurement area of the lens 1 to be measured. Further, the λ / 4 plate 14 and the polarizing plate 15 have an incident angle dependency of light rays, and unless the light rays are incident perpendicularly to the element surface, they do not perform a predetermined function and cause a measurement error. Therefore, in the present embodiment, in such a situation, the λ / 4 slope 14 and the polarizing plate 1
5. Rotating stage 3 with lens 16 and CCD camera 12
By rotating the optical element 5 integrally, these optical elements face the light transmitted through the lens 1 to be measured.

【0084】ちなみに、厳密には、一度に観察可能な部
分的な被測定領域内においても、場所によっては光線の
進行角度が多少異なるが、このような部分的な被測定領
域における平均的な光線の進行角度に対して偏光板15
の素子面が垂直(正対)するように回転ステージ35を
回転させることで、より誤差の少ない測定が可能とな
る。また、光学系光軸に対する光線の進行角度について
は、例えば、光線追跡シミュレーションによって、予
め、被検レンズ透過後の被検レンズ1のレンズ高さ毎で
の角度が求められるので、被検レンズ1の形状、或い
は、測定光学系の設定を基に、部分的な被測定領域にお
ける平均的な光線の進行角度を求めておけばよい。さら
に、トロイダル面のような、主・副方向で各々曲率が異
なる被検レンズの場合であれば、ベース31に回転ステ
ージ35のような回転機溝の他に、あおり機構を設けて
おき、3次元的に上記と同様な操作を行わせるようにす
ればよい。
Incidentally, strictly speaking, even within a partially measured area that can be observed at a time, the traveling angle of the light beam varies slightly depending on the location. Polarizer 15 for the traveling angle of
By rotating the rotary stage 35 so that the element surface is perpendicular (directly facing), measurement with less error can be performed. Further, as for the advancing angle of the light beam with respect to the optical axis of the optical system, for example, an angle at each lens height of the test lens 1 after passing through the test lens is previously obtained by a ray tracing simulation. The average traveling angle of the light beam in the partial area to be measured may be obtained based on the shape of the optical system or the setting of the measuring optical system. Further, in the case of a test lens having different curvatures in the main and sub directions, such as a toroidal surface, a tilt mechanism is provided on the base 31 in addition to the rotary machine groove such as the rotary stage 35. What is necessary is just to make it perform the same operation | movement as mentioned above dimensionally.

【0085】従って、本実施の形態によれば、被検レン
ズ1が光書込用に用いられる走査レンズのような場合で
あっても、基本的に、被検レンズ1とレンズ9との間隔
を任意に設定できる構成によって実使用に近い状態に測
定系を設定し得る上に、被検レンズ1の透過光の進行方
向に対して偏光板15等を一体として角度調整すること
で垂直に近い状態で入射させることができ、より正確な
測定が可能となる。
Therefore, according to the present embodiment, even when the test lens 1 is a scanning lens used for optical writing, basically, the distance between the test lens 1 and the lens 9 The measurement system can be set to a state close to actual use by a configuration that can be arbitrarily set, and the angle is almost perpendicular by integrally adjusting the angle of the polarizing plate 15 and the like with the traveling direction of the transmitted light of the test lens 1. It can be made to enter in a state, and more accurate measurement becomes possible.

【0086】本発明の第四の実施の形態を図6及び図7
に基づいて説明する。本実施の形態は、前述したような
各実施の形態において用いられる被検レンズ1が、口径
の大きいものや、図6に示すようにその周縁部分に平坦
部1aを有するようなものを想定している。
FIGS. 6 and 7 show a fourth embodiment of the present invention.
It will be described based on. In the present embodiment, it is assumed that the test lens 1 used in each of the above-described embodiments has a large diameter, or has a flat portion 1a at the periphery as shown in FIG. ing.

【0087】このような想定の下、本実施の形態では、
被検レンズ1を保持するホルダ41において、この被検
レンズ1の周縁部分を透過する光を遮光する遮光部材4
2が設けられている。この遮光部材42はホルダ41上
のガイド43に沿って移動自在で遮光部材移動手段とな
るステージ44に搭載されており、被検レンズ1に対す
る遮光部材42の位置を光軸に直交する方向に可変調整
自在とされている。
Under such an assumption, in the present embodiment,
In a holder 41 for holding the lens 1 to be tested, a light blocking member 4 for blocking light transmitted through a peripheral portion of the lens 1 to be tested.
2 are provided. The light-shielding member 42 is mounted on a stage 44 that is movable along a guide 43 on the holder 41 and serves as a light-shielding member moving unit, and the position of the light-shielding member 42 with respect to the lens 1 to be measured can be changed in a direction perpendicular to the optical axis. It is adjustable.

【0088】このような構成において、口径の大きな被
検レンズや周縁部分に平坦部を有するような被検レンズ
の場合、被検レンズ1の周縁部分からの透過光線が重な
ったり、迷光となって測定系側に向かうことで、測定の
邪魔になることがある。この点、本実施の形態では、こ
のような被検レンズ1の周縁部分に対して遮光部材42
を設けて周縁部分を透過する光を遮光するようにしてい
るので、測定の邪魔になるような光の影響を受けること
がない。被検レンズ1の平坦部1a等の迷光を発生させ
るような部分は、一般に、レンズとして無効領域である
場合が多く、測定の必要がないことが多いので、このよ
うな部分に遮光部材42を設けることで本来の測定に支
障を来すこともない。
In such a configuration, in the case of a test lens having a large diameter or a test lens having a flat portion at the peripheral portion, transmitted light from the peripheral portion of the test lens 1 overlaps or becomes stray light. Heading toward the measurement system may interfere with the measurement. In this respect, in the present embodiment, the light shielding member 42
Is provided so as to block the light transmitted through the peripheral portion, so that there is no influence of light that hinders the measurement. In general, a portion that generates stray light, such as the flat portion 1a of the lens 1 to be inspected, is often an ineffective region as a lens and does not need to be measured. The provision of such an arrangement does not interfere with the original measurement.

【0089】測定の邪魔になるような光を遮光しようと
する場合、光弾性干渉縞の空間像をモニタしながら、遮
光部材42を搭載したステージ44を光学系光軸とほぼ
垂直な方向(図7中に矢印で示す方向)に移動させて、
迷光の影響が消えるようなステージ44の位置を探せば
よい。この場合のモニタ像はCCDカメラ12で観察し
てもよく、或いは、より簡易的なスクリーンに投影させ
るようにしてもよい。
When trying to shield light that hinders measurement, the stage 44 on which the light shielding member 42 is mounted is moved in a direction substantially perpendicular to the optical axis of the optical system (see FIG. 7 in the direction indicated by the arrow)
What is necessary is just to find the position of the stage 44 where the influence of the stray light disappears. The monitor image in this case may be observed by the CCD camera 12, or may be projected on a simpler screen.

【0090】従って、本実施の形態によれば、被検レン
ズ1の周縁部分を透過した光が迷光としてCCDカメラ
12に入射すると、測定の邪魔となり得るが、周縁部分
に対して遮光部材42が設けられているので、迷光の影
響がなく、測定不能領域をなくすことができ、これによ
り、被検レンズ1の全面に渡って測定可能となる。特
に、遮光部材42をステージ44により適宜移動させる
ことにより、被検レンズ1に即した形で完全に迷光の影
響を除去することができる。
Therefore, according to the present embodiment, if the light transmitted through the peripheral portion of the lens 1 to be measured enters the CCD camera 12 as stray light, it may hinder the measurement. Since it is provided, there is no influence of stray light, and it is possible to eliminate the unmeasurable region, thereby enabling measurement over the entire surface of the lens 1 to be measured. In particular, by appropriately moving the light shielding member 42 by the stage 44, the influence of stray light can be completely removed in a form suitable for the lens 1 to be measured.

【0091】本発明の第五の実施の形態を再度図3に基
づき説明する。本実施の形態において、既述の第二の実
施の形態で示した部分と同一部分は同一符号を用いて示
し、説明も省略する。第二の実施の形態と本実施の形態
との相違点は、本実施の形態においては、λ/4板14
以降の光学系素子は、図3上、受光ユニット26として
一体的に構成されている点である。そしてこの受光ユニ
ットを、光学系光軸にほぼ直交する方向に移動させるこ
とにより、被検レンズ1とほぼ同じサイズを持つ光弾性
干渉縞の空間像を部分的に幾つかに分割してCCDカメ
ラ12で観察することで、測定を行うものである。これ
に関しては、既出の図4およびその説明と同様である。
The fifth embodiment of the present invention will be described again with reference to FIG. In the present embodiment, the same parts as those described in the second embodiment described above are denoted by the same reference numerals, and description thereof will be omitted. The difference between the second embodiment and the present embodiment is that, in the present embodiment, the λ / 4 plate 14
Subsequent optical elements are integrally formed as a light receiving unit 26 in FIG. By moving the light receiving unit in a direction substantially perpendicular to the optical axis of the optical system, the spatial image of the photoelastic interference fringe having substantially the same size as the lens 1 to be inspected is partially divided into several parts. By observing at 12, measurement is performed. This is the same as the above-described FIG. 4 and the description thereof.

【0092】また、本実施の形態のレンズ16は複数枚
のレンズで構成された焦点距離可変の組レンズであり、
構成するレンズの間隔を変えることにより、組レンズと
しての焦点距離を変化させ、その結像倍率を可変するこ
とができる。被検レンズ1の近傍と結像関係が設立する
ようにレンズ16の位置を予め調整しておけば、結像関
係を保ったまま、結像光学系13の結像倍率を変化させ
ることが可能である。
The lens 16 according to the present embodiment is a set lens having a variable focal length constituted by a plurality of lenses.
By changing the distance between the constituent lenses, the focal length as a set lens can be changed, and the imaging magnification can be changed. If the position of the lens 16 is adjusted in advance so that an imaging relationship is established with the vicinity of the lens 1 to be inspected, the imaging magnification of the imaging optical system 13 can be changed while maintaining the imaging relationship. It is.

【0093】被検レンズ1の複屈折による光弾性干渉縞
50は、例えば、図8に示すように被検レンズ中央部分
1cでは干渉縞の間隔が広く、周縁部分1eでは干渉縞
の間隔が狭くなって、干渉縞の間隔がCCDカメラ12
の画素サイズに近くなるか、画素サイズよりも狭くなる
ときがある。このような領域では、CCDカメラ12の
1画素の中(1画素に相当する領域)で複屈折が大幅に
変化していたとしても、その平均値がその画素における
測定値として出力されてしまうので、その領域における
測定値の信頼性が低下する。この点、本実施の形態の測
定装置においては、干渉縞の間隔が狭くなった領域で
は、レンズ16の焦点距離が長くなるように設定し、結
像光学系13の結像倍率を上げて干渉縞を拡大した状態
で測定を実施することで、被検レンズ1の全面に渡っ
て、より正確な測定を行うことができる。
As shown in FIG. 8, for example, as shown in FIG. 8, the interval between the interference fringes in the central portion 1c of the lens to be inspected is large, and the interval between the interference fringes is small in the peripheral portion 1e. And the interval between the interference fringes is
Or smaller than the pixel size. In such an area, even if the birefringence changes significantly in one pixel of the CCD camera 12 (an area corresponding to one pixel), the average value is output as a measured value in that pixel. , The reliability of the measured values in that region is reduced. In this regard, in the measuring apparatus of the present embodiment, in the region where the interval between the interference fringes is narrow, the focal length of the lens 16 is set to be long, and the imaging magnification of the imaging optical system 13 is increased to increase the interference. By performing the measurement with the fringes enlarged, more accurate measurement can be performed over the entire surface of the lens 1 to be measured.

【0094】第五の実施の形態の場合の複屈折測定装置
の設定状態は、前述の第二の実施の形態と、実際の測定
については、前述の第一の実施の形態と全く同様である
ので、その説明を援用し、ここでは説明を割愛する。
The setting state of the birefringence measuring apparatus in the case of the fifth embodiment is exactly the same as that of the above-described second embodiment, and the actual measurement is the same as that of the above-described first embodiment. Therefore, the explanation is referred to here, and the explanation is omitted here.

【0095】このようにして、本実施の形態によれば、
分解能を低下させることなく、被検レンズ1全体の複屈
折測定が可能となる。
As described above, according to the present embodiment,
The birefringence of the entire lens 1 to be measured can be measured without lowering the resolution.

【0096】本発明の第六の実施の形態を図9に基づい
て説明する。前記実施の形態である図3で示した部分と
同一部分は同一符号を用いて示し、説明も省略する。本
実施の形態では、前記実施の形態の図3中におけるベー
ス31、ガイド32及びステッピングモータ33等によ
る受光側変位手段34が省略され、図3の1つの受光ユ
ニット26に対し、同一構成の2つの受光ユニット26
a,26bが設けられている点が図3と異なっている点
である。即ち、受光ユニット26aはλ/4板14a、
偏光板15a、レンズ16a、CCDカメラ12a及び
回転手段21aにより構成され、受光ユニット26bは
λ/4板14b、偏光板15b、レンズ16b、CCD
カメラ12b及び回転手段21bにより構成されてい
る。ここに、被検レンズ1の後段にはこの被検レンズ1
からの透過光を2つに分岐してこれらの受光ユニット2
6a,26bに入射させる分岐手段としてのプリズム5
1が設けられている。プリズム51による被検レンズ透
過光の分離についてはプリズム面での反射によりP偏光
(プリズム51の反射面に対し平行方向に振動する光)
とS偏光(プリズム51の反射面に対し垂直方向に振動
する光)との間で位相飛びの差が生じないように、被検
レンズ透過光のプリズム反射面への入射角度を、プリズ
ム51のブリュースタ角より大きく設定してある。な
お、レンズ16a,16bとしては固定焦点レンズが用
いられ、被検レンズ1の近傍とCCDカメラ12a,1
2bの撮像面とがほぼ結像関係となるように、その位置
が各々調整されている。また、材質的には、ガラスレン
ズのように複屈折がほぼ除去されたものが用いられてい
る。
A sixth embodiment of the present invention will be described with reference to FIG. The same parts as those shown in FIG. 3 of the embodiment are denoted by the same reference numerals, and description thereof will be omitted. In the present embodiment, the light receiving side displacement means 34 such as the base 31, the guide 32, and the stepping motor 33 in FIG. 3 of the above embodiment is omitted, and a single light receiving unit 26 of FIG. Light receiving units 26
a and 26b are different from FIG. That is, the light receiving unit 26a is a λ / 4 plate 14a,
The light receiving unit 26b includes a λ / 4 plate 14b, a polarizing plate 15b, a lens 16b, a CCD, and a polarizing plate 15a, a lens 16a, a CCD camera 12a, and a rotating unit 21a.
It comprises a camera 12b and a rotating means 21b. Here, the lens 1 to be inspected is located downstream of the lens 1 to be inspected.
From the transmitted light from the light receiving unit 2
Prism 5 as a branching means for entering light into 6a and 26b
1 is provided. Regarding the separation of the light transmitted through the lens to be inspected by the prism 51, P-polarized light (light that vibrates in a direction parallel to the reflection surface of the prism 51) due to reflection on the prism surface.
The angle of incidence of the transmitted light of the lens to be measured on the prism reflecting surface is adjusted so that there is no phase jump difference between the S-polarized light and the S-polarized light (light oscillating in the direction perpendicular to the reflecting surface of the prism 51). It is set larger than the Brewster angle. Note that fixed focus lenses are used as the lenses 16a and 16b, and the vicinity of the lens 1 to be inspected and the CCD cameras 12a and
The positions are adjusted so that the image pickup surface 2b and the image pickup surface 2b are substantially in an image forming relationship. As a material, a material from which birefringence is almost removed, such as a glass lens, is used.

【0097】このような構成において、2つの受光ユニ
ット26a,26bを、被検レンズ1を透過してプリズ
ム51により分岐される透過光に関して、被検レンズ1
の異なる被測定領域からの透過光が入射するように各々
を配置させておけば、被検レンズ1の異なる被測定領域
に関して同時に測定することが可能となり、測定操作性
が向上する。測定方法としては、2つのCCDカメラ1
2a,12bにより撮像された画像を画像入力器25
a,25bを通じてパソコン23に取り込むことにより
行われ、その処理内容は前記実施の形態の場合と同様で
ある.よって、本実施の形態によれば、受光ユニット2
6a,26bを移動させることなく、被検レンズ1の全
面を同時に測定できる。
In such a configuration, the two light receiving units 26a and 26b are connected to the test lens 1 with respect to the transmitted light transmitted through the test lens 1 and branched by the prism 51.
By arranging them so that transmitted light from different measurement areas is incident, measurement can be performed simultaneously on different measurement areas of the lens 1 to be measured, and measurement operability is improved. As a measuring method, two CCD cameras 1
The images taken by 2a and 12b are input to the image input device 25.
a, 25b to the personal computer 23, and the processing contents are the same as in the above embodiment. Therefore, according to the present embodiment, the light receiving unit 2
The entire surface of the test lens 1 can be measured simultaneously without moving the lenses 6a and 26b.

【0098】なお、本実施の形態の構成に関して、変形
例として、レンズ16a,16bを第一の実施の形態の
場合と同様に、複数枚のレンズで構成された焦点距離可
変の組レンズとし、構成するレンズの間隔を変えること
により、組レンズとしての焦点距離を変化させ、その結
像倍率を各々独立して可変自在としてもよい。即ち、被
検レンズ1の近傍と結像関係が設立するようにレンズ1
6a,16bの位置を予め調整しておけば、結像関係を
保ったまま、各々の受光ユニット26a,26bにおい
て結像光学系13a,13bの結像倍率を変化させるこ
とが可能である。これにより、各々の受光ユニット26
a,26bによる被測定領域において干渉縞の間隔が狭
くなった領域では、レンズ16a或いはレンズ16bの
焦点距離を長くなるように設定し、結像光学系13a,
13bの結像倍率を上げて、干渉縞を拡大した状態でC
CDカメラ12a,12bに結像させて測定を行わせる
ことで、何れの受光ユニット26a,26bにおいて
も、より正確な測定を行うことができる。
As a modification of the structure of the present embodiment, the lenses 16a and 16b are, as in the case of the first embodiment, set as variable focal length lenses composed of a plurality of lenses. By changing the distance between the constituent lenses, the focal length as a set lens may be changed, and the imaging magnification may be independently and freely variable. That is, the lens 1 is set so that an imaging relationship is established with the vicinity of the lens 1 to be inspected.
If the positions of 6a and 16b are adjusted in advance, it is possible to change the imaging magnification of the imaging optical systems 13a and 13b in each of the light receiving units 26a and 26b while maintaining the imaging relationship. Thereby, each light receiving unit 26
In the area where the interference fringes are narrowed in the area to be measured by a and 26b, the focal length of the lens 16a or the lens 16b is set to be long, and the imaging optical system 13a,
13b with the imaging magnification increased and interference fringes enlarged.
By causing the CD cameras 12a and 12b to form an image and perform the measurement, more accurate measurement can be performed in any of the light receiving units 26a and 26b.

【0099】尚、本実施の態様における実際の測定につ
いては、前述の第一の実施の形態と全く同様であるの
で、その説明を援用し、ここでは説明を割愛する。
Note that the actual measurement in this embodiment is exactly the same as that in the first embodiment described above, so that the description is referred to and the description is omitted here.

【0100】本発明の第七の実施の形態を図10ないし
図12に基づいて説明する。本実施の形態は、焦点距離
を可変し得るレンズ16(上記変形例の焦点距離可変と
したレンズ16a,16bの場合も同様)に関して、そ
の焦点距離(従って、結像光学系13の結像倍率)を自
動設定させるようにしたものである。
A seventh embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the focal length (and thus the imaging magnification of the imaging optical system 13) is determined for the lens 16 whose focal length can be varied (the same applies to the lenses 16a and 16b having the variable focal length in the above-described modified example). ) Is automatically set.

【0101】まず、CCDカメラ12により撮像される
被検レンズ1の光弾性干渉縞52の画像は、例えば、図
10に示すようになる。EはCCDカメラ12により観
察している領域を示す。この場合のA−A′線断面におけ
る画像の画素濃度分布を図示すると、図11に示すよう
になる。図11における画素濃度分布の極小値(或い
は、極大値)間の間隔を干渉縞の間隔と見做すことがで
きる。図11に示す例では、B点とB′点との間隔に相
当し、この間隔はCCDカメラ12の10画素分に相当
している。このような撮像結果が得られることから、画
素濃度分布の極小値(或いは、極大値)間の間隔が、例
えば、「5画素分より大きくないと、干渉縞の間隔が狭
すぎて測定値が信頼できない」というように、極小値
(或いは、極大値)間の間隔についてCCDカメラ12
の画素数にて閾値(例えば、5画素)を設定しておき、
極小値(或いは、極大値)間の間隔がこの閾値より小さ
くなっている被測定領域では、その間隔が閾値より大き
くなるように、焦点距離可変のレンズ16のレンズ間距
離を調整してその焦点距離が長くなるようにし、結像光
学系13の結像倍率を上げるようにすればよい。
First, an image of the photoelastic interference fringes 52 of the test lens 1 captured by the CCD camera 12 is, for example, as shown in FIG. E indicates an area observed by the CCD camera 12. FIG. 11 shows the pixel density distribution of the image in the cross section taken along the line AA ′ in this case. The interval between the minimum values (or the maximum values) of the pixel density distribution in FIG. 11 can be regarded as the interval between the interference fringes. In the example shown in FIG. 11, it corresponds to the interval between the points B and B ', and this interval corresponds to 10 pixels of the CCD camera 12. Since such an imaging result is obtained, the interval between the minimum values (or the maximum values) of the pixel density distribution is, for example, “If the interval is not larger than 5 pixels, the interval between the interference fringes is too narrow, and the measured value becomes too small. The CCD camera 12 determines the interval between the minimum values (or the maximum values).
A threshold value (for example, 5 pixels) is set with the number of pixels of
In the measurement area where the interval between the minimum values (or the maximum values) is smaller than the threshold value, the distance between the lenses of the variable focal length lens 16 is adjusted so that the interval becomes larger than the threshold value. The distance may be increased and the imaging magnification of the imaging optical system 13 may be increased.

【0102】図12にこのような原理に基づき結像倍率
を自動調整設定するための処理のフローチャートを示
す。図中の「尾根線」は、画素濃度の極小値(或いは、
極大値)をとる位置間をつないだ曲線を意味する。
「X」は、CCDカメラ12で観察している領域Eにお
いて最小となる尾根線同士の間隔であり、CCDカメラ
12で観察している領域Eにおいて最小となる干渉縞の
間隔に相当する。「S」は予め設定されたCCDカメラ
12の画素数を単位とする縞間隔の閾値である。
FIG. 12 is a flowchart of a process for automatically adjusting and setting the imaging magnification based on such a principle. The “ridge line” in the figure indicates the minimum value of the pixel density (or
(Maximum value).
“X” is the minimum interval between the ridge lines in the area E observed by the CCD camera 12, and corresponds to the minimum interval between the interference fringes in the area E observed by the CCD camera 12. “S” is a threshold value of a stripe interval in units of a preset number of pixels of the CCD camera 12.

【0103】まず、CCDカメラ12で撮像した画像を
取り込む(ステップS1)。そして、このCCDカメラ
12で観察している領域Eにおける最小縞間隔を求める
処理として、近傍画素での平均化処理(平滑化)を行い
(S2)、尾根線を検出し(S3)、その内の不要な尾
根線を除去するとともに細線化することで(S4)、最
小の尾根線間隔Xを検知する(S5)。検知された最小
の尾根線間隔Xを閾値Sと比較し(S6)、閾値Sより
も小さい(短い)場合には結像倍率を上げる処理(S
7)を繰返し、最終的に、最小の尾根線間隔Xが閾値S
以上の状態で、前述したような複屈折の測定を開始させ
る.従って、本実施の形態によれば、測定装置としての
操作性が向上する上に結像倍率の適正化を図ることもで
きる。
First, an image captured by the CCD camera 12 is captured (step S1). Then, as processing for obtaining the minimum fringe interval in the area E observed by the CCD camera 12, averaging processing (smoothing) is performed on neighboring pixels (S2), and a ridge line is detected (S3). By removing unnecessary ridge lines and thinning them (S4), the minimum ridge line interval X is detected (S5). The detected minimum ridge line interval X is compared with a threshold value S (S6), and if smaller (shorter) than the threshold value S, the image forming magnification is increased (S6).
7) is repeated, and finally, the minimum ridge line interval X becomes the threshold value S
In the above state, the measurement of birefringence as described above is started. Therefore, according to the present embodiment, it is possible to improve the operability as a measuring device and to optimize the imaging magnification.

【0104】なお、焦点距離可変の組レンズによるレン
ズ16に関して、その構成レンズの間隔調整は、例えば
各構成レンズをステージに搭載し、そのステージをモー
タを駆動源として移動させることにより、被検レンズ1
の近傍とCCDカメラ12の撮像面との結像関係を保っ
たまま、組レンズとしての焦点距離が変化するように調
整を実施させてもよい。或いは、市販されているズーム
レンズのズーム機構を利用してもよい。
For the lens 16 composed of a lens group having a variable focal length, the distance between the constituent lenses can be adjusted, for example, by mounting each constituent lens on a stage and moving the stage using a motor as a drive source. 1
The adjustment may be performed so that the focal length as a group lens changes while maintaining the image forming relationship between the vicinity of and the imaging surface of the CCD camera 12. Alternatively, a zoom mechanism of a commercially available zoom lens may be used.

【0105】本発明の第八の実施の形態を図13に基づ
き説明する。本実施の形態において、既述の第二の実施
の形態の説明で図3で示した部分と同一部分は同一符号
を用いて示し、説明も省略する。第二の実施の形態と本
実施の形態との相違点は、本実施の形態で測定対象とす
る被検レンズ1は主走査方向(紙面に対して平行な方
向)と副走査方向(紙面に対して垂直な方向)とで焦点
距離の異なる非軸対称なレンズである点にある。この非
軸対称なレンズは図示しないホルダにより保持される。
このような被検レンズ1に対して、まず、所定の偏光状
態で光を被検レンズ1に照射させる照射光学系2が設け
られている。この照射光学系2は、既述の第二の実施の
形態と異なり、コヒーレント長が短い直線偏光の光ビー
ムを発する半導体レーザ3と、半導体レーザ3からの直
線偏光を円偏光に変換するλ/4板4と、レンズ9と、
ピンホール10とにより構成されている。この種の測定
装置の光源に関しては、偏光板15等が波長依存性を有
するため、幾つかの波長光が混入している白色光源より
も、単色のレーザ光源を用いることが望ましい。しか
し、レーザ光源としてH e−Neレーザのようなコヒーレ
ント長の長いものを用いると、被検レンズ1の複屈折に
より発生した光弾性干渉縞の他に、測定光学系内での多
重反射等によるノイズの干渉縞が発生し、光弾性干渉縞
と重なるため測定誤差を生ずることがある。この点、本
実施の形態では、光源にコヒーレント長が短い半導体レ
ーザ3を用いているので、測定光学系内における多重反
射等によるノイズの干渉縞を発生させにくくできる効果
も得られる。
An eighth embodiment of the present invention will be described with reference to FIG. In this embodiment, the same portions as those shown in FIG. 3 in the description of the above-described second embodiment are denoted by the same reference numerals, and description thereof will be omitted. The difference between the second embodiment and the present embodiment is that the test lens 1 to be measured in the present embodiment has a main scanning direction (a direction parallel to the paper) and a sub-scanning direction (a direction parallel to the paper). (Perpendicular to the direction) is a non-axisymmetric lens having a different focal length. This non-axisymmetric lens is held by a holder (not shown).
An irradiation optical system 2 for irradiating the test lens 1 with light in a predetermined polarization state is provided for the test lens 1. The irradiation optical system 2 is different from the second embodiment described above in that a semiconductor laser 3 that emits a linearly polarized light beam having a short coherent length and a λ / that converts linearly polarized light from the semiconductor laser 3 into circularly polarized light. Four plates 4, a lens 9,
And a pinhole 10. Regarding the light source of this type of measuring device, it is desirable to use a monochromatic laser light source rather than a white light source mixed with several wavelengths of light because the polarizing plate 15 and the like have wavelength dependence. However, when a laser light source having a long coherent length, such as a He-Ne laser, is used, in addition to the photoelastic interference fringes generated by the birefringence of the lens 1 to be measured, due to multiple reflections in the measurement optical system, etc. Noise interference fringes occur and overlap with photoelastic interference fringes, which may cause measurement errors. In this regard, in the present embodiment, since the semiconductor laser 3 having a short coherent length is used as the light source, an effect of making it difficult to generate noise interference fringes due to multiple reflection or the like in the measurement optical system is also obtained.

【0106】また、このような照射光学系2と被検レン
ズ1との間に位置させて、その光軸上には、補正光学系
53を構成する補正用レンズ54が設けられている。こ
の補正用レンズ54は被検レンズ1とは主走査方向と副
走査方向とで逆特性、即ち、副走査方向(紙面に対して
垂直な方向)にのみ屈折カを持つことで、被検レンズ1
を透過した光を平行光束化させる機能を持つ。この補正
用レンズ54も光軸方向に移動可能なステージ55に搭
載されており、このステージ55を駆動するためのステ
ッピングモータ(図示せず)の回転により光軸方向に進
退移動する。ここに、ステージ55とステッピングモー
タ等とにより補正系変位手投が構成されており、被検レ
ンズ1に対する補正用レンズ54の光軸方向の位置(距
離)が調整自在とされている。また、このステッピング
モータには回転原点位置センサが設けられており、補正
用レンズ54と被検レンズ1との距離を予め所定距離に
設定し、その状態をステージ55の移動原点としておけ
ば、ステッピングモータに供給するパルス数を計数する
ことで、ステージ55の移動に伴う補正用レンズ54と
被検レンズ1との距離の変化を検知できる(実際には、
後述するパソコン中でのパルス数の計数動作に基づきこ
の距離が検知される…距離検知手投)。
A correction lens 54 constituting a correction optical system 53 is provided on the optical axis between the irradiation optical system 2 and the lens 1 to be measured. The correction lens 54 has a characteristic opposite to that of the lens 1 in the main scanning direction and the sub-scanning direction, that is, has a refractive power only in the sub-scanning direction (a direction perpendicular to the paper surface). 1
It has a function to convert the light transmitted through into a parallel light flux. The correction lens 54 is also mounted on a stage 55 movable in the optical axis direction, and moves forward and backward in the optical axis direction by rotation of a stepping motor (not shown) for driving the stage 55. Here, a correction system displacement hand throw is configured by the stage 55 and the stepping motor, and the position (distance) of the correction lens 54 with respect to the test lens 1 in the optical axis direction is adjustable. In addition, the stepping motor is provided with a rotation origin position sensor. If the distance between the correction lens 54 and the lens 1 to be measured is set to a predetermined distance in advance and the state is set as the movement origin of the stage 55, the By counting the number of pulses supplied to the motor, a change in the distance between the correction lens 54 and the test lens 1 due to the movement of the stage 55 can be detected (actually,
This distance is detected based on the counting operation of the number of pulses in the personal computer, which will be described later.

【0107】本実施の形態により付加された被検レンズ
1の透過光を平行化するための補正光学系53の補正用
レンズ54の作用について図14を参照して説明する。
基本的に、被検レンズ1が軸対称レンズである場合に
は、補正用レンズ54を設けなくてもレンズ9の焦点と
被検レンズ1の焦点とをほぽ一致させることで、レンズ
9と被検レンズ1とがアフオーカル系を構成するため、
被検レンズ1を透過した光はほぼ平行化されることとな
る。しかしながら、本実施の形態で用いているように被
検レンズ1が主走査方向と副走査方向とで焦点距離が異
なる非軸対称レンズである場合には、レンズ9の焦点と
被検レンズ1の主、副走査方向の焦点とを各々同時に一
致させることができないため、軸対称の球面波を照射し
て被検レンズ透過光を平行化させることは困難となる。
この点、本実施の形態では、副走査方向にのみ屈折力を
持つ補正用レンズ54をレンズ9と被検レンズ1との間
に配設し、レンズ9による発散光を非軸対称な光に変換
してから被検レンズ1に照射させる。
The operation of the correcting lens 54 of the correcting optical system 53 for collimating the transmitted light of the test lens 1 added according to the present embodiment will be described with reference to FIG.
Basically, when the test lens 1 is an axially symmetric lens, the focus of the lens 9 and the focus of the test lens 1 can be substantially matched without providing the correction lens 54, so that Since the test lens 1 forms an afocal system,
The light transmitted through the lens 1 to be examined is almost collimated. However, when the test lens 1 is a non-axisymmetric lens having different focal lengths in the main scanning direction and the sub-scanning direction as used in the present embodiment, the focus of the lens 9 and the lens 1 Since the focal points in the main and sub-scanning directions cannot be made coincident with each other, it is difficult to irradiate an axisymmetric spherical wave to collimate the light transmitted through the lens to be measured.
In this regard, in the present embodiment, the correcting lens 54 having refractive power only in the sub-scanning direction is disposed between the lens 9 and the lens 1 to be tested, and the divergent light from the lens 9 is converted into non-axisymmetric light After the conversion, the test lens 1 is irradiated.

【0108】ここに、図14中に示すように、被検レン
ズ1の主走査方向の焦点距離をf1、副走査方向の焦点
距離をf2(ただし、 f1>f2)、レンズ9の焦点
距離をfo、補正用レンズ54の副走査方向の焦点距離
をfs(主走査方向の焦点距離は無限大)、肉厚をt、
屈折率をnsとし、レンズ9と被検レンズ1との間隔
(主点間距離)を△1、補正用レンズ54と被検レンズ
1との間隔を△2としたとき、(11)(12)式を満
たすように、間隔△1,△2を設定すれば、被検レンズ
1を透過した光はほぼ平行化される。
Here, as shown in FIG. 14, the focal length of the test lens 1 in the main scanning direction is f1, the focal length in the sub-scanning direction is f2 (where f1> f2), and the focal length of the lens 9 is fo, the focal length of the correction lens 54 in the sub-scanning direction is fs (the focal length in the main scanning direction is infinite), the thickness is t,
When the refractive index is ns, the distance between the lens 9 and the test lens 1 (distance between principal points) is △ 1, and the distance between the correction lens 54 and the test lens 1 is △ 2, (11) (12) If the intervals △ 1 and △ 2 are set to satisfy the expression
Light transmitted through 1 is almost collimated.

【0109】[0109]

【数9】 (Equation 9)

【0110】ここに、このような間隔の設定は、例え
ば、レンズ9と被検レンズ1、補正用レンズ54と被検
レンズ1とが各々物理的に最も接近する状態を各々の移
動原点としておき、移動原点からステージ11,55を
移動させることで、レンズ9と被検レンズ1との間隔△
1、補正用レンズ54と被検レンズ1との間隔△2を検
知できる。もっとも、被検レンズ1の種類が限定される
場合は、補正用レンズ54を光軸方向に移動させる必要
はないので、ステージ55を設けずに、(11)(1
2)式を満たす間隔△1,△2となるように光学系を予
め設定しておけばよい。
Here, such an interval is set, for example, by setting the state in which the lens 9 and the test lens 1 and the correction lens 54 and the test lens 1 are physically closest to each other as the origin of each movement. By moving the stages 11 and 55 from the movement origin, the distance between the lens 9 and the lens
1. The distance △ 2 between the correction lens 54 and the lens 1 to be measured can be detected. However, when the type of the lens 1 to be inspected is limited, it is not necessary to move the correction lens 54 in the optical axis direction.
The optical system may be set in advance so that the intervals △ 1 and △ 2 satisfy the expression (2).

【0111】本発明の第九の実施の形態を図15に基づ
いて説明する。第八の実施の形態で示した部分と同一部
分は同一符号を用いて示し、説明も省略する。本実施の
形態で測定対象とする被検レンズ1は、焦点距離が非常
に長いものを想定している。この場合、レンズ9と被検
レンズ1とでアフォーカル系を構成させるためには、両
者の間隔を非常に大きく設定する必要があり、装置が大
型化してしまう不具合がある。しかるに、このような被
検レンズ1をその両面がほぼ平行な平板とみなして平行
光を照射させるようにすれば、測定装置の大型化を回避
できる。本実施の形態では、その一例として図15に示
すように構成されている。
A ninth embodiment of the present invention will be described with reference to FIG. The same portions as those described in the eighth embodiment are denoted by the same reference numerals, and description thereof is omitted. The test lens 1 to be measured in the present embodiment is assumed to have a very long focal length. In this case, in order to form an afocal system with the lens 9 and the lens 1 to be inspected, it is necessary to set a very large interval between the two, and there is a problem that the apparatus becomes large. However, if such a test lens 1 is regarded as a flat plate whose both surfaces are substantially parallel, and the parallel light is emitted, it is possible to avoid an increase in the size of the measuring apparatus. In the present embodiment, an example is shown in FIG.

【0112】即ち、図15において、照射光学系2のレ
ンズ9と被検レンズ1との間に位置させて、その光軸上
には、補正光学系53を構成する補正用レンズ54が設
けられている。この補正用レンズ54は被検レンズ1に
照射する光及び透過した光を平行光束化させる機能を持
つ軸対称の通常の凸レンズである。このような補正用レ
ンズ54もステージ55に搭載されて光軸方向に移動調
整自在に設けられている。
That is, in FIG. 15, a correction lens 54 constituting a correction optical system 53 is provided on the optical axis between the lens 9 of the irradiation optical system 2 and the lens 1 to be measured. ing. The correcting lens 54 is an ordinary axially symmetric convex lens having a function of converting the light irradiated to the test lens 1 and the transmitted light into a parallel light flux. Such a correction lens 54 is also mounted on the stage 55 so as to be movable and adjustable in the optical axis direction.

【0113】このような構成により、レンズ9による発
散光を補正用レンズ54にて平行光束にしてから被検レ
ンズ1に照射する。このとき、実際には被検レンズ1は
平行平板ではないので、被検レンズ1を透過した光は平
行光束からずれており、発散又は収束光束となるが、被
検レンズ1の焦点距離が十分に長いと、この被検レンズ
1の透過光の平行光束からのずれは微小角度になるた
め、それによる誤差は無視できる。よって、測定対象と
する被検レンズ1が焦点距離の非常に長いものであって
も、装置を大型化させることなく、測定可能となり、汎
用性を高めることができる。
With such a configuration, the divergent light from the lens 9 is converted into a parallel light beam by the correcting lens 54, and then emitted to the lens 1 to be measured. At this time, since the test lens 1 is not actually a parallel flat plate, the light transmitted through the test lens 1 is shifted from the parallel light flux and becomes a divergent or convergent light flux, but the focal length of the test lens 1 is sufficient. In this case, the deviation of the transmitted light from the test lens 1 from the parallel light beam becomes a very small angle, so that the error caused by the deviation can be ignored. Therefore, even if the test lens 1 to be measured has a very long focal length, measurement can be performed without increasing the size of the apparatus, and versatility can be improved.

【0114】ここに、本実施の形態において、例えば、
被検レンズ1が主走査方向と副走査方向とで焦点距離が
異なり、主走査方向については平行平板とみなせるが、
副走査方向には平行平板とみなせない場合には、補正光
学系53を補正用レンズ54と別の補正用レンズ56と
の組み合わせとして構成すればよい。この補正用レンズ
56は、補正用レンズ54とは光学特性の異なるもの
で、ここでは、副走査方向にのみ屈折力を持つ非軸対称
レンズが用いられている。これによれば、被検レンズ1
を透過した光束が平行光束化されるように被検レンズ1
に光を照射させることができる。
Here, in the present embodiment, for example,
The test lens 1 has a different focal length between the main scanning direction and the sub-scanning direction, and can be regarded as a parallel plate in the main scanning direction.
If the correction optical system 53 cannot be regarded as a parallel flat plate in the sub-scanning direction, the correction optical system 53 may be configured as a combination of the correction lens 54 and another correction lens 56. The correcting lens 56 has a different optical characteristic from the correcting lens 54. Here, a non-axisymmetric lens having a refractive power only in the sub-scanning direction is used. According to this, the test lens 1
Lens 1 to be inspected so that the light beam transmitted through
Can be irradiated with light.

【0115】よって、一般論として考えれば、光学特性
の異なる複数個の光学素子(通常はレンズ)を組み合わ
せて補正光学系を構成すれば、焦点距離が非常に長い被
検レンズに対応し得る他、非軸対称な被検レンズに対し
てもその透過光をほぼ平行化させることができ、汎用性
が高まる。
Therefore, considering a general theory, if a correction optical system is configured by combining a plurality of optical elements (usually lenses) having different optical characteristics, it is possible to cope with a lens having a very long focal length. The transmitted light can be made substantially parallel to a non-axisymmetric test lens, and the versatility is enhanced.

【0116】また、例えば図15に示す構成において、
補正用レンズ54,56を各々取り外し自在としたり、
違う種類のもの(焦点距離や口径の異なるレンズ)と交
換自在に構成すれば、被検レンズ1の種類の変更への対
応幅が広がり、一層汎用性が高まる。
For example, in the configuration shown in FIG.
The correction lenses 54 and 56 can be detachable,
If it is configured to be interchangeable with a different type (lens having a different focal length or aperture), the range of response to a change in the type of the test lens 1 is expanded, and versatility is further enhanced.

【0117】本発明の第十の実施の形態を図16に基づ
いて説明する。本実施の形態は、図13に示したような
第八の実施の形態にも適用し得るが、ここでは、被検レ
ンズ1を用いた図15のような複屈折測定装置及び測定
方法に適用されている。本実施の形態では、被検レンズ
1がその光軸に直交する方向に移動可能なステージ57
に搭載されており、このステージ57を駆動するための
ステッピングモータ(図示せず)の回転により光軸に直
交する方向に移動する。ここに、ステージ57とステッ
ピングモータ等とによりレンズ変位手段が構成されてお
り、被検レンズ1上の測定対象領域に合せてこの被検レ
ンズ1の光軸に直交する方向の位置調整が自在とされて
いる。
The tenth embodiment of the present invention will be described with reference to FIG. This embodiment can be applied to the eighth embodiment as shown in FIG. 13, but here, it is applied to a birefringence measuring apparatus and a measuring method as shown in FIG. Have been. In the present embodiment, the stage 57 on which the lens 1 to be measured can move in a direction orthogonal to the optical axis thereof.
And is moved in a direction perpendicular to the optical axis by rotation of a stepping motor (not shown) for driving the stage 57. Here, a lens displacement means is constituted by the stage 57 and a stepping motor, and the position of the lens 1 to be measured can be freely adjusted in the direction orthogonal to the optical axis according to the measurement target area on the lens 1 to be measured. Have been.

【0118】このような構成において、ステージ57に
より被検レンズ1を光軸に垂直な方向に移動させること
で、補正光学系53側から被検レンズ1への平行光束の
入射位置を徐々に変化させながら、被検レンズ1全体の
領域を分割して測定することとなる。即ち、図4を用い
て説明した受光ユニット26側を測定対象領域に合せて
光軸に垂直な方向に移動させることで分割測定する方式
と同様であり、受光ユニット26側を固定的とし被検レ
ンズ1側を可動的とするように入れ替えたものである。
In such a configuration, by moving the lens 1 to be inspected in the direction perpendicular to the optical axis by the stage 57, the incident position of the parallel light beam from the correction optical system 53 to the lens 1 is gradually changed. The measurement is performed while dividing the entire area of the lens 1 to be measured. That is, the method is the same as the method of performing split measurement by moving the light receiving unit 26 side in the direction perpendicular to the optical axis in accordance with the measurement target area described with reference to FIG. The lens 1 is replaced so as to be movable.

【0119】本発明に係わる複屈折測定装置及び測定方
法は、以上説明した全ての実施の態様により明らかにな
った。
The birefringence measuring apparatus and the measuring method according to the present invention have been clarified by all the embodiments described above.

【0120】[0120]

【発明の効果】本発明は、以上のように構成さしたの
で、請求項1記載の発明の複屈折測定装置及び請求項6
記載の発明の屈折測定方法によれば、基本的には、回転
検光子法に準じて、被検レンズを透過した透過光をその
偏光状態を変化させる偏光素子に入射させ、この偏光素
子を回転させながらアレイ状の受光素子で受光検出させ
ることにより被検レンズの複屈折を算出するが、被検レ
ンズに発散光を照射する照射光学系と被検レンズとの間
隔を任意に設定可能とし、被検レンズ透過像を観察しな
がら被検レンズと照射光学系との間隔を調整することに
より光学的な歪みの影響の小さい被検レンズ透過像であ
る光弾性干渉縞が得られるようにしたので、被検レンズ
全面に渡って正確に複屈折測定を行うことができ、同時
に、被検レンズの種類の変さらに、も容易に対応でき、
汎用性の高い複屈折測定装置又は方法を提供することが
できる。
According to the present invention, the birefringence measuring apparatus according to the first aspect and the sixth aspect of the present invention are constructed as described above.
According to the refraction measurement method of the invention described, basically, according to the rotation analyzer method, the transmitted light transmitted through the lens to be measured is incident on the polarization element that changes the polarization state, and the polarization element is rotated. The birefringence of the lens to be measured is calculated by detecting the light received by the array of light receiving elements while allowing the lens to be illuminated. By adjusting the distance between the test lens and the irradiation optical system while observing the test lens transmission image, photoelastic interference fringes, which are test lens transmission images that are less affected by optical distortion, can be obtained. , The birefringence can be accurately measured over the entire surface of the lens to be inspected, and at the same time, the type of the lens to be inspected can be easily changed.
A highly versatile birefringence measuring device or method can be provided.

【0121】請求項2及び3記載の発明の複屈折測定装
置及び請求項7記載の発明の複屈折測定方法によれば、
偏光素子と結像光学系と受光素子とを一体として光軸に
ほぼ直交する方向、即ち、被検レンズの長手方向に移動
させて分割しながら測定できるようにしたので、被検レ
ンズ全体の複屈折の測定を分解能が低下することなく安
価に実現することができる複屈折測定装置又は方法を提
供することができる。
According to the birefringence measuring device according to the second and third aspects and the birefringence measuring method according to the seventh aspect,
Since the polarizing element, the imaging optical system, and the light receiving element are integrally moved in a direction substantially perpendicular to the optical axis, that is, moved in the longitudinal direction of the lens to be measured, the measurement can be performed while dividing the lens. It is possible to provide a birefringence measurement device or method capable of inexpensively measuring refraction without lowering the resolution.

【0122】請求項4記載の発明の複屈折測定装置及び
請求項8記載の発明の複屈折測定方法によれば、被検レ
ンズが光書込用に用いられる走査レンズのような場合で
あっても、基本的に、被検レンズと照射光学系との間隔
を任意に設定し得る構成によって実使用に近い状態に測
定系を設定し得る上に、被検レンズの透過光の進行方向
に対して偏光素子等を一体として角度調整することで垂
直に近い状態で入射させることができ、より正確な測定
を行うことができる複屈折測定装置又は方法を提供する
ことができる。
According to the birefringence measurement apparatus of the invention described in claim 4 and the birefringence measurement method of the invention described in claim 8, the lens to be inspected may be a scanning lens used for optical writing. Basically, the measurement system can be set to a state close to actual use by a configuration in which the distance between the test lens and the irradiation optical system can be set arbitrarily. By adjusting the angle of the polarizing element and the like integrally, the light can be incident in a state close to perpendicular, and a birefringence measuring apparatus or method capable of performing more accurate measurement can be provided.

【0123】請求項5記載の発明の複屈折測定装置及び
請求項9記載の発明の複屈折測定方法によれば、被検レ
ンズの周縁部分を透過した光が迷光として受光素子に入
射すると、測定の邪魔となり得るが、このような周縁部
分に対して遮光部材を設けたので、迷光の影響をなくす
ことができ、測定不能領域をなくし、よって、被検レン
ズ全面に渡って測定可能とすることができ、特に、遮光
部材を遮光部材移動手段により適宜移動させることによ
り、被検レンズに即した形で完全に迷光の影響を除去す
ることができる複屈折測定装置又は方法を提供すること
ができる。
According to the birefringence measuring device of the fifth aspect and the birefringence measuring method of the ninth aspect, when light transmitted through the periphery of the lens to be measured enters the light receiving element as stray light, the measurement is performed. However, since a light-blocking member is provided for such a peripheral portion, it is possible to eliminate the influence of stray light, to eliminate an unmeasurable area, and to enable measurement over the entire surface of the lens to be measured. In particular, it is possible to provide a birefringence measuring apparatus or method capable of completely removing the influence of stray light in a form suitable for the lens to be inspected by appropriately moving the light shielding member by the light shielding member moving means. .

【0124】請求項10記載の発明によれば、所定の偏
光状態で発散光を被検レンズに照射させる照射光学系
と、被検レンズに対する照射光学系の光軸方向の位置を
移動調整する照射側変位手段と、被検レンズからの透過
光の偏光状態を変化させる偏光素子と、この偏光素子を
透過光のほぼ進行方向回りに回転させる回転手段と、こ
の回転手投による偏光素子の回転角度を検知する回転角
検知手役と、偏光素子を透過した光を受光するアレイ状
の受光素子と、偏光素子を透過した光を受光素子のほぼ
受光面上に結像させる結像倍率が可変の結像光学系と、
これらの偏光素子と回転手段と受光素子と結像光学系と
を受光ユニットとして一体に光軸にほぼ直交する方向に
移動調整する受光側変位手段と、回転角検知手段により
検知された回転角度と受光素子により受光検出される受
光出力とに基づき被検レンズの複屈折を算出する演算手
段とを備えることとしたので、請求項1記載の効果が得
られる他、一般に、偏光素子や受光素子にはサイズ(素
子の面積)に制約があり、光書込系に使用するレンズの
ように口径の大きいレンズ全体からの透過光を受光する
には一般的な偏光素子や受光素子を用いたのではサイズ
的に困難であり、サイズの大きな偏光素子や受光素子を
用いるとなるとその製造コストが嵩む。かといって、一
般的な偏光素子や受光素子のサイズに合わせて被検レン
ズ全体からの透過光を光学的に締小させると、光学系が
複雑になる上に、光弾性干渉縞の空間像が小さくなり、
その分、測定の空間的な分解能が低下してしまう。この
点、偏光素子と結像光学系と受光素子とを受光ユニット
として一体に光軸にほぼ直交する方向、即ち、被検レン
ズの長手方向に移動させて分割しながら測定できるの
で、被検レンズ全体の複屈折の測定を分解能が低下する
ことなく安価に実現できる。この際、幾つかの被検レン
ズを測定したり、1つの被検レンズに関して幾つかの被
測定領域に分けて測定したりする場合、被検レンズによ
って或いは被検レンズの場所によって複屈折の発生する
状態が異なることがある。特に、干渉縞の間隔が複屈折
の発生状態によって異なってくるため、干渉縞の間隔が
受光素子の最小単位画素の大きさに近くなるか或いは狭
くなった領域では、測定の信頼性が低下する。この点、
結像光学系の結像倍率が可変であるので、被検レンズに
よって、或いは、被検レンズの場所によって異なる複屈
折の発生状態に合わせて、その結像倍率を最適に設定す
ることにより、複屈折の発生状態に拘らず正確な測定を
行える。つまり、被検レンズ全面に渡って正確に複屈折
測定を行うことができ、同時に、被検レンズの種類の変
さらに、も容易に対応でき、汎用性の高い複屈折測定装
置を供することができる上に、被検レンズによって、或
いは、被検レンズの場所によって異なる複屈折の発生状
態に合わせて、結像光学系の結像倍率を最適に設定する
ことにより、複屈折の発生状態に拘らず正確な測定を行
わせることができる複屈折測定装置又は方法を提供する
ことができる。
According to the tenth aspect, the irradiation optical system for irradiating the test lens with the divergent light in a predetermined polarization state, and the irradiation for moving and adjusting the position of the irradiation optical system with respect to the test lens in the optical axis direction. Side displacement means, a polarizing element for changing the polarization state of the transmitted light from the lens to be measured, a rotating means for rotating the polarizing element substantially in the traveling direction of the transmitted light, and a rotation angle of the polarizing element by the hand throw A rotation angle detection hand that detects the light, an array-shaped light-receiving element that receives the light transmitted through the polarizing element, and a variable imaging magnification that forms an image of the light transmitted through the polarizing element almost on the light-receiving surface of the light-receiving element. Imaging optics,
A light receiving side displacement unit that integrally adjusts the polarization element, the rotation unit, the light receiving element, and the imaging optical system as a light receiving unit in a direction substantially orthogonal to the optical axis, and a rotation angle detected by the rotation angle detection unit. And calculating means for calculating the birefringence of the test lens based on the light receiving output detected and detected by the light receiving element. Is limited by the size (area of the element). To receive transmitted light from the entire lens having a large diameter such as a lens used in an optical writing system, a general polarizing element or a light receiving element may be used. It is difficult in terms of size, and if a polarizing element or a light receiving element having a large size is used, the manufacturing cost increases. On the other hand, if the transmitted light from the entire test lens is optically reduced according to the size of a general polarizing element or light receiving element, the optical system becomes complicated, and the spatial image of the photoelastic interference fringes is increased. Becomes smaller,
Accordingly, the spatial resolution of the measurement is reduced. In this regard, since the polarizing element, the imaging optical system, and the light receiving element can be integrally measured as a light receiving unit while moving and splitting in a direction substantially orthogonal to the optical axis, that is, in the longitudinal direction of the lens to be measured, Measurement of the entire birefringence can be realized at low cost without lowering the resolution. At this time, when several lenses to be measured are measured or when one lens to be measured is divided into several areas to be measured, birefringence may be generated depending on the lens to be measured or the location of the lens to be measured. May be different. In particular, since the interval between the interference fringes differs depending on the state of occurrence of birefringence, the reliability of the measurement decreases in a region where the interval between the interference fringes is close to or smaller than the size of the minimum unit pixel of the light receiving element. . In this regard,
Since the imaging magnification of the imaging optical system is variable, by setting the imaging magnification optimally in accordance with the state of birefringence that varies depending on the lens to be inspected or the location of the lens to be inspected, Accurate measurement can be performed regardless of the state of occurrence of refraction. In other words, the birefringence measurement can be accurately performed over the entire surface of the lens to be inspected, and at the same time, the type of the lens to be inspected can be easily changed and a highly versatile birefringence measuring apparatus can be provided. Above, regardless of the state of occurrence of birefringence, by setting the imaging magnification of the imaging optical system optimally in accordance with the state of occurrence of birefringence depending on the lens to be inspected or the location of the lens to be inspected A birefringence measuring device or method capable of performing accurate measurement can be provided.

【0125】請求項11記載の発明によれば、基本的に
は、請求項10記載の発明と同様であるが、複数の受光
ユニットを設けており、被検レンズからの透過光を分岐
手段により分岐して各受光ユニットに向けて入射させる
ので、被検レンズが光書込系に使用するレンズのように
口径の大きいレンズのような場合であっても、分解能を
低下させず、かつ、受光ユニット側を移動させることな
く被検レンズ全体を同時に測定することが可能となる。
つまり、複数の受光ユニットを備えているので、受光ユ
ニット側を移動させることなく被検レンズ全体を同時に
測定できる複屈折測定装置又は方法を提供することがで
きる。
According to the eleventh aspect of the present invention, it is basically the same as the tenth aspect of the invention, except that a plurality of light receiving units are provided, and the transmitted light from the lens to be inspected is split by the branching means. Since the light is branched and directed toward each light receiving unit, even if the lens to be measured is a lens having a large diameter such as a lens used in an optical writing system, the resolution is not reduced and the light is not received. It is possible to simultaneously measure the entire test lens without moving the unit side.
In other words, since a plurality of light receiving units are provided, it is possible to provide a birefringence measuring device or method capable of simultaneously measuring the entire test lens without moving the light receiving unit side.

【0126】請求項12記載の発明は、請求項11記載
の複屈折測定装置の各受光ユニットが、被検レンズの異
なる被測定領域からの透過光を各々受光するように分岐
手段に対して配設されているので、被検レンズ全体の同
時測定を効率及び操作性よく行える複屈折測定装置又は
方法を提供することができる。
According to a twelfth aspect of the present invention, each of the light receiving units of the birefringence measuring device according to the eleventh aspect is arranged with respect to the branching means so as to receive transmitted light from a different measurement area of the lens to be measured. Since it is provided, it is possible to provide a birefringence measuring apparatus or method capable of simultaneously measuring the entire test lens with high efficiency and operability.

【0127】請求項13記載の発明によれば、1つの被
検レンズを幾つかの被測定領域に分けて同時に測定する
場合、同一の被検レンズにおいても、例えば、レンズ中
心付近とレンズ周縁部分とでは、レンズ成形における温
度の冷却速度が異なることから複屈折の発生の仕方が異
なることが多い。このため、例えばレンズの中心付近で
は光弾性干渉縞の間隔が広く、周縁部分では光弾性干渉
縞の間隔が狭く発生する場合があり、干渉縞の間隔が受
光素子の画素サイズに近くなり或いは画素サイズよりも
狭くなった領域では測定の信頼性が低下してしまう。こ
の点、各結像光学系の結像倍率は、各受光ユニット毎に
独立して可変自在であるので、被検レンズによって、或
いは、被検レンズの被測定領域における場所によって異
なる複屈折の発生状態に合わせて、各受光ユニット毎に
結像倍率を最適に設定することにより、複屈折の発生の
状態に拘らずより正確な測定を行える複屈折測定装置又
は方法を提供することができる。
According to the thirteenth aspect of the present invention, when one test lens is divided into several test areas and measured simultaneously, even in the same test lens, for example, the vicinity of the lens center and the lens peripheral portion In many cases, since the cooling rate of the temperature in the lens molding is different, the way in which birefringence occurs is often different. For this reason, for example, the interval between the photoelastic interference fringes may be large near the center of the lens, and the interval between the photoelastic interference fringes may be small near the periphery, and the interval between the interference fringes may be close to the pixel size of the light receiving element, or In an area smaller than the size, the reliability of the measurement decreases. In this regard, since the imaging magnification of each imaging optical system can be changed independently for each light receiving unit, the occurrence of birefringence that varies depending on the lens to be measured or depending on the position of the lens to be measured in the measurement area. By optimally setting the imaging magnification for each light receiving unit according to the state, it is possible to provide a birefringence measuring apparatus or method capable of performing more accurate measurement regardless of the state of occurrence of birefringence.

【0128】請求項14記載の発明によれば、被検レン
ズからの透過光を受光素子のほぼ受光面上に結像させた
ときに得られる被検レンズの透過像に基づき結像倍率が
自動設定される。適正な結像倍率が実際の被検レンズか
らの透過像における干渉縞の間隔データ等に基づき自動
的に設定されるので、測定装置としての操作性が向上す
る上に結像倍率の適正化を図ることもできる複屈折測定
装置又は方法を提供することができる。
According to the fourteenth aspect of the present invention, the imaging magnification is automatically adjusted based on the transmitted image of the test lens obtained when the transmitted light from the test lens is formed substantially on the light receiving surface of the light receiving element. Is set. Since the appropriate imaging magnification is automatically set based on the interval data of the interference fringes in the actual transmitted image from the lens to be inspected, etc., the operability as a measuring device is improved and the imaging magnification is optimized. A birefringence measurement device or method can be provided which can also be achieved.

【0129】請求項15記載の発明によれば、基本的に
は、回転検光子法に準じて、被検レンズを透過した透過
光の偏光状態を変化させる偏光素子に入射させ、この偏
光素子を回転させながらアレイ状の受光素子で受光検出
させることにより被検レンズの複屈折を算出するが、被
検レンズに発散光を照射する照射光学系と被検レンズと
の間隔を任意に設定可能とし、被検レンズ透過像を観察
しながら被検レンズと照射光学系との間隔を調整するこ
とにより光学的な歪みの影響の小さい被検レンズ透過像
なる光弾性干渉縞が得られるので、被検レンズ全面に渡
って正確に複屈折測定を行える。このとき、被検レンズ
が主走査方向と副走査方向との焦点距離が異なるような
場合であっても、照射光学系の後段に例えば主走査方向
と副走査方向とで焦点距離が異なるレンズによる補正光
学系を付加し、被検レンズを透過した光束がほぼ平行に
なるようにすることで、偏光素子以降の光学素子の正常
動作を損なうことなく上記の複屈折測定が可能となり、
汎用性が高まる複屈折測定装置又は方法を提供すること
ができる。
According to the fifteenth aspect of the invention, basically, according to the rotation analyzer method, the light is transmitted to the polarizing element for changing the polarization state of the transmitted light transmitted through the lens to be measured, and this polarizing element is The birefringence of the test lens is calculated by detecting the light received by the array of light receiving elements while rotating, but the distance between the irradiation optical system that irradiates the test lens with divergent light and the test lens can be set arbitrarily. By adjusting the distance between the test lens and the irradiation optical system while observing the transmission image of the test lens, it is possible to obtain a photoelastic interference fringe that is a transmission image of the test lens having a small influence of optical distortion. Birefringence can be accurately measured over the entire surface of the lens. At this time, even if the lens to be inspected has a different focal length between the main scanning direction and the sub-scanning direction, for example, a lens having a different focal length between the main scanning direction and the sub-scanning direction is provided downstream of the irradiation optical system. By adding a correction optical system and making the light flux transmitted through the test lens substantially parallel, the above-described birefringence measurement can be performed without impairing the normal operation of the optical element after the polarizing element,
It is possible to provide a birefringence measuring device or method with increased versatility.

【0130】請求項16記載の発明は、請求項15記載
の複屈折測定装置における補正光学系は、光学特性の異
なる複数の光学素子の組み合わせよりなるので、被検レ
ンズが主走査方向と副走査方向とで焦点距離が異なる場
合に限らず、焦点距離が長い場合であっても、例えば、
非軸対称のレンズと軸対称の通常のレンズとの組み合わ
せのように、光学特性の異なる複数の光学素子により補
正光学系を構成することにより、被検レンズの種類の変
更への対応も自在となり、汎用性が高まる複屈折測定装
置又は方法を提供することができる。
According to a sixteenth aspect of the present invention, the correcting optical system in the birefringence measuring device according to the fifteenth aspect is composed of a combination of a plurality of optical elements having different optical characteristics. Not only when the focal length is different from the direction but also when the focal length is long, for example,
Like a combination of a non-axisymmetric lens and a normal axisymmetric lens, the correction optical system is composed of multiple optical elements with different optical characteristics, making it possible to respond to changes in the type of lens to be inspected. It is possible to provide a birefringence measuring device or method which is more versatile.

【0131】請求項17記載の発明は、請求項15又は
16記載の複屈折測定装置において、前記被検レンズを
その光軸に直交する方向に移動調整するレンズ変位手段
を備えるので、被検レンズの焦点距離が長い場合であっ
ても、被検レンズをその光軸に直交する方向に移動させ
ることにより、被検レンズ全体の領域の分割測定が可能
となる。これにより、被検レンズ全体の複屈折の測定を
分解能が低下することなく安価に実現できる複屈折測定
装置又は方法を提供することができる。
According to a seventeenth aspect of the present invention, in the birefringence measuring apparatus according to the fifteenth or sixteenth aspect, a lens displacement means for moving and adjusting the test lens in a direction orthogonal to its optical axis is provided. Even if the focal length of the lens is long, moving the lens to be examined in a direction perpendicular to the optical axis makes it possible to divide and measure the entire area of the lens to be measured. Thus, it is possible to provide a birefringence measuring apparatus or method capable of inexpensively measuring the birefringence of the entire lens to be measured without lowering the resolution.

【0132】請求項18記載の発明の複屈折測定方法
は、所定位置で光軸に直交する方向に移動調整自在に配
設された被検レンズに対する照射光学系の光軸方向の距
離を任意に調整した後、被検レンズ上の測定対象領域に
合せてこの被検レンズの光軸に直交する方向の位置を調
整しながら、被検レンズの測定対象領域に対して照射光
学系による所定の偏光状態の光を補正光学系を通して被
検レンズに照射してほぼ平行光とされた透過光を出射さ
せ、被検レンズからの透過光の偏光状態を変化させる偏
光素子を透過光のほぼ進行方向回りに回転させながらそ
の回転角度を検知し、この偏光素子を透過した光を結像
光学系によりアレイ状の受光素子のほぼ受光面上に結像
させ、検知された偏光素子の回転角度と受光素子により
受光検出された受光出力とに基づき被検レンズの測定対
象領域の複屈折を順次算出するようにしたので、基本的
には、回転検光子法に準じて、被検レンズを透過した透
過光の偏光状態を変化させる偏光素子に入射させ、この
偏光素子を回転させながらアレイ状の受光素子で受光検
出させることにより被検レンズの複屈折を算出するが、
被検レンズに発散光を照射する照射光学系と被検レンズ
との間隔を任意に設定可能とし、被検レンズ透過像を観
察しながら被検レンズと照射光学系との間隔を調整する
ことにより光学的な歪みの影響の小さい被検レンズ透過
像なる光弾性干渉縞が得られるので、被検レンズ全面に
渡って正確に複屈折測定を行える。このとき、被検レン
ズが主走査方向と副走査方向との焦点距離が異なるよう
な場合であっても、照射光学系の後段に例えば主走査方
向と副走査方向とで焦点距離が異なるレンズによる補正
光学系を付加し、被検レンズを透過した光束がほぼ平行
になるようにすることで、偏光素子以降の光学素子の正
常動作を損なうことなく上記の複屈折測定が可能とな
り、汎用性が高まる。加えて、被検レンズの焦点距離が
長い場合であっても、被検レンズをその光軸に直交する
方向に移動させることにより、被検レンズ全体の領域の
分割測定が可能となる。これにより、被検レンズ全体の
複屈折の測定を分解能が低下することなく安価に実現で
きる複屈折測定装置又は方法を提供することができる。
In the method for measuring birefringence according to the present invention, the distance in the optical axis direction of the irradiation optical system with respect to a test lens disposed so as to be movable at a predetermined position in a direction perpendicular to the optical axis can be arbitrarily set. After the adjustment, while adjusting the position of the lens to be measured in the direction orthogonal to the optical axis according to the region to be measured on the lens to be measured, a predetermined polarization by the irradiation optical system is applied to the region to be measured of the lens to be measured. The light in the state is applied to the test lens through the correction optical system to emit substantially parallel transmitted light, and the polarization element that changes the polarization state of the transmitted light from the test lens is rotated around the traveling direction of the transmitted light. The rotation angle is detected while rotating, and the light transmitted through this polarization element is imaged almost on the light receiving surface of the array of light receiving elements by the imaging optical system, and the detected rotation angle of the polarization element and the light receiving element are detected. Received light detected by Since the birefringence of the measurement target area of the test lens is sequentially calculated based on the force, the polarization state of the transmitted light transmitted through the test lens is basically changed according to the rotation analyzer method. The birefringence of the test lens is calculated by making the light incident on the polarizing element and detecting the light received by the light receiving element in an array while rotating the polarizing element.
The distance between the irradiation optical system that irradiates the test lens with divergent light and the test lens can be set arbitrarily, and the distance between the test lens and the irradiation optical system is adjusted while observing the transmission image of the test lens. Since a photoelastic interference fringe, which is a transmitted image of the test lens with little influence of optical distortion, is obtained, birefringence measurement can be accurately performed over the entire surface of the test lens. At this time, even if the lens to be inspected has a different focal length between the main scanning direction and the sub-scanning direction, for example, a lens having a different focal length between the main scanning direction and the sub-scanning direction is provided downstream of the irradiation optical system. By adding a correction optical system so that the luminous flux transmitted through the lens to be inspected is almost parallel, the above-described birefringence measurement can be performed without impairing the normal operation of the optical element after the polarization element, and versatility is improved. Increase. In addition, even when the focal length of the test lens is long, by moving the test lens in a direction perpendicular to its optical axis, it is possible to perform a divided measurement of the entire area of the test lens. Thus, it is possible to provide a birefringence measuring apparatus or method capable of inexpensively measuring the birefringence of the entire lens to be measured without lowering the resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】偏光板の回転角度−光強度特性を示す特性図で
ある。
FIG. 2 is a characteristic diagram showing a rotation angle-light intensity characteristic of a polarizing plate.

【図3】本発明の第二及び第五の実施の形態を示す構成
図である。
FIG. 3 is a configuration diagram showing second and fifth embodiments of the present invention.

【図4】被測定領域の分割の様子を示す正面図である。FIG. 4 is a front view showing how a region to be measured is divided.

【図5】本発明の第三の実施の形態を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】本発明の第四の実施の形態を示す被検レンズ形
状の一例の側面図である。
FIG. 6 is a side view of an example of a shape of a lens to be inspected, showing a fourth embodiment of the present invention.

【図7】遮光構造を示す構造図である。FIG. 7 is a structural diagram showing a light shielding structure.

【図8】本発明の被検レンズの複屈折による光弾性干渉
縞の一例を示す正面図である。
FIG. 8 is a front view showing an example of a photoelastic interference fringe due to birefringence of the test lens of the present invention.

【図9】本発明の第六の実施の形態を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a sixth embodiment of the present invention.

【図10】本発明の第七の実施の形態の光弾性干渉縞に
対するCCDカメラの撮像の様子を示す正面図である。
FIG. 10 is a front view illustrating a state in which a CCD camera captures an image of photoelastic interference fringes according to a seventh embodiment of the present invention.

【図11】そのA−A′線断面における画素濃度分布を
示す特性図である。
FIG. 11 is a characteristic diagram showing a pixel density distribution in a cross section taken along line AA ′.

【図12】結像倍率の自動設定処理を示すフローチャー
トである。
FIG. 12 is a flowchart illustrating an automatic setting process of an imaging magnification.

【図13】本発明の第八の実施の形態を示す構成図であ
る。
FIG. 13 is a configuration diagram illustrating an eighth embodiment of the present invention.

【図14】補正光学系による作用を説明するための図で
あり、(a)は主走査方向に見た平面図、(b)は副走
査方向に見た側面図である。
14A and 14B are diagrams for explaining the operation of the correction optical system, where FIG. 14A is a plan view as viewed in a main scanning direction, and FIG. 14B is a side view as viewed in a sub-scanning direction.

【図15】本発明の第九の実施の形態を示す構成図であ
る。
FIG. 15 is a configuration diagram showing a ninth embodiment of the present invention.

【図16】本発明の第十の実施の形態を示す構成図であ
る。
FIG. 16 is a configuration diagram showing a tenth embodiment of the present invention.

【図17】従来例の測定系の欠点を説明するための光学
系構成を概略的に示す構成図である。
FIG. 17 is a configuration diagram schematically showing an optical system configuration for explaining a defect of a conventional measurement system.

【図18】対応する光弾性干渉縞の様子を示す説明図で
ある。
FIG. 18 is an explanatory diagram showing a state of a corresponding photoelastic interference fringe.

【図19】光書込用光学系の構成例を概略的に示す平面
図である。
FIG. 19 is a plan view schematically showing a configuration example of an optical system for optical writing.

【符号の説明】[Explanation of symbols]

1 被検レンズ 2 照射光学系 3 光源 12 受光素子 13 結像光学系 15 偏光素子 21 回転手段 34 受光側変位手段 35 角度可変手段 42 遮光部材 44 遮光部材移動手段 51 分岐手段 53 補正光学系 DESCRIPTION OF SYMBOLS 1 Test lens 2 Irradiation optical system 3 Light source 12 Light receiving element 13 Imaging optical system 15 Polarizing element 21 Rotating means 34 Light receiving side displacement means 35 Angle variable means 42 Light shielding member 44 Light shielding member moving means 51 Branching means 53 Correction optical system

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 所定の偏光状態で発散光を被検レンズに
照射させる照射光学系と、前記被検レンズに対する前記
照射光学系の光軸方向の位置を移動調整する照射側変位
手段と、 前記被検レンズからの透過光の偏光状態を変化させる偏
光素子と、 この偏光素子を前記透過光のほぼ進行方向回りに回転さ
せる回転手段と、 この回転手段による前記偏光素子の回転角度を検知する
回転角検知手段と、 前記偏光素子を透過した光を受光するアレイ状の受光素
子と、 前記偏光素子を透過した光を前記受光素子上に結像させ
る結像光学系と、 前記回転角検知手段により検知された回転角度と前記受
光素子により受光検出される受光出力とに基づき前記被
検レンズの複屈折を算出する演算手投と、を備える複屈
折測定装置。
1. An irradiation optical system for irradiating a test lens with divergent light in a predetermined polarization state, irradiation side displacement means for moving and adjusting a position of the irradiation optical system with respect to the test lens in an optical axis direction, A polarizing element for changing the polarization state of the transmitted light from the lens to be inspected; a rotating means for rotating the polarizing element substantially in the traveling direction of the transmitted light; and a rotation for detecting a rotation angle of the polarizing element by the rotating means. An angle detecting unit, an array-shaped light receiving element that receives light transmitted through the polarizing element, an imaging optical system that forms an image of the light transmitted through the polarizing element on the light receiving element, and the rotation angle detecting unit. A birefringence measuring device comprising: a calculation hand for calculating a birefringence of the test lens based on the detected rotation angle and a light reception output detected by the light receiving element.
【請求項2】 偏光素子と結像光学系と受光素子とを一
体として光軸にほぼ直交する方向に移動調整する受光側
変位手段を備える請求項1記載の複屈折測定装置。
2. The birefringence measuring apparatus according to claim 1, further comprising a light receiving side displacement means for integrally moving the polarizing element, the imaging optical system, and the light receiving element in a direction substantially perpendicular to the optical axis.
【請求項3】 受光側変位手段による移動距離を検知す
る距離検知手段を備える請求項2記載の複屈折測定装
置。
3. The birefringence measuring apparatus according to claim 2, further comprising a distance detecting means for detecting a moving distance by the light receiving side displacement means.
【請求項4】 偏光素子と結像光学系と受光素子とを一
体として被検レンズからの透過光の進行方向に対する角
度を可変する角度可変手段と、その角度を検知する角度
検知手段とを備える請求項1,2又は3記載の複屈折測
定装置。
4. An angle varying means for integrally varying a polarizing element, an imaging optical system and a light receiving element with respect to an advancing direction of transmitted light from a test lens, and an angle detecting means for detecting the angle. The birefringence measuring device according to claim 1, 2 or 3.
【請求項5】 被検レンズの周縁部分を透過する光を遮
光する遮光部材と、この遮光部材の位置を移動させる遮
光部材移動手段とを備える請求項1,2,3又は4記載
の複屈折測定装置。
5. The birefringence according to claim 1, further comprising: a light-shielding member that shields light transmitted through a peripheral portion of the lens to be inspected; and a light-shielding member moving unit that moves a position of the light-shielding member. measuring device.
【請求項6】 所定位置に配設された被検レンズに対す
る照射光学系の光軸方向の距離を任意に調整しながら前
記被検レンズに対して前記照射光学系による所定の偏光
状態の発散光を照射し、前記被検レンズからの透過光の
偏光状態を変化させる偏光素子を前記透過光のほぼ進行
方向回りに回転させながらその回転角度を検知し、この
偏光素子を透過した光を結像光学系によりアレイ状の受
光素子のほぼ受光面上に結像させ、検知された前記偏光
素子の回転角度と前記受光素子により受光検出された受
光出力とに基づき前記被検レンズの複屈折を算出するよ
うにした複屈折測定方法。
6. A divergent light of a predetermined polarization state by the irradiation optical system with respect to the test lens while arbitrarily adjusting a distance of the irradiation optical system with respect to the test lens disposed at a predetermined position in an optical axis direction. Irradiating the polarizing element that changes the polarization state of the transmitted light from the test lens while rotating the polarizing element substantially in the direction of travel of the transmitted light, detecting the rotation angle thereof, and forming an image of the light transmitted through the polarizing element. An image is formed on the light receiving surface of the array of light receiving elements by the optical system, and the birefringence of the lens to be measured is calculated based on the detected rotation angle of the polarizing element and the received light output detected by the light receiving element. Birefringence measurement method.
【請求項7】 偏光素子と結像光学系と受光素子とが一
体として光軸にほぼ直交する方向に移動調整自在であ
り、被検レンズ上の測定対象領域に合わせて移動調整す
るようにした請求項6記載の複屈折測定方法。
7. The polarizing element, the imaging optical system, and the light receiving element are integrally movable and adjustable in a direction substantially perpendicular to the optical axis, and are moved and adjusted in accordance with a measurement target area on the lens to be measured. The method for measuring birefringence according to claim 6.
【請求項8】 偏光素子と結像光学系と受光素子とが一
体として被検レンズからの透過光の進行方向に対して角
度可変自在であり、被検レンズ上の測定対象領域を透過
する光の角度に合わせて角度調整するようにした請求項
6又は7記載の複屈折測定方法。
8. A light that is integrally formed with a polarizing element, an image forming optical system, and a light receiving element so as to be variable in angle with respect to a traveling direction of light transmitted from a lens to be measured, and is transmitted through a measurement target area on the lens to be measured. 8. The method for measuring birefringence according to claim 6, wherein the angle is adjusted in accordance with the angle of the birefringence.
【請求項9】 被検レンズの周縁部分を透過する光を遮
光する遮光部材を備え、周縁部分を透過して発生する迷
光がなくなるように前記遮光部材の位置を任意に調整設
定するようにした請求項6,7又は8記載の複屈折測定
方法。
9. A light-shielding member for shielding light transmitted through a peripheral portion of the test lens, and the position of the light-shielding member is arbitrarily adjusted and set so that stray light generated by transmitting through the peripheral portion is eliminated. The method for measuring birefringence according to claim 6.
【請求項10】 所定の偏光状態で発散光を被検レンズ
に照射させる照射光学系と、 前記被検レンズに対する前記照射光学系の光軸方向の位
置を移動調整する照射側変位手段と、 前記被検レンズからの透過光の偏光状態を変化させる偏
光素子と、 この偏光素子を前記透過光のほぼ進行方向回りに回転さ
せる回転手段と、 この回転手投による前記偏光素子の回転角度を検知する
回転角検知手役と、 前記偏光素子を透過した光を受光するアレイ状の受光素
子と、 前記偏光素子を透過した光を前記受光素子のほぼ受光面
上に結像させる結像倍率が可変の結像光学系と、 これらの偏光素子と回転手段と受光素子と結像光学系と
を受光ユニットとして一体に光軸にほぼ直交する方向に
移動調整する受光側変位手段と、 前記回転角検知手段により検知された回転角度と前記受
光素子により受光検出される受光出力とに基づき前記被
検レンズの複屈折を算出する演算手段と、を備える複屈
折測定装置。
10. An irradiation optical system for irradiating a test lens with divergent light in a predetermined polarization state, irradiation side displacement means for moving and adjusting a position of the irradiation optical system with respect to the test lens in an optical axis direction, A polarizing element for changing the polarization state of the transmitted light from the lens to be inspected; rotating means for rotating the polarized light element substantially in the traveling direction of the transmitted light; and detecting a rotation angle of the polarizing element by the manual throw. A rotation angle detection hand, an array-shaped light receiving element that receives light transmitted through the polarizing element, and an imaging magnification that forms an image of the light transmitted through the polarizing element almost on a light receiving surface of the light receiving element is variable. An imaging optical system; a light receiving side displacement unit that integrally adjusts the polarization element, the rotation unit, the light receiving element, and the imaging optical system as a light receiving unit in a direction substantially orthogonal to the optical axis; and the rotation angle detection unit. Detected by Birefringence measuring apparatus and a calculating means for calculating the birefringence of the subject lens on the basis of the light reception output rotation angle to be received and detected by the light receiving element.
【請求項11】 所定の偏光状態で発散光を被検レンズ
に照射させる照射光学系と、前記被検レンズに対する前
記照射光学系の光軸方向の位置を移動調整する照射側変
位手段と、 前記被検レンズからの透過光の偏光状態を変化させる偏
光素子と、 この偏光素子を前記透過光のほぼ進行方向回りに回転さ
せる回転手投と、 この回転手段による前記偏光素子の回転角度を検知する
回転角検知手投と、 前記偏光素子を透過した光を受光するアレイ状の受光素
子と、 前記偏光素子を透過した光を前記受光素子のほぼ受光面
上に結像させる結像光学系とを1つのユニットとする複
数個の受光ユニットと、 前記被検レンズからの透過光を分岐して前記各受光ユニ
ットに向けて入射させる分岐手段と、 各受光ユニットにおける前記回転角検知手投により検知
された回転角度と前記受光素子により受光検出される受
光出力とに基づき前記被検レンズの複屈折を算出する演
算手段と、を備える複屈折測定装置。
11. An irradiation optical system for irradiating a test lens with divergent light in a predetermined polarization state; irradiation-side displacement means for moving and adjusting a position of the irradiation optical system with respect to the test lens in an optical axis direction; A polarizing element for changing the polarization state of the transmitted light from the lens to be inspected; a rotating hand for rotating the polarizing element substantially in the traveling direction of the transmitted light; and detecting a rotation angle of the polarizing element by the rotating means. A rotation angle detection hand casting, an array-shaped light receiving element that receives light transmitted through the polarizing element, and an imaging optical system that forms an image of light transmitted through the polarizing element substantially on a light receiving surface of the light receiving element. A plurality of light receiving units as one unit; branching means for branching transmitted light from the lens to be inspected to be incident on each of the light receiving units; Birefringence measuring apparatus and a calculating means for calculating the birefringence of the lens under test based on the received light output which is received and detected by the rotation angle and the light receiving element is.
【請求項12】 各受光ユニットは、被検レンズの異な
る被測定領域からの透過光を各々受光するように分岐手
段に対して配設されている請求項11記載の複屈折測定
装置。
12. The birefringence measuring apparatus according to claim 11, wherein each of the light receiving units is provided to the branching means so as to receive transmitted light from a different measurement area of the lens to be measured.
【請求項13】 各結像光学系は、各受光ユニット毎に
独立して結像倍率が可変自在である請求項11又は12
記載の複屈折測定装置。
13. The image forming optical system is capable of changing the image forming magnification independently for each light receiving unit.
The birefringence measuring device according to the above.
【請求項14】 結像光学系は、被検レンズからの透過
光を受光素子のほぼ受光面上に結像させたときに得られ
る前記被検レンズの透過像に基づき結像倍率が自動設定
される請求項10又は13記載の複屈折測定装置。
14. An image forming optical system automatically sets an image forming magnification based on a transmitted image of the test lens obtained when the transmitted light from the test lens is formed substantially on the light receiving surface of the light receiving element. 14. The birefringence measurement device according to claim 10, wherein the measurement is performed.
【請求項15】 所定の偏光状態で光を被検レンズに照
射させる照射光学系と、 前記被検レンズに対する前記照射光学系の光軸方向の位
置を移動調整する照射側変位手投と、 前記被検レンズの照射側に配設されてこの被検レンズを
透過した光束をほぼ平行光とさせる補正光学系と、 前記被検レンズからの透過光の偏光状態を変化させる偏
光素子と、 この偏光素子を前記透過光のほぼ進行方向回りに回転さ
せる回転手段と、 この回転手段による前記偏光素子の回転角度を検知する
回転角検知手投と、 前記偏光素子を透過した光を受光するアレイ状の受光素
子と、 前記偏光素子を透過した光を前記受光素子のほぼ受光面
上に結像させる結像光学系と、 前記回転角検知手段により検知された回転角度と前記受
光素子により受光検出される受光出力とに基づき前記被
検レンズの複屈折を算出する演算手段と、を備える複屈
折測定装置。
15. An irradiation optical system that irradiates a test lens with light in a predetermined polarization state; an irradiation-side displacement hand that moves and adjusts a position of the irradiation optical system with respect to the test lens in an optical axis direction; A correction optical system that is disposed on the irradiation side of the lens to be examined and converts a light beam transmitted through the lens to be examined into substantially parallel light; a polarizing element that changes a polarization state of light transmitted from the lens to be examined; Rotating means for rotating the element about the traveling direction of the transmitted light; rotation angle detecting means for detecting a rotation angle of the polarizing element by the rotating means; and an array for receiving light transmitted through the polarizing element. A light receiving element; an imaging optical system that forms an image of light transmitted through the polarizing element on substantially a light receiving surface of the light receiving element; a rotation angle detected by the rotation angle detection unit and light reception detected by the light receiving element Received light Birefringence measuring apparatus and a calculating means for calculating the birefringence of the subject lens on the basis of and.
【請求項16】 前記補正光学系は、光学特性の異なる
複数の光学素子の組み合わせよりなる請求項15記載の
複屈折測定装置。
16. The birefringence measurement apparatus according to claim 15, wherein the correction optical system is composed of a combination of a plurality of optical elements having different optical characteristics.
【請求項17】 前記被検レンズをその光軸に直交する
方向に移動調整するレンズ変位手段を備える請求項15
又は16記載の複屈折測定装置。
17. A lens displacing means for moving and adjusting said lens to be examined in a direction orthogonal to the optical axis thereof.
Or the birefringence measurement device according to 16.
【請求項18】 所定位置で光軸に直交する方向に移動
調整自在に配設された被検レンズに対する照射光学系の
光軸方向の距離を任意に調整した後、前記被検レンズ上
の測定対象領域に合せてこの被検レンズの光軸に直交す
る方向の位置を調整しながら、前記被検レンズの測定対
象領域に対して前記照射光学系による所定の偏光状態の
光を補正光学系を通して前記被検レンズに照射してほぼ
平行光とされた透過光を出射させ、前記被検レンズから
の透過光の偏光状態を変化させる偏光素子を前記透過光
のほぼ進行方向回りに回転させながらその回転角度を検
知し、この偏光素子を透過した光を結像光学系によりア
レイ状の受光素子のほぼ受光面上に結像させ、検知され
た前記偏光素子の回転角度と前記受光素子により受光検
出された受光出力とに基づき前記被検レンズの測定対象
領域の複屈折を順次算出するようにした複屈折測定方
法。
18. A method for arbitrarily adjusting a distance in an optical axis direction of an irradiation optical system with respect to a test lens disposed so as to be movable in a direction orthogonal to the optical axis at a predetermined position, and then performing measurement on the test lens. While adjusting the position in the direction orthogonal to the optical axis of the lens to be inspected in accordance with the target area, light of a predetermined polarization state by the irradiation optical system is passed through the correction optical system with respect to the measurement target area of the lens to be inspected. By irradiating the test lens with transmitted light that has been converted into substantially parallel light, the polarizing element that changes the polarization state of the transmitted light from the test lens is rotated around the traveling direction of the transmitted light while rotating the polarizing element. The rotation angle is detected, and the light transmitted through the polarization element is focused on the light receiving surface of the array of light receiving elements by an imaging optical system, and the detected rotation angle of the polarization element and the light reception detected by the light receiving element are detected. Received light output and A birefringence measuring method for sequentially calculating the birefringence of the measurement target area of the test lens based on
JP11161499A 1998-04-22 1999-04-20 Birefringence measuring method and birefringence measuring apparatus Expired - Fee Related JP4148592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11161499A JP4148592B2 (en) 1998-04-22 1999-04-20 Birefringence measuring method and birefringence measuring apparatus

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP11181498 1998-04-22
JP11181398 1998-04-22
JP20776498 1998-07-23
JP10-111814 1998-07-23
JP10-207764 1998-07-23
JP10-111813 1998-07-23
JP11161499A JP4148592B2 (en) 1998-04-22 1999-04-20 Birefringence measuring method and birefringence measuring apparatus

Publications (2)

Publication Number Publication Date
JP2000097805A true JP2000097805A (en) 2000-04-07
JP4148592B2 JP4148592B2 (en) 2008-09-10

Family

ID=27469923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11161499A Expired - Fee Related JP4148592B2 (en) 1998-04-22 1999-04-20 Birefringence measuring method and birefringence measuring apparatus

Country Status (1)

Country Link
JP (1) JP4148592B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring
JP2005300488A (en) * 2004-04-16 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Refractive index measuring method and device, refractive index measuring and/or hardening device
JP2007514164A (en) * 2003-12-11 2007-05-31 コーニング インコーポレイテッド System and method for measuring birefringence in optical materials
JP2011112493A (en) * 2009-11-26 2011-06-09 Eto Co Ltd Double refraction measuring device of non-planar-shaped sample
CN112816188A (en) * 2021-01-19 2021-05-18 浙江未来技术研究院(嘉兴) GRIN lens optimal object image distance measuring system
KR102272149B1 (en) * 2020-02-26 2021-07-02 주식회사 토모큐브 Method and apparatus for retrieving three-dimensional refractive index tensor distribution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296206A (en) * 2000-04-13 2001-10-26 Nikon Corp Apparatus and method for double refraction measuring
JP2007514164A (en) * 2003-12-11 2007-05-31 コーニング インコーポレイテッド System and method for measuring birefringence in optical materials
JP2005300488A (en) * 2004-04-16 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> Refractive index measuring method and device, refractive index measuring and/or hardening device
JP2011112493A (en) * 2009-11-26 2011-06-09 Eto Co Ltd Double refraction measuring device of non-planar-shaped sample
KR102272149B1 (en) * 2020-02-26 2021-07-02 주식회사 토모큐브 Method and apparatus for retrieving three-dimensional refractive index tensor distribution
WO2021172734A1 (en) * 2020-02-26 2021-09-02 주식회사 토모큐브 Method and apparatus for measuring three-dimensional refractive index tensor
US11821834B2 (en) 2020-02-26 2023-11-21 Tomocube, Inc. Method and apparatus for measuring three-dimensional refractive index tensor
CN112816188A (en) * 2021-01-19 2021-05-18 浙江未来技术研究院(嘉兴) GRIN lens optimal object image distance measuring system

Also Published As

Publication number Publication date
JP4148592B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
TW201205114A (en) Linear chromatic confocal microscope system
TWI500901B (en) Measuring apparatus
CN1272622C (en) Double refraction detecting method and device
JP5268061B2 (en) Board inspection equipment
CN113330299B (en) Imaging reflectometer
CN106441571A (en) Light source module and line scanning multispectral imaging system using the same
JP7489403B2 (en) Deflectometry Measurement System
JP4090860B2 (en) 3D shape measuring device
JP2009162539A (en) Light wave interferometer apparatus
US7538890B2 (en) Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
US7719691B2 (en) Wavefront measuring apparatus for optical pickup
JP4667965B2 (en) Light beam measuring device
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JP6273109B2 (en) Optical interference measurement device
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
KR101239409B1 (en) 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
JP3228458B2 (en) Optical three-dimensional measuring device
US10627346B2 (en) Refractive index measuring device and refractive index measuring method
JP2005017127A (en) Interferometer and shape measuring system
JP2007155480A (en) Surface measurement apparatus
CN111664805A (en) Super spectral line scanning 3D measuring device and measuring method
JP3437479B2 (en) Birefringence measurement device
US20230003645A1 (en) Tomographic imaging system for transparent material composite thin film
CN210070874U (en) Super spectral line scanning 3D measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees