JP2001235317A - Apparatus for measuring radius of curvature of optical spherical surface - Google Patents

Apparatus for measuring radius of curvature of optical spherical surface

Info

Publication number
JP2001235317A
JP2001235317A JP2000044154A JP2000044154A JP2001235317A JP 2001235317 A JP2001235317 A JP 2001235317A JP 2000044154 A JP2000044154 A JP 2000044154A JP 2000044154 A JP2000044154 A JP 2000044154A JP 2001235317 A JP2001235317 A JP 2001235317A
Authority
JP
Japan
Prior art keywords
curvature
radius
light
optical
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000044154A
Other languages
Japanese (ja)
Other versions
JP4183220B2 (en
Inventor
Nobuaki Ueki
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2000044154A priority Critical patent/JP4183220B2/en
Publication of JP2001235317A publication Critical patent/JP2001235317A/en
Application granted granted Critical
Publication of JP4183220B2 publication Critical patent/JP4183220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the radius of curvature of an optical spherical surface with accuracy of a submicron order and by means of a compact and simple device constitution by employing the idea of techniques for measuring steps in a plane while using a variable wavelength laser as a light source, and adopting a cat's-eye technique. SOLUTION: This apparatus comprises a source 1 of variable wavelength laser beams, a half prism 20, a collimator lens 6, a second reference lens 5R causing the laser beam to impinge on the reference surface 5a (concave spherical surface) of the first reference lens 5F of a reference lens portion 5 at approximately right angles so that the laser beam exits the reference surface 5a at approximately right angles, a reflector 7 having a reflecting plane at the focal position of the second reference lens 5R, a light intensity detecting means 9 for detecting the intensity of light interference occurring between the laser beam LA normally reflected by the reflecting plane and the laser beam LB coming from the source 1 and reflected at a position 5b where it re-impinges on the reference surface 5a at right angles, a Fourier transform means 10 for measuring the frequency n of variation in light intensity through a Fourier transform, and a radius-of-curvature calculating means 11 for calculating the radius of curvature R of the reference surface 5a on the basis of the frequency n.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学球面の曲率半
径を高精度で測定する光学球面曲率半径測定装置に関
し、詳しくは、可干渉性を有する波長可変光源を測定用
光源とし、レンズ面等の光学球面の曲率半径を干渉技術
を用いて極めて高精度に測定する光学球面曲率半径測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical spherical radius of curvature measuring device for measuring the radius of curvature of an optical spherical surface with high accuracy. More specifically, the present invention relates to a variable wavelength light source having coherence as a measuring light source, a lens surface and the like. The present invention relates to an optical spherical curvature radius measuring device for measuring the radius of curvature of an optical spherical surface with extremely high precision using an interference technique.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近
年、干渉計装置により被検体曲面の形状を高精度で測定
することがますます必要となってきており、被検体の曲
面形状に応じて参照用に使用する基準レンズの基準面を
高精度かつ簡易に測定する必要が生じている。
2. Description of the Related Art In recent years, it has become increasingly necessary to measure the shape of a curved surface of an object with an interferometer device with high accuracy, and reference is made in accordance with the curved surface shape of the object. It is necessary to measure the reference surface of the reference lens used for the measurement with high accuracy and simply.

【0003】このような基準レンズのレンズ面の曲率半
径をサブミクロンオーダーの高精度で測定することは困
難であり、高精度な測長器を用いることが従来の手法で
あったが、これでは装置の大型複雑化が避けられない。
[0003] It is difficult to measure the radius of curvature of the lens surface of such a reference lens with high accuracy on the order of submicrons, and it has been a conventional method to use a high-precision length measuring device. Inevitably increases the size and complexity of the device.

【0004】本発明は、このような事情に鑑みなされた
ものであり、光学球面の曲率半径をサブミクロンオーダ
ーの高精度で測定し得るコンパクトで構成簡易な光学球
面曲率半径測定装置を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a compact and simple optical radius of curvature measuring apparatus capable of measuring the radius of curvature of an optical spherical surface with high accuracy on the order of submicrons. It is intended for.

【0005】[0005]

【課題を解決するための手段】本発明の光学球面曲率測
定装置は、被検体の凹状の光学球面の曲率半径を測定す
る装置において、出力光の波長を時間的に変化させ得る
光源と、該光源からの光ビームのうち一部の光が前記光
学球面で垂直に反射されるとともに、その余の光が前記
光学球面から垂直に射出されるように、光軸に沿って入
射した該光ビームを該被検体に所定の角度で入射せしめ
る収束レンズと、前記収束レンズと前記被検体とからな
る光学系の焦点位置に、該光学系の光軸に対して垂直に
配置された反射面と、前記光学球面で垂直に反射された
光と、前記反射面で反射され、前記光学球面に垂直に再
入射した光との間で生じた光干渉の強度変化を検出する
光強度検出手段と、この光強度検出手段により検出され
た光強度変化の周波数nを計測するフーリエ変換手段
と、計測された光強度変化の周波数n、前記出力光の基
準波長λおよびこの波長の変化幅Δλに基づいて前記光
学球面の曲率半径Rを求める曲率半径算出手段とを備え
たことを特徴とするものである。
According to the present invention, there is provided an optical spherical curvature measuring apparatus for measuring the radius of curvature of a concave optical spherical surface of a subject, comprising: a light source capable of changing the wavelength of output light with time; The light beam incident along the optical axis such that a part of the light beam from the light source is vertically reflected by the optical spherical surface and the remaining light is vertically emitted from the optical spherical surface. A convergent lens that causes the subject to enter the subject at a predetermined angle, and a reflecting surface disposed perpendicular to the optical axis of the optical system at a focal position of an optical system including the convergent lens and the subject, Light intensity detecting means for detecting a change in the intensity of light interference generated between the light vertically reflected by the optical spherical surface and the light reflected by the reflecting surface and re-entered perpendicularly to the optical spherical surface; and The circumference of the light intensity change detected by the light intensity detection means Fourier transform means for measuring the number n, and curvature radius calculation means for determining the radius of curvature R of the optical spherical surface based on the measured frequency n of the change in light intensity, the reference wavelength λ of the output light, and the change width Δλ of this wavelength. It is characterized by having.

【0006】また、前記曲率半径算出手段が、下式
(2)を用いて前記曲率半径Rを求めるのが好ましい。 R=1/{2(1/n)×(Δλ/λ)}・・・・・・(2) また、前記光源はレーザ光源であることが好ましい。さ
らに、本発明の方法は、前記被検体の光学球面が干渉計
に用いられる基準レンズの基準面である場合に特に有効
である。
Further, it is preferable that the curvature radius calculating means obtains the curvature radius R using the following equation (2). R = 1 / {2 (1 / n) × (Δλ / λ 2 )} (2) Preferably, the light source is a laser light source. Further, the method of the present invention is particularly effective when the optical spherical surface of the subject is a reference surface of a reference lens used in an interferometer.

【0007】[0007]

【発明の実施の形態】以下、本発明の一実施形態に係る
光学球面曲率半径測定装置について図面を参照しつつ説
明する。図1は本実施形態に係る光学球面曲率半径測定
装置を示すものである。なお、本実施形態においては、
光学球面を干渉計装置に用いられる基準レンズの基準面
(凹面)とした場合を例にあげて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical spherical radius of curvature measuring apparatus according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an optical spherical radius of curvature measuring apparatus according to the present embodiment. In the present embodiment,
Reference surface of a reference lens used for an interferometer device with an optical spherical surface
(Concave surface) will be described as an example.

【0008】この光学球面曲率半径測定装置は、出力光
の波長を時間的に変化させ得る波長可変レーザ光源1
と、この光源1からのレーザ光を側方に反射するハーフ
プリズム20と、コリメータレンズ6と、レーザ光が基
準レンズ部5の第1基準レンズ5Fの基準面5a(凹状
の球面;裏面とは同心面とされている)から垂直に射出
されるように、該レーザ光を基準面5aに略垂直に入射
せしめる第2基準レンズ5Rと、この基準レンズ部5の
焦点位置に、その基準レンズ部5の光軸に対して垂直と
なるように配置された反射平面を有する反射体7と、こ
の反射平面で正反射されたレーザ光Lと、このレーザ
光Lが基準面5aに垂直に再入射する位置5bにおい
て反射された光源1からのレーザ光L(図面では光路
の一部のみを示す)との間で生じた光干渉の強度変化を
検出する光強度検出手段9と、この光強度検出手段9に
より検出された光強度変化の周波数nをフーリエ変換に
より計測するフーリエ変換手段10と、計測された光強
度変化の周波数n、上記出力光の基準波長λおよびこの
波長の変化幅Δλに基づいて上記基準面5aの曲率半径
Rを求める曲率半径算出手段11から構成されている。
This optical spherical radius of curvature measuring apparatus is a wavelength tunable laser light source 1 capable of changing the wavelength of output light with time.
A half prism 20 that reflects the laser light from the light source 1 to the side, a collimator lens 6, and a laser light that reflects the laser light from the reference surface 5 a of the first reference lens 5 F (the concave spherical surface; A second reference lens 5R for causing the laser light to enter the reference surface 5a substantially perpendicularly so that the laser light is emitted perpendicularly from the concentric surface; and a reference lens portion at the focal position of the reference lens portion 5. and the reflector 7 having arranged reflecting planes so as to be perpendicular with respect to the fifth optical axis, the laser beam L a, which is regularly reflected by the reflecting plane, perpendicular to the laser beam L a is the reference surface 5a and light intensity detecting means 9 for detecting the intensity change of light interference occurs between the (only part of the optical path in the drawing) the laser beam L B from the light source 1 is reflected at a position 5b re-entering, this Detected by light intensity detecting means 9 Fourier transform means 10 for measuring the frequency n of the light intensity change by Fourier transform, and the reference surface 5a based on the measured frequency n of the light intensity change, the reference wavelength λ of the output light, and the change width Δλ of this wavelength. It comprises a radius-of-curvature calculation means 11 for obtaining a radius of curvature R.

【0009】なお、上記波長可変レーザ光源1は、レー
ザダイオードとAOMの組合せ等の波長可変手段からな
る。また、上記第1基準レンズ5Fの両面は略同心球面
とされており、それらの中心位置が反射体7の反射点に
一致している。また第1基準レンズ5Fの両面が略同心
球面とされているため第2基準レンズ5Rの焦点位置と
も一致している。
The tunable laser light source 1 comprises tunable means such as a combination of a laser diode and an AOM. Further, both surfaces of the first reference lens 5F are substantially concentric spherical surfaces, and their center positions coincide with the reflection points of the reflector 7. In addition, since both surfaces of the first reference lens 5F are substantially concentric spherical surfaces, they coincide with the focal position of the second reference lens 5R.

【0010】また、本実施形態においては、波長可変レ
ーザ光源1とハーフプリズム20との間に、光ファイバ
21と対物レンズ22A、B、Cが配されているが、波
長可変レーザ光源1とハーフプリズム20との間隔が短
い場合には、光ファイバ21は不要である。なお、ハー
フプリズム20と光強度検出手段9との間には結像レン
ズ23が配されている。
In the present embodiment, the optical fiber 21 and the objective lenses 22A, 22B, and 22C are disposed between the wavelength tunable laser light source 1 and the half prism 20, but the wavelength tunable laser light source 1 When the distance from the prism 20 is short, the optical fiber 21 is unnecessary. Note that an imaging lens 23 is disposed between the half prism 20 and the light intensity detecting means 9.

【0011】また、上記光強度検出手段9は光強度の時
間的変化を高速で読み取ることができるものであればよ
く、例えばCCD撮像カメラ等であってもよい。さら
に、上記フーリエ変換手段10と曲率半径算出手段11
は、一般にはコンピュータにおいてソフト的に構成され
る。
The light intensity detecting means 9 may be any one which can read out the temporal change of the light intensity at a high speed, and may be, for example, a CCD imaging camera. Further, the Fourier transform means 10 and the curvature radius calculating means 11
Is generally configured as software in a computer.

【0012】なお、上記曲率半径算出手段11において
は、曲率半径Rが下式(3)を用いて求められるように
なっている。 R=1/{2(1/n)×(Δλ/λ)}・・・・・・(3)
The radius of curvature R is obtained by the above-mentioned radius of curvature calculation means 11 using the following equation (3). R = 1 / {2 (1 / n) × (Δλ / λ 2 )} (3)

【0013】ところで、被検体の曲面形状に応じた干渉
計基準レンズの基準面の曲率半径をサブミクロンオーダ
ーの高精度で簡易に測定することは従来困難とされてい
た。本発明者は、このような事情に鑑み、試行錯誤の結
果、光源に波長可変レーザを用いて平面の段差測定を行
う手法を光学球面の曲率半径測定に適用すれば高精度で
簡易に測定できることを見出した。
By the way, it has conventionally been difficult to easily measure the radius of curvature of the reference surface of the interferometer reference lens in accordance with the curved surface shape of the subject with high accuracy on the order of submicrons. In view of such circumstances, the present inventor, as a result of trial and error, can measure easily and with high accuracy by applying a method of measuring a step of a plane using a tunable laser as a light source to a radius of curvature of an optical spherical surface. Was found.

【0014】すなわち、光源に波長可変レーザを用いて
平面の段差測定を行う手法とは、段差が存在する被検面
に対して波長可変レーザ光源からのビームを照射し、段
差を生じている2つの平面からの2つの反射光束により
生じる干渉光が検出できるように設定し、しかる後該ビ
ームの波長が基準波長λからΔλだけ波長走査され得る
ようにし、この干渉光の強度変化の周波数をFFT(高
速フーリエ変換)により求め、この周波数に基づいて段
差を求める手法である。
That is, a method of measuring a step on a plane using a wavelength-variable laser as a light source is to irradiate a beam from a wavelength-variable laser light source to a surface to be measured having a step to generate a step. The interference light generated by the two reflected light beams from the two planes is set so that it can be detected, and then the wavelength of the beam can be scanned by Δλ from the reference wavelength λ. (Fast Fourier Transform) and a step is obtained based on this frequency.

【0015】このように波長可変レーザを用いて測定さ
れた段差の値は極めて高精度であり、装置構成としても
極めて簡易なものである。したがって、このような光源
に波長可変レーザを用いて平面の段差測定を行う手法に
ヒントを得てなされた本発明も、高精度かつ簡易な装置
構成とすることが可能である。
The value of the step measured using the wavelength tunable laser as described above has extremely high accuracy, and the configuration of the apparatus is extremely simple. Therefore, the present invention, which is inspired by the technique of measuring the level difference of a plane using a wavelength tunable laser as the light source, can also have a highly accurate and simple device configuration.

【0016】以下、上記実施形態装置の作用を説明す
る。波長可変レーザ光源1からのレーザ光はコリメータ
レンズ6により平行光とされ、第2基準レンズ5Rによ
って屈折され、第1基準レンズ5Fの基準面5aから垂
直に射出され反射体7の反射平面において正反射され、
この後、第1基準レンズ5Fの基準面5aの位置5bに
垂直に再入射する。一方、上記第2基準レンズ5Rによ
って屈折されたレーザ光は、第1基準レンズ5Fの基準
面5aの位置5bにも垂直に入射し、その一部はこの位
置5bにおいて反射される。これにより該位置5bを透
過したレーザ光Lと該位置5bにおいて反射したレー
ザ光L はともに同一方向に進むことになり、またいず
れも同一光源1からのレーザ光であるから両者は互いに
干渉する。なお、上記説明においては、基準面5aの位
置5bで干渉する光のみについて言及したが、これらの
現象は基準面5aの全領域において生じているものであ
る。このような光学面の配置は周知のキャッツアイ技術
を応用したものである。
The operation of the above embodiment will be described below.
You. Laser light from the tunable laser light source 1 is collimated
The light is collimated by the lens 6 and is collimated by the second reference lens 5R.
From the reference surface 5a of the first reference lens 5F.
It is emitted directly and is specularly reflected on the reflection plane of the reflector 7,
Thereafter, the position is shifted to the position 5b of the reference surface 5a of the first reference lens 5F.
Re-enter vertically. On the other hand, the second reference lens 5R
The laser beam refracted by the reference lens of the first reference lens 5F
The light is also perpendicularly incident on the position 5b of the surface 5a, and a part thereof
At the position 5b. This makes the position 5b transparent.
Laser light LAAnd the ray reflected at the position 5b
The light L BWill go in the same direction,
Since both are laser beams from the same light source 1, they are mutually
have a finger in the pie. In the above description, the position of the reference plane 5a is
Although only the light that interferes with the device 5b is mentioned,
The phenomenon occurs in the entire area of the reference plane 5a.
You. The arrangement of such optical surfaces is based on the well-known cat's eye technology.
It is an application of

【0017】上記干渉光を生成する2つのレーザ光
、Lは、図1からも明らかなように、第1基準レ
ンズ5Fの基準面5aと反射平面上の反射点との距離r
の2倍に相当する光路差を有している。しかも、この反
射平面上の反射点位置は第2基準レンズ5Rの焦点位置
と一致し、かつ2つのレーザ光L、Lは第1基準レ
ンズ5Fの両面に対して垂直に入射されるように設定さ
れているから、上記距離rは基準面5aの曲率半径Rに
等しい。
[0017] generating the interference light of two laser beams L A, L B, as is apparent from FIG. 1, the distance between the reflection point on the reference surface 5a and the reflection plane of the first reference lens 5F r
Has an optical path difference that is twice as large. Moreover, the reflection point position on the reflective plane coincides with the focal position of the second reference lens 5R, and the two laser beams L A, L B is to be perpendicularly incident on the both surfaces of the first reference lens 5F , The distance r is equal to the radius of curvature R of the reference surface 5a.

【0018】ところで、上記2つのレーザ光L、L
の光路差は、上述した平面段差測定における光路差と等
価と考えてよいことは上記に説明した。すなわち、上記
光源に波長可変レーザを用いて平面の段差測定を行う手
法においては、計測された光強度変化の周波数をn、レ
ーザ光L、Lの基準波長をλ、この波長の変化幅を
Δλとすると、段差は1/{2(1/n)×(Δλ/λ
)}により求められるから、上記距離rも1/{2(1
/n)×(Δλ/λ)}により求められる。
By the way, the above two laser beams L A and L B
It has been described above that the optical path difference of may be considered to be equivalent to the optical path difference in the above-described planar step measurement. That is, in the method of performing step measurement plane by using a tunable laser in the light source, measured the frequency of the light intensity change n, the laser light L A, a reference wavelength of L B lambda, the change width of the wavelength Is Δλ, the step is 1 / {2 (1 / n) × (Δλ / λ
2 )}, the distance r is also 1 / {2 (1
/ N) × (Δλ / λ 2 )}.

【0019】すなわち、例えば波長可変レーザの基準波
長λを660nmとし、この波長の変化幅Δλを10n
mとしたとき、上記干渉光の強度変化は、上記距離rが
小さいときは図2の(A)に示す如く低い周波数とな
り、逆に上記距離rが大きいときは図2の(B)に示す
如く高い周波数となり、しかもこの周波数の変化は上記
距離rの変化に比例するものである。
That is, for example, the reference wavelength λ of the wavelength tunable laser is 660 nm, and the variation width Δλ of this wavelength is 10n.
When the distance r is small, the intensity change of the interference light becomes a low frequency as shown in FIG. 2A when the distance r is small, and is shown in FIG. 2B when the distance r is large. The frequency becomes as high as this, and the change in the frequency is proportional to the change in the distance r.

【0020】より詳しく説明すると、波長可変レーザに
より、波数(2π/λ)をk1からk2にスキャンし、Δkご
とに画像を取り込んだとすると、干渉縞強度変化I(x,y,
k)は、一般に、 I(x,y,k)=I(x,y){1+γcos[kL(x,y)]} となる。
More specifically, assuming that a wavelength variable laser scans the wave number (2π / λ) from k1 to k2 and captures an image for each Δk, the interference fringe intensity change I (x, y,
k) is generally I (x, y, k) = I 0 (x, y) {1 + γcos [kL (x, y)]}.

【0021】ここで、L(x,y)は光路差2r、I(x,y)は
干渉縞強度分布、γは干渉縞モジュレーションをそれぞ
れ示す。このときのある画素における干渉縞変化がn回
であったとすると、 (k2-k1)=2πn となり、k=2π/λゆえ、 L(x,y)=2πn/(k2-k1)=nλ1λ2/(λ1-λ2) となる。
Here, L (x, y) indicates the optical path difference 2r, I 0 (x, y) indicates the interference fringe intensity distribution, and γ indicates the interference fringe modulation. If the interference fringe change at a certain pixel at this time is n times, (k2-k1) = 2πn, and since k = 2π / λ, L (x, y) = 2πn / (k2-k1) = nλ1λ2 / (λ1-λ2).

【0022】すなわち、波長をスキャンした際の周波数
nを求めることにより、上記光路差が測定できる。この
周波数nを決定するため、フーリエ変換が必要となる。
ここに、上記周波数nは下式(4)の如き周知のフーリ
エ変換式を用いてフーリエ変換手段10(コンピュー
タ)により容易に求められる。
That is, the optical path difference can be measured by determining the frequency n when scanning the wavelength. To determine this frequency n, a Fourier transform is required.
Here, the frequency n can be easily obtained by the Fourier transform means 10 (computer) using a well-known Fourier transform equation such as the following equation (4).

【0023】[0023]

【数1】 (Equation 1)

【0024】このようにして求められた距離rが最終的
な解である曲率半径Rであり、これらの演算は前述した
ように曲率半径算出手段11において行われる。なお、
本発明の光学球面曲率半径測定装置としては、基準レン
ズのレンズ面の曲率半径のみならずその他の種々の光学
球面についての適用が可能である。
The distance r thus obtained is the radius of curvature R, which is the final solution, and these calculations are performed by the curvature radius calculating means 11 as described above. In addition,
The optical spherical radius of curvature measurement apparatus of the present invention can be applied not only to the radius of curvature of the lens surface of the reference lens but also to various other optical spherical surfaces.

【0025】また、光学球面を有する被検体としては、
光学球面とは反対側の面が、光学球面に対して同心球面
とされている必要はなく、要は光学球面に対して入出射
光線が垂直となるように構成されていればよい。
The subject having an optical spherical surface includes:
It is not necessary that the surface opposite to the optical spherical surface be a concentric spherical surface with respect to the optical spherical surface. In short, it is sufficient if the incoming and outgoing rays are perpendicular to the optical spherical surface.

【0026】[0026]

【発明の効果】以上説明したように、本発明の光学球面
曲率半径測定装置によれば、光源に波長可変レーザを用
いて平面の段差測定を行う手法にヒントを得、キャッツ
アイの技術を応用して光学球面の曲率半径を測定するよ
うにしているので、サブミクロンオーダーの高精度で、
しかもコンパクトかつ構成簡易な装置構成により光学球
面の曲率半径を測定することが可能である。
As described above, according to the optical spherical radius of curvature measuring apparatus of the present invention, the technique of measuring the level difference of a plane using a tunable laser as a light source is inspired, and the technique of cat's eye is applied. To measure the radius of curvature of the optical sphere, so that it is highly accurate on the order of submicrons,
Moreover, the radius of curvature of the optical spherical surface can be measured with a compact and simple device configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る光学球面曲率半径測定
装置を示す概略図
FIG. 1 is a schematic diagram showing an optical spherical curvature radius measuring apparatus according to an embodiment of the present invention.

【図2】図1の実施形態装置の作用を説明するために用
いられるグラフを示す図
FIG. 2 is a diagram showing a graph used to explain the operation of the embodiment device of FIG. 1;

【符号の説明】[Explanation of symbols]

1 波長可変レーザ光源 5 基準レンズ部 5F 第1基準レンズ 5R 第2基準レンズ 5a 基準面 6 コリメータレンズ 7 反射体 9 光強度検出手段 10 フーリエ変換手段 11 曲率半径算出手段 20 ハーフプリズム 21 光ファイバ Reference Signs List 1 wavelength variable laser light source 5 reference lens unit 5F first reference lens 5R second reference lens 5a reference surface 6 collimator lens 7 reflector 9 light intensity detection means 10 Fourier transform means 11 curvature radius calculation means 20 half prism 21 optical fiber

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB04 CC04 DD08 EE09 FF02 FF08 GG02 GG22 HH03 HH05 HH08 JJ01 JJ15 2F065 AA46 BB22 CC22 DD03 FF51 GG06 GG25 JJ03 JJ26 LL00 LL02 LL46 QQ16 QQ28 2G086 FF03  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 2F064 AA09 BB04 CC04 DD08 EE09 FF02 FF08 GG02 GG22 HH03 HH05 HH08 JJ01 JJ15 2F065 AA46 BB22 CC22 DD03 FF51 GG06 GG25 JJ03 JJ26 LL00 LL86 Q028

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検体の凹状の光学球面の曲率半径を測
定する装置において、出力光の波長を時間的に変化させ
得る光源と、 該光源からの光ビームのうち一部の光が前記光学球面で
垂直に反射されるとともに、その余の光が前記光学球面
から垂直に射出されるように、光軸に沿って入射した該
光ビームを該被検体に所定の角度で入射せしめる収束レ
ンズと、 前記収束レンズと前記被検体とからなる光学系の焦点位
置に、該光学系の光軸に対して垂直に配置された反射面
と、 前記光学球面で垂直に反射された光と、前記反射面で反
射され、前記光学球面に垂直に再入射した光との間で生
じた光干渉の強度変化を検出する光強度検出手段と、 この光強度検出手段により検出された光強度変化の周波
数nを計測するフーリエ変換手段と、 計測された光強度変化の周波数n、前記出力光の基準波
長λおよびこの波長の変化幅Δλに基づいて前記光学球
面の曲率半径Rを求める曲率半径算出手段とを備えたこ
とを特徴とする光学球面曲率半径測定装置。
An apparatus for measuring a radius of curvature of a concave optical spherical surface of a subject, comprising: a light source capable of changing a wavelength of output light with time; A converging lens that causes the light beam incident along the optical axis to enter the subject at a predetermined angle so that the light is reflected vertically by the spherical surface and the remaining light is emitted perpendicularly from the optical spherical surface. A reflecting surface disposed perpendicular to an optical axis of the optical system at a focal position of an optical system including the converging lens and the subject; light vertically reflected by the optical spherical surface; Light intensity detecting means for detecting a change in the intensity of light interference generated between the light reflected by the surface and perpendicularly re-entering the optical spherical surface; and a frequency n of the light intensity change detected by the light intensity detecting means. Fourier transform means for measuring the A radius of curvature calculating means for calculating a radius of curvature R of the optical spherical surface based on a frequency n of light intensity change, a reference wavelength λ of the output light, and a width of change Δλ of the wavelength. measuring device.
【請求項2】 前記曲率半径算出手段が、下式(1)を
用いて前記曲率半径Rを求めることを特徴とする請求項
1記載の光学球面曲率半径測定装置。 R=1/{2(1/n)×(Δλ/λ)}・・・・・・(1)
2. The optical spherical radius of curvature measuring apparatus according to claim 1, wherein the radius of curvature calculating means obtains the radius of curvature R using the following equation (1). R = 1 / {2 (1 / n) × (Δλ / λ 2 )} (1)
【請求項3】 前記光源がレーザ光源であることを特徴
とする請求項1または2記載の光学球面曲率半径測定装
置。
3. An optical spherical curvature radius measuring apparatus according to claim 1, wherein said light source is a laser light source.
【請求項4】 前記被検体の光学球面が干渉計に用いら
れる基準レンズの基準面であることを特徴とする請求項
1から3のうちいずれか1項記載の光学球面曲率半径測
定装置。
4. The optical spherical curvature radius measuring apparatus according to claim 1, wherein the optical spherical surface of the subject is a reference surface of a reference lens used for an interferometer.
JP2000044154A 2000-02-22 2000-02-22 Optical spherical curvature radius measuring device Expired - Fee Related JP4183220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044154A JP4183220B2 (en) 2000-02-22 2000-02-22 Optical spherical curvature radius measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044154A JP4183220B2 (en) 2000-02-22 2000-02-22 Optical spherical curvature radius measuring device

Publications (2)

Publication Number Publication Date
JP2001235317A true JP2001235317A (en) 2001-08-31
JP4183220B2 JP4183220B2 (en) 2008-11-19

Family

ID=18566963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044154A Expired - Fee Related JP4183220B2 (en) 2000-02-22 2000-02-22 Optical spherical curvature radius measuring device

Country Status (1)

Country Link
JP (1) JP4183220B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513803A (en) * 2004-09-22 2008-05-01 コーニング インコーポレイテッド Phase-resolved measurements for frequency shift interferometry.
CN101825446A (en) * 2010-04-13 2010-09-08 中国科学院长春光学精密机械与物理研究所 Device and method for measuring curvature radius of spherical reflector
CN102168955A (en) * 2011-05-18 2011-08-31 中国科学院长春光学精密机械与物理研究所 Method for detecting curvature radius of optical spherical surface
CN108106560A (en) * 2018-01-30 2018-06-01 青岛海泰光电技术有限公司 The comparative method for measuring method and its measuring device of optical element larger radius of curvature
CN113806678A (en) * 2021-09-07 2021-12-17 江苏科技大学 Curvature radius measuring method based on correlation coefficient matching

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128600B (en) * 2010-12-10 2012-02-01 西安科技大学 Method and device for measuring curvature radius of lens by use of laser
CN105588521B (en) * 2014-11-17 2020-01-14 中国航空工业第六一八研究所 Method for measuring radius of spherical reflector
CN105115444B (en) * 2015-09-08 2018-09-07 上海现代先进超精密制造中心有限公司 A kind of detection device and detection method of off axis paraboloidal mirror surface figure accuracy
CN110966955A (en) * 2019-11-15 2020-04-07 南京理工大学 Spherical subaperture splicing method based on plane registration
CN110966957A (en) * 2019-11-22 2020-04-07 南京理工大学 Absolute inspection method for synchronous measurement of multiple spherical standard lenses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428534A (en) * 1987-07-23 1989-01-31 Topcon Corp Curvature radius measuring apparatus and method
JPH0545140A (en) * 1991-08-14 1993-02-23 Ricoh Co Ltd Method and device for measuring radius of curvature
JPH05223538A (en) * 1992-02-14 1993-08-31 Nikon Corp Measuring method of shape of reference surface
JPH07306018A (en) * 1994-05-13 1995-11-21 Nippondenso Co Ltd Device and method for non-contact measurement of thickness of semi-conductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428534A (en) * 1987-07-23 1989-01-31 Topcon Corp Curvature radius measuring apparatus and method
JPH0545140A (en) * 1991-08-14 1993-02-23 Ricoh Co Ltd Method and device for measuring radius of curvature
JPH05223538A (en) * 1992-02-14 1993-08-31 Nikon Corp Measuring method of shape of reference surface
JPH07306018A (en) * 1994-05-13 1995-11-21 Nippondenso Co Ltd Device and method for non-contact measurement of thickness of semi-conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513803A (en) * 2004-09-22 2008-05-01 コーニング インコーポレイテッド Phase-resolved measurements for frequency shift interferometry.
CN101825446A (en) * 2010-04-13 2010-09-08 中国科学院长春光学精密机械与物理研究所 Device and method for measuring curvature radius of spherical reflector
CN102168955A (en) * 2011-05-18 2011-08-31 中国科学院长春光学精密机械与物理研究所 Method for detecting curvature radius of optical spherical surface
CN108106560A (en) * 2018-01-30 2018-06-01 青岛海泰光电技术有限公司 The comparative method for measuring method and its measuring device of optical element larger radius of curvature
CN108106560B (en) * 2018-01-30 2024-01-26 青岛海泰光电技术有限公司 Method and device for measuring large radius of curvature of optical element by comparison method
CN113806678A (en) * 2021-09-07 2021-12-17 江苏科技大学 Curvature radius measuring method based on correlation coefficient matching

Also Published As

Publication number Publication date
JP4183220B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP3237309B2 (en) System error measuring method and shape measuring device using the same
US8045181B2 (en) Inspection system and method with multi-image phase shift analysis
JP7489403B2 (en) Deflectometry Measurement System
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP4183220B2 (en) Optical spherical curvature radius measuring device
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JPH02161332A (en) Device and method for measuring radius of curvature
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPH06294629A (en) Device for measuring curvature of surface
JP2000065684A (en) Method and apparatus for measurement of distribution of refractive index
JP2002296018A (en) Three-dimensional shape measuring instrument
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JP4804977B2 (en) Tunable laser device and optical tomographic imaging apparatus
JP2001074604A (en) Method for measuring lens characteristics and its optical system
CN113050379A (en) Focus detection signal modulation device and method
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
RU2710976C1 (en) Device with spaced arms for measuring the radius of curvature of concave optical parts
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
US11269191B2 (en) Data acquisition apparatus
JP2004525381A (en) Reduction of coherent artifacts in interferometers
JP2000097657A (en) Interferometer
US11650125B2 (en) Structured light measuring device
JP2003021577A (en) Method and apparatus for measuring refractive-index distribution
JPH03243804A (en) Shape measuring method for aspherical surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees