JPH03243804A - Shape measuring method for aspherical surface - Google Patents

Shape measuring method for aspherical surface

Info

Publication number
JPH03243804A
JPH03243804A JP2038417A JP3841790A JPH03243804A JP H03243804 A JPH03243804 A JP H03243804A JP 2038417 A JP2038417 A JP 2038417A JP 3841790 A JP3841790 A JP 3841790A JP H03243804 A JPH03243804 A JP H03243804A
Authority
JP
Japan
Prior art keywords
measured
ring
intensity
interference fringes
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038417A
Other languages
Japanese (ja)
Inventor
Hideki Uchida
秀樹 内田
Takahiro Okura
貴博 大蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2038417A priority Critical patent/JPH03243804A/en
Publication of JPH03243804A publication Critical patent/JPH03243804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the shape of the aspherical surface which has a >=20mum asphericity quantity with high accuracy by finding the diameter of ring-shaped interference fringes from the amplitude of variation in the intensity of the fringes when a fringe scanning method is used. CONSTITUTION:Assuming that the surface S of a body 7 to be measured is aspherical and its quantity of asphericity is >=20mum as to a Fizeau's interferometer, a light beam which is made incident on the surface S to be measured travels back through its going optical path to reach the surface of an image pickup element, but other light beams do not travel back through their going optical paths, so none of them reach the image pickup element surface. Consequently, the interference fringes are formed in a ring shape. Then when a spherical prime standard 5 is moved in the direction of the optical axis to scan the stripes, the intensity of the interference fringes varies with the phase of reference light in a sine wave shape and the initial phase of this sine wave curve determines the phase of the interference fringes at a point on the surface to be measured. Further, the amplitude of the sine wave curve is found to measure the intensity of reflection from each point on the surface S to be measured, and the intensity is plotted to know the center part of the ring clearly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、干渉計を用いて光学的非球面の形状を測定す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of measuring the shape of an optical aspheric surface using an interferometer.

[従来の技術] 光学機器において、非球面レンズを使用することはその
収差を低減するに当たり大変有意義なことである。それ
に加えて、近年の成形技術の進歩により同一形状の非球
面レンズが大量に生産できるようになったことから、カ
メラなどの民生品にも多く使用されるようになってきた
[Prior Art] The use of aspherical lenses in optical instruments is very significant in reducing aberrations. In addition, recent advances in molding technology have made it possible to mass-produce aspheric lenses of the same shape, which has led to their use in many consumer products such as cameras.

精度の良い非球面レンズを製作するには精度の高い測定
技術が必要不可欠である。一般の非球面レンズに要求さ
れる形状測定精度は0.1μm以下と非常に高く、通常
用いられている三次元測定器は対処できず、より高い精
度の測定器が必要となる。
Highly accurate measurement technology is essential to manufacturing highly accurate aspheric lenses. The shape measurement precision required for general aspherical lenses is very high, 0.1 μm or less, and commonly used three-dimensional measuring instruments cannot handle this, so a measuring instrument with higher precision is required.

一方、球面レンズを評価するために開発されてきたフィ
ゾー型干渉計を代表とするレーザー干渉計は、光の波長
を単位として測定を行うため、大変高精度な測定を可能
にする反面、ダイナミックレンジが狭く、非球面量(非
球面形状の近似球面からの最大ずれ量)が20μm以下
の被測定物しか測定できず、それ以上になると測定でき
ないという欠点を有している。これは第5図に示すよう
に球面からの収差が非常に大きい非球面の形状を測定す
る場合は、球面波を被測定面Sに入射させる通常の干渉
測定法では、光線が被測定面の全ての面に対して垂直に
は入射しなくなってくるため、垂直に当たらない部分の
光線すがもと来た光路を戻らず、干渉計内の撮像素子面
−Eへ到達しなくなってしまうからである。このとき干
渉計により観測される干渉縞は第6図に示すようにリン
グ状となる。このリング状になった干渉縞は逆に被測定
物に光線が垂直に当たっているところである。そのため
被個定物の位置と、リングの径W、そして干渉計の倍率
を測定することにより、リング状に戻ってきた光線位置
での被測定面Sの傾きを求めることが可能である。
On the other hand, laser interferometers, such as the Fizeau interferometer, which has been developed to evaluate spherical lenses, measure in units of wavelength of light, making it possible to measure with very high precision. It has the disadvantage that it can only measure objects with a narrow amount of asphericity (maximum deviation of the aspherical shape from the approximate spherical surface) of 20 μm or less, and cannot measure anything larger than that. This is because, as shown in Figure 5, when measuring the shape of an aspherical surface with very large aberrations from the spherical surface, the normal interferometry method in which a spherical wave is incident on the surface to be measured S, Since the light is no longer incident perpendicularly to all surfaces, the rays of the parts that are not perpendicularly do not return along the original optical path and do not reach the image sensor surface -E in the interferometer. It is. At this time, the interference fringes observed by the interferometer have a ring shape as shown in FIG. On the contrary, this ring-shaped interference fringe is where the light beam hits the object to be measured perpendicularly. Therefore, by measuring the position of the object, the diameter W of the ring, and the magnification of the interferometer, it is possible to determine the inclination of the surface S to be measured at the position of the light beam returning in the ring shape.

そこで、この点に着目して被測定面Sの位置を順次変化
させながら各点でのリングの径Wを測定し、傾きを算出
し、それを繋ぎ合わせて積分することにより、表面の形
状を測定する方法が「光学」(第12巻第4号、198
2年8月〉に発表されている。
Therefore, by focusing on this point and sequentially changing the position of the surface to be measured S, measuring the diameter W of the ring at each point, calculating the slope, and connecting and integrating them, the shape of the surface can be determined. The method of measurement is “optics” (Vol. 12, No. 4, 198
It was announced in August 2018.

[発明が解決しようとする課題] 上記測定方法において、その個定精度を向上させるには
、■リングの径をより精度良く求める、■干渉計の持つ
幾何光学的倍率を精度良く求める、の2つの条件が必要
不可欠とされる。
[Problems to be Solved by the Invention] In order to improve the individualization accuracy in the above measurement method, two steps are required: ■ Determine the diameter of the ring with more precision; ■ Determine the geometrical optical magnification of the interferometer with more precision. Two conditions are considered essential.

これに対して、本発明は縞走査法による位相検出に代え
て縞の強度変化の振幅からリングの径を精度良く求め、
非球面量が20μmを越える大きな非球面の形状を高精
度に測定し得るようにした非球面の形状測定方法を提供
することにある。
In contrast, the present invention calculates the diameter of the ring with high precision from the amplitude of the intensity change of the fringe instead of detecting the phase using the fringe scanning method.
It is an object of the present invention to provide a method for measuring the shape of an aspherical surface that can measure the shape of a large aspherical surface with an aspherical amount exceeding 20 μm with high precision.

1課題を解決するための手段] 本発明は上記目的を遠戚するために、非球面量が20μ
mを越える被測定物をフィゾー型干渉計にて!l!測し
、得られるリング状の干渉縞のリング径を求め、各点の
被測定物の傾きを算出し、形状を測定する非球面の形状
測定方法において、そのリング径を、縞走査法を用いた
時の縞の強度変化の振幅から求めるようにしたものであ
る。
1. Means for Solving the Problems] In order to achieve the above object, the present invention has an aspherical surface amount of 20μ.
Measure objects larger than m using a Fizeau interferometer! l! In the aspherical shape measurement method, which calculates the ring diameter of the resulting ring-shaped interference fringes, calculates the inclination of the object to be measured at each point, and measures the shape, the ring diameter is calculated using the fringe scanning method. This is determined from the amplitude of the change in intensity of the stripes when the temperature changes.

[作用] フィゾー型干渉計において、球面原器を光軸方向に移動
させて縞走査すると、干渉縞の強度は参照光の位相変化
に対して正弦波的に変化し、この正弦曲線の初期位相が
被洒定面上のある点における干渉縞の位相を与える。ま
た、この正弦曲線の振幅を求めることで、被測定面の各
点からの反射強度を測定することができ、これをプロッ
トすると、リングの中央部が明らかになる。
[Operation] In a Fizeau interferometer, when the spherical prototype is moved in the optical axis direction to scan the fringe, the intensity of the interference fringe changes sinusoidally with respect to the phase change of the reference light, and the initial phase of this sine curve gives the phase of the interference fringe at a certain point on the selected surface. Furthermore, by determining the amplitude of this sine curve, it is possible to measure the reflection intensity from each point on the surface to be measured, and by plotting this, the central part of the ring becomes clear.

[実!IN] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[fruit! IN] Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1−図は本発明に係る非球面の形状測定方法を説明す
るために用いられるフィゾー型干渉計の光学系の図であ
る。同図において、1は光源、2は発散レンズ、3はハ
ーフミラ−54はコリメータレンズ、5は球面原器、6
は球面原器5を光軸方向に移動させるピエゾ素子等の駆
動装置、7は被測定物、8は可変空間フィルタ、9は結
像レンズ、■0はCCDカメラ等の撮像素子、Sは被測
定物7の非球面からなる被測定面である。光源1として
は可視、赤外または紫外の可干渉性のよい光束を発する
ものとして、例えばHe−Neレーザーが使用される。
FIG. 1 is a diagram of the optical system of a Fizeau interferometer used to explain the method for measuring the shape of an aspherical surface according to the present invention. In the figure, 1 is a light source, 2 is a diverging lens, 3 is a half mirror, 54 is a collimator lens, 5 is a spherical prototype, and 6
is a driving device such as a piezo element that moves the spherical prototype 5 in the optical axis direction; 7 is the object to be measured; 8 is a variable spatial filter; 9 is an imaging lens; This is the surface to be measured which is an aspherical surface of the object 7 to be measured. As the light source 1, a He--Ne laser, for example, is used as one that emits visible, infrared, or ultraviolet light beams with good coherence.

被測定物7は、被測定面Sの曲率中心が球面原器5の焦
点F位置と一致するように配置される。
The object to be measured 7 is arranged so that the center of curvature of the surface S to be measured coincides with the position of the focal point F of the spherical prototype 5.

このような構成からなるフィゾー型干渉計において、光
源■から発射された波長λの単色光からなるレーザ光は
、発散レンズ2によって発散光となり、ハーフミラ−3
で反射され、コリメータレンズ4によって再び光軸と平
行な平行光とされた後、球面原器5を経て被測定物7の
被測定面Sを照射する。この時、その光束の一部は球面
原器5の参照面Rで反射し、残りは被測定面Sで反射す
る。これらの反射光の波面は、それぞれ参照面Rと被測
定面Sの形態に応じた形状となっている。
In the Fizeau interferometer with such a configuration, the monochromatic laser beam with a wavelength λ emitted from the light source (2) becomes diverging light by the diverging lens 2, and the half mirror 3
After being reflected by the collimator lens 4 and made into parallel light parallel to the optical axis again, it passes through the spherical prototype 5 and illuminates the surface S to be measured of the object 7 to be measured. At this time, part of the light beam is reflected by the reference surface R of the spherical prototype 5, and the rest is reflected by the surface S to be measured. The wavefronts of these reflected lights have shapes corresponding to the shapes of the reference surface R and the surface to be measured S, respectively.

参照面Rと被測定面Sで反射した2つの反射光は同一の
光路を戻ることにより互いに重ね合わされ、コリメータ
レンズ4、ハーフミラ−3および可変空間フィルタ8を
通過し、結像レンズ9によって撮像装置10の撮像面に
結像されることにより、再反射光の相互干渉に基づく干
渉縞からなる干渉像を形成する。そして、干渉縞を解析
することにより、被測定面Sの面精度が測定される。
The two reflected lights reflected by the reference surface R and the measured surface S are superimposed on each other by returning along the same optical path, pass through a collimator lens 4, a half mirror 3, and a variable spatial filter 8, and are sent to an imaging device by an imaging lens 9. By being imaged on the No. 10 imaging surface, an interference image consisting of interference fringes based on mutual interference of re-reflected light is formed. Then, by analyzing the interference fringes, the surface accuracy of the surface to be measured S is measured.

測定に際しては、駆動装置6によって球面原器5を光軸
方向に振動させて球面原器5と被測定物7との間隔を変
え、参照面Rで反射した反射光と、m測定面Sで反射し
た反射光との光路差を変えることで読取り精度の向上を
図るようにしており、このような方法は縞走査法(フリ
ンジ−スキャン干渉法〉と呼ばれている。
During measurement, the driving device 6 vibrates the spherical prototype 5 in the optical axis direction to change the distance between the spherical prototype 5 and the object to be measured 7, and the reflected light from the reference surface R and the m measurement surface S are The reading accuracy is improved by changing the optical path difference between the reflected light and the reflected light, and this method is called a fringe-scan interferometry.

なお、このようなフィゾー型干渉計自体は従来装置と全
く同様である。
Note that such a Fizeau type interferometer itself is exactly the same as a conventional device.

今、上記構成からなるフィゾー型干渉計において、被測
定面Sが非球面で、その非球面量が20μm以上である
とすると、第5図に示したように被測定面Sに垂直に入
射する光線aはちと来た光路を戻り、撮像素子面上に到
達するが、そうでない光線すはちと来た光路を戻らず、
撮像素子面上へは戻らない。その結果、干渉縞は第6図
に示すリング状となる。このリングの径の幅は、干渉計
内の可変空間フィルタ8によって変化される。
Now, in the Fizeau type interferometer having the above configuration, if the surface to be measured S is an aspherical surface and the amount of asphericity is 20 μm or more, the incident light is perpendicular to the surface to be measured S as shown in FIG. Light ray a immediately returns along the optical path it came from and reaches the surface of the image sensor, but other light rays do not immediately return along the optical path they came from,
It does not return to the surface of the image sensor. As a result, the interference fringes become ring-shaped as shown in FIG. The width of this ring diameter is varied by a variable spatial filter 8 within the interferometer.

方、リングの径Wは被測定物の位置(第2図Lp)によ
って変化する。
On the other hand, the diameter W of the ring changes depending on the position of the object to be measured (Lp in FIG. 2).

一方、干渉計の倍率が一定であると仮定すると、第2図
に示すように撮像素子面におけるリングの径(2Xp“
〉に対する光線角度epは、一定の関係で表される。ま
た、光線角度epとP点における被測定面の傾きとは一
致する。そのため、予めリングの径Wに対する光線角度
epの関係を測定しておき、被測定面Sの原器焦点Fが
らの位置Lpを測定しながらリングの径Wを測定し、各
点における傾きを求め、その結果を積分することにより
、実際の形状を求めることが可能となる。
On the other hand, assuming that the magnification of the interferometer is constant, the diameter of the ring (2Xp"
The ray angle ep with respect to > is expressed in a fixed relationship. Furthermore, the beam angle ep and the inclination of the surface to be measured at point P match. Therefore, the relationship between the beam angle ep and the diameter W of the ring is measured in advance, and the diameter W of the ring is measured while measuring the position Lp of the prototype focal point F on the surface S to be measured, and the inclination at each point is determined. , by integrating the results, it is possible to obtain the actual shape.

ここで、リング径(2Xp)は撮像素子あるいはフレー
ムメモリ上のピッチにて換算される。一般に、これらの
素数は512X512以下で大変粗い。また、第3図(
a)、(b)に示すようにリング自身やリング外の所に
大きなノイズが多く含まれており、大変その検出が困難
である。
Here, the ring diameter (2Xp) is converted by the pitch on the image sensor or frame memory. Generally, these prime numbers are 512×512 or less and are very coarse. Also, Figure 3 (
As shown in a) and (b), there is a lot of large noise contained within the ring itself and outside the ring, making it very difficult to detect it.

そこで、本発明においては上記縞走査法を用いることに
よりこのリングをノイズから取り出し、そのリング径を
精度良く求めようとするものである。
Therefore, in the present invention, by using the fringe scanning method described above, this ring is extracted from the noise and the diameter of the ring is determined with high accuracy.

一般に、縞走査法とは干渉計においてその干渉縞を走査
することにより、位相状態をより精度良く検出しようと
するものである。
Generally, the fringe scanning method attempts to detect the phase state more accurately by scanning the interference fringes with an interferometer.

第4図(a)、(b)、(C)は縞走査法の原理を説明
するための図で、参照光の光路長を変化させるために、
−原器5にピエゾ素子6を貼り付け、1 / 100波
長〜1/1000波長の精度で光軸に沿って原器5を移
動させるようにしである。いま、ピエゾ素子6に電圧を
印加し、参照光の位相を変化させると、被測定面S上の
一点Aでは干渉縞の強度が参照光の位相に対して同図(
b)のように変化する。干渉縞の一点においては、参照
光の位相変化に対して干渉縞の強度は正弦波的に変化し
、この正弦曲線の初期位相が、点Aにおける干渉縞の位
相を与える。点Aと点Bで高さの差があれば両者の初期
位相は異なる。ヘテロダイン干渉法と異なる点は、ヘテ
ロダイン干渉計では参照信号と測定信号のビートをとっ
て各点で位相検出するのに対して、縞走査法は、段階的
に参照位相を変化させて、各測定点の縞強度をテレビカ
メラなどの2次元光検出器で同時に測定できる点にある
FIGS. 4(a), (b), and (C) are diagrams for explaining the principle of the fringe scanning method. In order to change the optical path length of the reference light,
- A piezo element 6 is attached to the prototype 5, and the prototype 5 is moved along the optical axis with an accuracy of 1/100 to 1/1000 wavelength. Now, when a voltage is applied to the piezo element 6 and the phase of the reference light is changed, the intensity of the interference fringes at one point A on the surface to be measured S is the same as the phase of the reference light (
b) Changes as shown below. At one point of the interference fringe, the intensity of the interference fringe changes sinusoidally with respect to a change in the phase of the reference light, and the initial phase of this sinusoidal curve gives the phase of the interference fringe at point A. If there is a difference in height between points A and B, their initial phases will be different. The difference from the heterodyne interferometry is that the heterodyne interferometer takes the beat of the reference signal and measurement signal and detects the phase at each point, whereas the fringe scanning method changes the reference phase in stages and detects the phase at each point. The point is that the fringe intensity at a point can be measured simultaneously using a two-dimensional photodetector such as a television camera.

要するに、縞走査法は原器5の基準面あるいは被測定面
Sのどちらかを光軸方向に動かしく走査)でその時の干
渉縞の各々の点での強度の変化を正弦波に当てはめ、そ
の初期の位相Pをより正確に求めようとするものである
In short, the fringe scanning method is a scan in which either the reference surface of the prototype 5 or the surface to be measured S is moved in the optical axis direction, and the change in intensity at each point of the interference fringe at that time is applied to a sine wave. This is intended to more accurately determine the initial phase P.

但し、本発明はこの初期位相を求める代わりに振幅Iを
求めてリングの径の測定を行う点に特徴を有するもので
ある。
However, the present invention is characterized in that the diameter of the ring is measured by finding the amplitude I instead of finding this initial phase.

例えば、参照面をλ/2〈λ:波長〉だけ走査し、その
間に等間隔(光路長でλ/4)に4枚の干渉縞を取り込
んだと仮定する。一般に、4枚の干渉縞の一点の強度が
ABCD (第4図(b))と変化したとすると、初期
位相Pは、 −D で計算される。
For example, assume that the reference plane is scanned by λ/2 (λ: wavelength), and four interference fringes are captured at equal intervals (λ/4 in optical path length) during the scan. Generally, if the intensity at one point of the four interference fringes changes as ABCD (FIG. 4(b)), the initial phase P is calculated as -D.

振幅■の2乗は I2= (A−C)2 + (B−D)2で計算される
The square of the amplitude ■ is calculated as I2=(A-C)2+(B-D)2.

このI2を各々の点で計算し、プロットすると、第4図
(b)のようにリング中央部が明確に分かる。
When this I2 is calculated at each point and plotted, the center of the ring can be clearly seen as shown in FIG. 4(b).

これは振幅の2乗は干渉する2つの光線の強度が相等し
い時に最大となるためである。参照面と被測定面の反射
率が等しければ、被測定面Sからの反射した光線が可変
空間フィルタ8(第1図〉などでカットされることがな
い。垂直に光線が当たった場所(求めたいリングの中央
)にて2つの光線の強度は最も近づき、振幅の2乗が最
大となる。当然、被個定面Sの中央にも垂直に光線が当
たる部分が存在するため、中央部の振幅fが大きい所の
み取り除き、振幅の2乗の強度に応じ最少自乗法を用い
て最大値の中心を求めることにより、リング径を正確に
求めることができる。
This is because the square of the amplitude is at its maximum when the intensities of the two interfering light rays are equal. If the reflectance of the reference surface and the surface to be measured are equal, the light beam reflected from the surface to be measured S will not be cut by the variable spatial filter 8 (see Figure 1). The intensities of the two light rays are closest to each other at the center of the target ring), and the square of the amplitude is maximum.Of course, there is also a part in the center of the individualization surface S where the light rays hit perpendicularly. The ring diameter can be accurately determined by removing only the portions where the amplitude f is large and determining the center of the maximum value using the method of least squares according to the strength of the square of the amplitude.

原器5の反射率が被測定物7の反射率より大きい場合、
この原器5は全く問題ない。一方、反対に被測定物7の
反射率が大きくなると、垂直に光線が反射する所(リン
グ中央)が若干振幅が下がるため、参照面を被個定面の
間にペリクル状のNDフィルタ等を入れることが好まし
い。
When the reflectance of the prototype 5 is greater than the reflectance of the object to be measured 7,
This prototype 5 has no problems at all. On the other hand, if the reflectance of the object to be measured 7 increases, the amplitude will decrease slightly at the point where the light beam is reflected perpendicularly (center of the ring), so a pellicle-shaped ND filter or the like is placed between the reference surface and the individual surface. It is preferable to include it.

[発明の効果] 以上述べたように本発明に係る非球面の形状測定方法は
、非球面率が20μmを越える被測定物の非球面をフィ
ゾー型干渉計で測定するに際して、縞走査法を用いた時
の縞の強度変化の振幅がらリング状干渉縞の径を求める
ようにしたので、リング径を求めることで、その位置に
おける被測定面の傾きを求めることができる。したがっ
て、被測定物を光軸に沿って動がし、各々のリング径を
求め、傾きを算出し、これをつないで積分し、座標変換
することにより非球面の形状を正確に測定することがで
きる。
[Effects of the Invention] As described above, the method for measuring the shape of an aspherical surface according to the present invention uses the fringe scanning method when measuring an aspherical surface of an object to be measured with an asphericity of more than 20 μm using a Fizeau interferometer. Since the diameter of the ring-shaped interference fringes is determined from the amplitude of the change in the intensity of the fringes when the ring is located, the inclination of the surface to be measured at that position can be determined by determining the ring diameter. Therefore, it is possible to accurately measure the shape of an aspherical surface by moving the object to be measured along the optical axis, determining the diameter of each ring, calculating the inclination, connecting these, integrating them, and converting the coordinates. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る非球面の形状測定方法を説明する
ために使用されるフィゾー型干渉計の光学系を示す図、
第2図はリング検出法の測定原理を示す図、第3図(a
)、(b)はノイズを含んだ干渉縞とその強度を示す図
、第4図(a)、〈b)、(c)は縞走査法の原理を説
明するための図、第5図は従来における非球面量が大き
い場合の非球面形状の測定を説明するための図、第6図
はリング状干渉縞を示す図である。 l・・・光源、3・・・ハーフミラ−15・球面原器、
7・・・被測定物、8・−・可変空間フィルタ、10・
・・撮像素子、S・・・被測定面、W・・・リングの径
。 第1図
FIG. 1 is a diagram showing the optical system of a Fizeau interferometer used to explain the method for measuring the shape of an aspherical surface according to the present invention;
Figure 2 shows the measurement principle of the ring detection method, Figure 3 (a
), (b) are diagrams showing noise-containing interference fringes and their intensity, Figures 4 (a), <b), and (c) are diagrams for explaining the principle of the fringe scanning method, and Figure 5 is a diagram showing the interference fringes containing noise and their intensity. FIG. 6 is a diagram for explaining the conventional measurement of an aspherical shape when the amount of aspherical surface is large, and is a diagram showing ring-shaped interference fringes. l...Light source, 3...Half mirror 15/spherical prototype,
7... Object to be measured, 8... Variable spatial filter, 10...
...Image sensor, S...Measurement surface, W...Ring diameter. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  非球面量が20μmを越える被測定物をフィゾー型干
渉計にて観測し、得られるリング状の干渉縞のリング径
を求め、各点の被測定物の傾きを算出し、形状を測定す
る非球面の形状測定方法において、そのリング径を、縞
走査法を用いた時の縞の強度変化の振幅から求めるよう
にしたことを特徴とする非球面の形状測定方法。
An object to be measured whose asphericity exceeds 20 μm is observed with a Fizeau interferometer, the ring diameter of the resulting ring-shaped interference fringes is determined, the inclination of the object at each point is calculated, and the shape of the object is measured. 1. A method for measuring the shape of an aspherical surface, characterized in that the ring diameter is determined from the amplitude of a change in the intensity of a fringe when a fringe scanning method is used.
JP2038417A 1990-02-21 1990-02-21 Shape measuring method for aspherical surface Pending JPH03243804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038417A JPH03243804A (en) 1990-02-21 1990-02-21 Shape measuring method for aspherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038417A JPH03243804A (en) 1990-02-21 1990-02-21 Shape measuring method for aspherical surface

Publications (1)

Publication Number Publication Date
JPH03243804A true JPH03243804A (en) 1991-10-30

Family

ID=12524737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038417A Pending JPH03243804A (en) 1990-02-21 1990-02-21 Shape measuring method for aspherical surface

Country Status (1)

Country Link
JP (1) JPH03243804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534245A (en) * 2001-07-09 2004-11-11 ミヒャエル キュッヘル, Scanning interferometer for aspheric and wavefronts
JP2008532010A (en) * 2005-02-24 2008-08-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534245A (en) * 2001-07-09 2004-11-11 ミヒャエル キュッヘル, Scanning interferometer for aspheric and wavefronts
JP2008532010A (en) * 2005-02-24 2008-08-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
JP4771487B2 (en) * 2005-02-24 2011-09-14 ザイゴ コーポレイション Scanning interferometer for aspheric and wavefronts
JP2008292438A (en) * 2007-05-23 2008-12-04 J Tec:Kk Ultraprecisely shape measuring method and device
JP2010145184A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device

Similar Documents

Publication Publication Date Title
Schwenke et al. Optical methods for dimensional metrology in production engineering
US6909509B2 (en) Optical surface profiling systems
US4948253A (en) Interferometric surface profiler for spherical surfaces
US4340306A (en) Optical system for surface topography measurement
US4869593A (en) Interferometric surface profiler
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
US7643151B2 (en) Optical measuring device for measuring a plurality of surfaces of an object to be measured
US6882433B2 (en) Interferometer system of compact configuration
JP3971747B2 (en) Aspheric and wavefront scanning interferometers
US4387994A (en) Optical system for surface topography measurement
KR101596290B1 (en) Thickness Measuring Apparatus And Thickness Measuring Method
JPH09503065A (en) Interferometric measuring method and apparatus for measuring surface shape
US5210591A (en) Interferometric ball bearing test station
JPH05503787A (en) Surface shape measuring device
KR101085014B1 (en) Optical surface measuring apparatus and method
JPH06294629A (en) Device for measuring curvature of surface
JPH03243804A (en) Shape measuring method for aspherical surface
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
JPS62126305A (en) Method and apparatus for measuring surface shape
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JPH0484704A (en) Multiple-wavelength type interferometer
JP3150761B2 (en) Simple phase shift interferometer
Franze et al. Multiple wavelengths in oblique-incidence interferometer for rough-surface measurement using laser diodes
JPH03156305A (en) Aspherical-shape measuring apparatus