JPH03156305A - Aspherical-shape measuring apparatus - Google Patents
Aspherical-shape measuring apparatusInfo
- Publication number
- JPH03156305A JPH03156305A JP29595189A JP29595189A JPH03156305A JP H03156305 A JPH03156305 A JP H03156305A JP 29595189 A JP29595189 A JP 29595189A JP 29595189 A JP29595189 A JP 29595189A JP H03156305 A JPH03156305 A JP H03156305A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- aspherical
- curvature
- interference fringes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 230000001427 coherent effect Effects 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 9
- 230000010363 phase shift Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光学機器、映像機器などに用いる光学部品の
表面形状、例えば非球面プラスチックレンズ、成形金型
などの表面形状を干渉測定により非接触で高精度に測定
するために用いられる非球面形状測定装置に関するもの
である。Detailed Description of the Invention [Industrial Application Field] The present invention is a method for determining the surface shape of optical components used in optical equipment, video equipment, etc., such as aspherical plastic lenses, molding molds, etc., by interferometric measurement. The present invention relates to an aspherical surface shape measuring device used for highly accurate contact measurement.
[従来の技術]
第5図はトワイマン・グリーン型干渉計を用いた従来の
非球面形状測定装置の原理図である。レーザー光源LS
から出力された可干渉光は、コリメータレンズCLによ
り平行光線に変換され、ビームスプリッタBSで2つの
光線に分割される。[Prior Art] FIG. 5 is a diagram showing the principle of a conventional aspheric shape measuring device using a Twyman-Green interferometer. Laser light source LS
The coherent light outputted from is converted into a parallel light beam by a collimator lens CL, and is split into two light beams by a beam splitter BS.
一方の光線は、球面波発生用レンズLにより球面波Sに
変換され、非球面形状の被測定面Tで反射されて、レン
ズLを経て測定光としてビームスプリッタBSに戻る。One of the light rays is converted into a spherical wave S by the spherical wave generating lens L, reflected by the aspherical surface to be measured T, and returns through the lens L to the beam splitter BS as measurement light.
他方の光線は、平面反射鏡Mにより反射され、参照光と
してビームスプリッタBSに戻る。測定光と参照光は干
渉を起こし、その干渉縞が観測面■で観測される。干渉
縞は測定光と参照光の光路差によって生じるので、被測
定面Tの球面からの誤差(非球面量)を等高線で表した
図形となる。レーザー光源LSがHe−Neの場合、等
高線はλ/2=0.3L64μ鋤ごとに1本のピッチと
なる。この干渉縞を解析することにより、非球面形状を
測定することができる。The other beam is reflected by the plane reflecting mirror M and returns to the beam splitter BS as a reference beam. The measurement light and reference light cause interference, and the interference fringes are observed on the observation surface ■. Since interference fringes are caused by the optical path difference between the measurement light and the reference light, they are a figure in which the error (aspherical amount) of the surface T to be measured from a spherical surface is expressed by contour lines. When the laser light source LS is He-Ne, the pitch of the contour lines is one every λ/2=0.3L64μ plow. By analyzing these interference fringes, the aspherical shape can be measured.
ところで、被測定面Tの弁球rffll(球面からの誤
差)が大きい場合には、球面波Sと被測定面Tとの偏差
が大きくなり、干渉縞の間隔が小さくなり過ぎて測定不
可能となることがある。そこで、横関俊介等による[複
数枚の干渉図形を用いた非球面の形状測定法」(光学1
2(1983年)の296〜300頁)では、入射球面
波の曲率半径を適当に選び、被測定面を光軸方向にずら
しながら部分的に干渉縞間隔の大きい部分を作り、複数
枚の干渉縞の解析結果をつなげて非球面の全体形状を求
める方法が提案されている。By the way, when the bulb rffll (error from the spherical surface) of the surface to be measured T is large, the deviation between the spherical wave S and the surface to be measured T becomes large, and the interval between interference fringes becomes too small, making measurement impossible. It may happen. Therefore, Shunsuke Yokoseki et al.'s ``Aspheric shape measurement method using multiple interference patterns'' (Optics 1
2 (1983), pp. 296-300), the radius of curvature of the incident spherical wave is appropriately selected, and the surface to be measured is shifted in the optical axis direction to partially create areas with large interference fringes. A method has been proposed in which the overall shape of an aspheric surface is determined by linking the fringe analysis results.
[発明が解決しようとする課題]
上述の従来技術では、非球面形状の曲率と入射球面波の
曲率とが一致しない場合でも、被測定面に対する入射光
とその反射光とが同一の光路を通るものと仮定している
。ところが、非球面形状の曲率と入射球面波の曲率の違
いが大きいほど、入射光と反射光は同一の光路を通らな
くなり、誤差が大きくなるという問題があった。[Problems to be Solved by the Invention] In the above-mentioned conventional technology, even when the curvature of the aspherical surface shape and the curvature of the incident spherical wave do not match, the incident light on the surface to be measured and its reflected light pass through the same optical path. It is assumed that However, there was a problem in that the larger the difference between the curvature of the aspherical shape and the curvature of the incident spherical wave, the more the incident light and reflected light no longer travel through the same optical path, resulting in a larger error.
本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、非球面形状の曲率と入射球面波
の曲率が一致する位置を検出し、この曲率の一致する位
置のみを用いて非球面形状を求めることにより、誤差を
少なくした非球面形状測定装置を提供することにある。The present invention was made in view of these points, and its purpose is to detect a position where the curvature of an aspherical surface shape matches the curvature of an incident spherical wave, and to detect only the position where this curvature matches. It is an object of the present invention to provide an aspherical surface shape measuring device that reduces errors by determining the aspherical surface shape using the above-described method.
[課題を解決するための手段]
本発明にあっては、上記の課題を解決するために、第1
図に示すように、可干渉光を参照光と測定光に分割し、
測定光を球面波として非球面形状の被測定面に入射し、
その反射光と参照光との干渉縞に基づいて被測定面の球
面形状からの偏差を求める非球面形状測定装置において
、被測定面を光軸方向に走査する手段と、各走査位置で
得られた干渉縞について微分係数がゼロになる位置を求
める手段と、各走査位置で求められた微分係数がゼロに
なる位置に基づいて被測定面の非球面形状を求める手段
とを備えることを特徴とするものである。[Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, the coherent light is split into a reference light and a measurement light,
The measurement light is incident on the aspherical surface to be measured as a spherical wave,
An aspherical surface shape measuring device that measures the deviation of a surface to be measured from a spherical shape based on interference fringes between the reflected light and a reference light includes a means for scanning the surface to be measured in the optical axis direction, and a means for scanning the surface to be measured in the optical axis direction. and means for determining the aspherical shape of the surface to be measured based on the position where the differential coefficient determined at each scanning position is zero with respect to the interference fringes obtained. It is something to do.
[作用]
本発明にあっては、このように、被測定面を光軸方向に
走査し、各走査位置で得られた干渉縞について微分係数
がゼロになる位置、つまり、非球面形状の曲率と入射球
面波の曲率が一致する位置を検出している。この位置で
は、入射波と反射波は同一の光路を通るので、この曲率
の一致する位置のみを用いて非球面形状を求めることに
より、誤差を少なくすることができる。[Operation] In the present invention, as described above, the surface to be measured is scanned in the optical axis direction, and the position where the differential coefficient becomes zero for the interference fringes obtained at each scanning position, that is, the curvature of the aspherical surface shape is determined. The position where the curvature of the incident spherical wave and the curvature of the incident spherical wave match is detected. At this position, the incident wave and the reflected wave pass through the same optical path, so errors can be reduced by determining the aspherical shape using only the position where the curvatures match.
[実施例]
第1図は本発明の一実施例の全体構成を示している。こ
の装置は、トワイマン・グリーン干渉計を非球面形状計
測に応用したものである。レーザー光源1から出力され
た可干渉光は、レンズ2、ピンホール3、コリメータレ
ンズ4等の光学系を通って平行光線に変換され、ビーム
スプリッタ5により2つの光線に分離される。一方の光
線は、平面反射鏡よりなる参照鏡8で反射されて、参照
光としてビームスプリッタ5に戻る。他方の光線は、球
面波発生用レンズ6により球面波となり、被測定物7に
照射される。被測定物7から反射した光は、測定光とし
てビームスプリッタ5に戻り、参照鏡8からの参照光と
重なって、観測面10で干渉縞として観測される。[Embodiment] FIG. 1 shows the overall configuration of an embodiment of the present invention. This device is an application of the Twyman-Green interferometer to aspheric shape measurement. The coherent light output from the laser light source 1 passes through an optical system including a lens 2, a pinhole 3, a collimator lens 4, etc., is converted into a parallel beam, and is separated into two beams by a beam splitter 5. One of the light beams is reflected by a reference mirror 8 made of a flat reflecting mirror and returns to the beam splitter 5 as a reference light. The other light beam is turned into a spherical wave by the spherical wave generating lens 6 and is irradiated onto the object 7 to be measured. The light reflected from the object to be measured 7 returns to the beam splitter 5 as measurement light, overlaps with the reference light from the reference mirror 8, and is observed as interference fringes on the observation surface 10.
本発明においては、この干渉縞を位相シフト法(縞走査
法とも呼ぶ)により解析し、非球面形状と入射球面波の
曲率が一致する位置を求め、これを使って非球面形状を
求めている。さらに非球面量が大きい場合には、つなぎ
合わせによって非球面の全体形状を求めている。In the present invention, this interference fringe is analyzed by the phase shift method (also called the fringe scanning method) to find the position where the aspherical shape and the curvature of the incident spherical wave match, and this is used to find the aspherical shape. . Furthermore, when the amount of aspherical surface is large, the overall shape of the aspherical surface is obtained by connecting them.
まず、非球面形状と入射球面波との曲率が一致する位置
を検出するための測定原理について説明する。第2図は
本発明に用いる光学系の概念図(オブトロニクス社「高
精度鏡面形状測定法」の95頁より抜粋)である1図中
、Lは球面波発生用レンズ、Fは焦点位置、fは焦点距
離、Tは非球面形状の被測定面、Sは入射球面波、■は
観測面、Oは被測定面及び観測面の中心である。この図
では、破線で示す入射球面波Sが点Piで被測定面Tに
接している。なお、第2図では、簡略化のために、参照
鏡とビームスプリッタは図示を省略しているが、一般の
トワイマングリーン干渉計である。観測面■で現れる干
渉縞の位相分布は、被測定面Tと入射球面波Sどの位相
差分布である。この干渉縞の位相分布を求める手段とし
て位相シフト法(縞走査法とも呼ばれる)を用いる0位
相シフト法は、干渉縞の位相測定を高精度に行う方法で
、武田光夫[サブフリンジ干渉計測基礎論」(光学13
(1984年)の55〜65頁)に記載されているよう
に、参照光の位相を既知量変化させることにより得られ
る複数枚の干渉縞図形を用いて、数学的演算により位相
を求める手段である0例えば、参照ill 8をPZT
9によりλ/8ずつずらせて得られた4枚の干渉縞にお
いて、観測面上の成る一点での4つの光強度をI3.I
2.I3.I4とすると、その点における位相は次式で
演算できる。First, the measurement principle for detecting the position where the curvature of the aspherical surface and the incident spherical wave match will be explained. Figure 2 is a conceptual diagram of the optical system used in the present invention (excerpted from page 95 of Obtronix's "High Precision Specular Shape Measurement Method"). In Figure 1, L is the lens for generating spherical waves, F is the focal position, f is the focal length, T is the aspherical surface to be measured, S is the incident spherical wave, ■ is the observation surface, and O is the center of the surface to be measured and the observation surface. In this figure, an incident spherical wave S indicated by a broken line is in contact with a surface to be measured T at a point Pi. Although the reference mirror and beam splitter are not shown in FIG. 2 for the sake of simplicity, they are a general Twyman Green interferometer. The phase distribution of the interference fringes appearing on the observation surface (2) is a phase difference distribution between the surface to be measured T and the incident spherical wave S. The 0 phase shift method, which uses the phase shift method (also called fringe scanning method) as a means of determining the phase distribution of interference fringes, is a method for measuring the phase of interference fringes with high precision. ” (Optics 13
(1984), pp. 55-65), it is a means of determining the phase through mathematical calculations using multiple interference fringe patterns obtained by changing the phase of the reference light by a known amount. For example, see ill 8 PZT
9, the four light intensities at one point on the observation surface are expressed as I3. I
2. I3. Assuming I4, the phase at that point can be calculated using the following equation.
W=(λ/ 4 )jan−’((I 2 I 4)
/ (I + I i)1この演算を観測面上の全観
測点についてそれぞれ行えば、観測面上の位相分布が求
まる。そして、位相シフト法により求めた干渉縞の位相
分布を解析することにより、接点Piの位置を求めるこ
とができる。W=(λ/4)jan-'((I2I4)
/ (I + I i)1 If this calculation is performed for all observation points on the observation plane, the phase distribution on the observation plane can be determined. Then, by analyzing the phase distribution of the interference fringes determined by the phase shift method, the position of the contact point Pi can be determined.
具体的な測定手順を説明すると、まず、非球面の被測定
物の中心を焦点位置におく0球面波発生用レンズに収差
が無ければ、tm面では均一の明るさを持った干渉図形
が観測される0次に、被測定物を光軸方向に動かして、
被測定物の中心近くに粗い干渉縞が得られるようにする
。このときの焦点位置からの移動量を11としておく、
そして、PZT9により参照鏡8を駆動して位相シフト
法を用いて、vA測面上の干渉縞の位相分布を求め、観
測面方向(U軸方向)に対する位相分布の微分係数がゼ
ロとなる位置を求め、その位置をUiとおく、観測面に
おける干渉縞を位相シフト法により位相分布として求め
た結果を第2図に例示する。To explain the specific measurement procedure, first, if there is no aberration in the zero-spherical wave generation lens whose focal point is at the center of the aspherical object to be measured, an interference pattern with uniform brightness will be observed on the tm plane. Next, move the object to be measured in the optical axis direction,
Make sure to obtain coarse interference fringes near the center of the object to be measured. Let the amount of movement from the focal point at this time be 11,
Then, the reference mirror 8 is driven by the PZT 9 and the phase distribution of the interference fringes on the vA measurement surface is determined using the phase shift method, and the position where the differential coefficient of the phase distribution with respect to the observation surface direction (U-axis direction) is zero is determined. The interference fringes on the observation plane are determined as a phase distribution using the phase shift method, and the results are illustrated in FIG.
第2図では凹物体を測定している1点P;は被測定面と
入射球面波との接点であるので、点Piに対応する干渉
縞上の点Uiの観測面方向に対する位相分布の微分係数
はゼロのはずである。このことを利用して、点Uiの位
置を求めれば、次式により接点Piの座標が求まる。In Figure 2, one point P at which the concave object is measured is the contact point between the surface to be measured and the incident spherical wave, so the differential of the phase distribution of point Ui on the interference fringe corresponding to point Pi with respect to the observation surface direction is The coefficient should be zero. By utilizing this fact to find the position of point Ui, the coordinates of contact point Pi can be found using the following equation.
第2図において、原点Oと点Uiの位相差をAiと置く
と、このA;は原点Oと点Piの位相差を表す、また、
点Piに対する入射波及び反射波が光軸となす角度θi
は次式のようになる。In FIG. 2, if the phase difference between the origin O and the point Ui is set as Ai, this A; represents the phase difference between the origin O and the point Pi, and
Angle θi between the incident wave and the reflected wave with respect to the point Pi and the optical axis
is as follows.
θ1−jan−’(U i/ f)
−■これより点Piの座標(Xi、Zi)は次式のよ
うになる。θ1-jan-'(U i/f)
-■ From this, the coordinates (Xi, Zi) of point Pi are as follows.
X1=(Ni−Ai)sinθ1
Zi=i’i (1i−Ai)eosθi
−■次に、曲率の一致する位置Pi=(Xi、Zi
)のみを用いて非球面形状を求めるために、被測定面T
をZ軸方向にN回動かす、そして、各回における干渉縞
の位相分布から求まった接点Piの位置から、非球面物
体の形状を求める。X1=(Ni-Ai) sinθ1 Zi=i'i (1i-Ai) eosθi
- ■ Next, the position Pi = (Xi, Zi
) to find the aspherical shape using only the surface to be measured T
is moved in the Z-axis direction N times, and the shape of the aspherical object is determined from the position of the contact point Pi determined from the phase distribution of the interference fringes each time.
今、接点Piが被測定物の外側へ行くように、被測定物
を微小Iδiだけ動かしたとする。このときの焦点から
の移動量を11士、 (= 1:+δi)とおく、また
、干渉縞の位相分布の微分係数がゼロとなる位置を点U
in、それに対応する非球面上の位置を点P i41、
それと光軸との角度をθi++とする。これらから同様
に0式を用いて、点Pi++の座標を求める。Now, assume that the object to be measured is moved by a minute amount Iδi so that the contact point Pi moves to the outside of the object to be measured. Let the amount of movement from the focal point at this time be 11, (= 1: + δi), and the position where the differential coefficient of the phase distribution of the interference fringe is zero is the point U.
in, the corresponding position on the aspherical surface is point P i41,
Let the angle between it and the optical axis be θi++. From these, the coordinates of point Pi++ are determined using the 0 formula in the same way.
被測定物を微小量δiずつN回動かし、それぞれについ
て求めたPi(i=1〜N)を並べ合わせると、非球面
形状を求めることができる。また、U軸は原点を通り、
光軸に垂直でありさえすれば、どの方向にも取れるので
、非球面形状を3次元的に求めることができる。By moving the object to be measured N times by a minute amount δi and arranging the Pi (i=1 to N) obtained for each, the aspherical shape can be obtained. Also, the U axis passes through the origin,
Since it can be taken in any direction as long as it is perpendicular to the optical axis, an aspherical shape can be obtained three-dimensionally.
さらに、非球面形状の測定面積が大きく、非球面量(球
面からの誤差)が大きい場合には、非球面の全体形状を
求める方法として、隣接する測定データのつなぎ合わせ
を行う、もし、非球面量が大きい場合、干渉縞が細かく
なりすぎ、位相差Aiが測定できない場合がある。この
ときは、δiを調整し、第4図(b)に示すように、点
U i++の前後の粗い干渉縞の中にUiを含むように
する。この点Ui士、と点Diとの位相差をB i+1
とおいて、点U !十+に対応する非球面上の点P i
iは点Piを中心にして求める。ここで、点P;の位置
は前記の方法で求まっているものとする。Furthermore, if the measured area of the aspherical surface is large and the amount of aspherical surface (error from the spherical surface) is large, the method of determining the overall shape of the aspherical surface is to connect adjacent measurement data. When the amount is large, the interference fringes become too fine and the phase difference Ai may not be measurable. At this time, δi is adjusted so that Ui is included in the coarse interference fringes before and after the point U i++, as shown in FIG. 4(b). The phase difference between this point Ui and point Di is B i+1
Anyway, point U! Point P i on the aspheric surface corresponding to 10+
i is determined centering on point Pi. Here, it is assumed that the position of point P; has been determined by the method described above.
コノ場合、点Pi+、ノ座標を(X i士+ 、Z i
++)トすると、この座標は第4図(、)を検討すれば
明らかなように、次式で求められる。In this case, the coordinates of point Pi+ and
++), then these coordinates can be obtained by the following equation, as is clear from examining FIG. 4(,).
Xi+、=Xi・cos(θi+1−θi)+ (&i
++ Z i) ・ 5in(/i+、−θi)→
−B !+I’ Sinθi。Xi+, = Xi・cos(θi+1−θi)+ (&i
++Z i) ・5in(/i+, -θi)→
-B! +I' Sinθi.
Z i++−pi+l−B i+1・sinθ1++(
1i++ Z i) ・cos(1i++−θi)+
X1−sin(θi士、−θ1)
なお、本発明で用いる干渉計は、等高線干渉縞図を得る
ことができる装置であれば、どのような種類のものでも
良く、第1図に示したトワイマン・グリーン型の干渉計
のほか、振動等に強く、計測用干渉計として最も背反し
ているフィゾー型干渉計でも全く同様の原理で測定が行
える。Z i++-pi+l-B i+1・sinθ1++(
1i++ Z i) ・cos(1i++−θi)+
X1-sin (θi, -θ1) The interferometer used in the present invention may be any type of device as long as it can obtain a contour interference fringe diagram.・In addition to the Green type interferometer, measurements can be made using exactly the same principle as the Fizeau type interferometer, which is resistant to vibrations and is the most contradictory measurement interferometer.
[発明の効果]
本発明にあっては、光の干渉を用いて入射球面波と被測
定面との偏差を求める非球面形状測定装置において、被
測定面を光軸方向に走査し、各走査位置で得られた干渉
縞について微分係数がゼロになる位置をそれぞれ求めて
、それらの位置に基づいて被測定面の非球面形状を求め
るようにしたから、非球面形状の曲率と入射球面波の曲
率の違いによる誤差が生じないという効果がある。[Effects of the Invention] According to the present invention, in an aspherical surface shape measuring device that uses optical interference to determine the deviation between an incident spherical wave and a surface to be measured, the surface to be measured is scanned in the optical axis direction, and each scan Since the positions where the differential coefficient becomes zero for the interference fringes obtained at each position are determined, and the aspherical shape of the surface to be measured is determined based on these positions, the curvature of the aspherical shape and the incident spherical wave can be calculated. This has the effect that errors due to differences in curvature do not occur.
第1図は本発明の一実施例の全体構成図、第2図は同上
の測定原理を説明するための図、第3図は同上の観測面
での位相分布の一例を示す図、第4図(、)は同上の測
定結果のつなぎ合わせの原理を説明するための図、第4
図(b)は観測面における干渉縞の一例を示す図、第5
図は従来例の概略構成図である。
1はレーザー光源、2はレンズ、3はピンホール、4は
コリメータレンズ、5はビームスプリッタ、6は球面波
発生用レンズ、7は被測定物、8は参照鏡、9はPZT
、10は観測面である。Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining the measurement principle of the above, Fig. 3 is a diagram showing an example of the phase distribution on the observation plane of the above, and Fig. 4 Figure (,) is a diagram for explaining the principle of connecting the measurement results of the above.
Figure (b) is a diagram showing an example of interference fringes on the observation plane.
The figure is a schematic configuration diagram of a conventional example. 1 is a laser light source, 2 is a lens, 3 is a pinhole, 4 is a collimator lens, 5 is a beam splitter, 6 is a spherical wave generation lens, 7 is an object to be measured, 8 is a reference mirror, 9 is PZT
, 10 is the observation plane.
Claims (1)
面波として非球面形状の被測定面に入射し、その反射光
と参照光との干渉縞に基づいて被測定面の球面形状から
の偏差を求める非球面形状測定装置において、被測定面
を光軸方向に走査する手段と、各走査位置で得られた干
渉縞について微分係数がゼロになる位置を求める手段と
、各走査位置で求められた微分係数がゼロになる位置に
基づいて被測定面の非球面形状を求める手段とを備える
ことを特徴とする非球面形状測定装置。(1) Split the coherent light into a reference light and a measurement light, make the measurement light a spherical wave, and make it incident on the aspherical surface to be measured. Based on the interference fringes between the reflected light and the reference light, An aspherical surface shape measuring device for determining deviation from a spherical shape includes means for scanning the surface to be measured in the optical axis direction, means for determining the position where the differential coefficient becomes zero for interference fringes obtained at each scanning position, and each An aspherical surface shape measuring device comprising means for determining the aspherical shape of a surface to be measured based on a position where the differential coefficient determined at the scanning position becomes zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29595189A JPH03156305A (en) | 1989-11-14 | 1989-11-14 | Aspherical-shape measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29595189A JPH03156305A (en) | 1989-11-14 | 1989-11-14 | Aspherical-shape measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03156305A true JPH03156305A (en) | 1991-07-04 |
Family
ID=17827213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29595189A Pending JPH03156305A (en) | 1989-11-14 | 1989-11-14 | Aspherical-shape measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03156305A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009288051A (en) * | 2008-05-29 | 2009-12-10 | Canon Inc | Measurement method |
JP2010025950A (en) * | 2001-10-16 | 2010-02-04 | Zygo Corp | Measurement of complex surface shape using spherical wavefront |
JP2010145185A (en) * | 2008-12-17 | 2010-07-01 | Canon Inc | Measuring method and measuring device |
JP2010145184A (en) * | 2008-12-17 | 2010-07-01 | Canon Inc | Measuring method and measuring device |
-
1989
- 1989-11-14 JP JP29595189A patent/JPH03156305A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010025950A (en) * | 2001-10-16 | 2010-02-04 | Zygo Corp | Measurement of complex surface shape using spherical wavefront |
JP2009288051A (en) * | 2008-05-29 | 2009-12-10 | Canon Inc | Measurement method |
JP2010145185A (en) * | 2008-12-17 | 2010-07-01 | Canon Inc | Measuring method and measuring device |
JP2010145184A (en) * | 2008-12-17 | 2010-07-01 | Canon Inc | Measuring method and measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4340306A (en) | Optical system for surface topography measurement | |
US5581347A (en) | Optimization method and device for direct measurement of an optical component | |
JP3237309B2 (en) | System error measuring method and shape measuring device using the same | |
US4884697A (en) | Surface profiling interferometer | |
Berger et al. | Non-contact metrology of aspheric surfaces based on MWLI technology | |
CN109975820A (en) | Synchronization polarization phase-shifting focus detection system based on Linnik type interference microscope | |
US6226092B1 (en) | Full-field geometrically desensitized interferometer using refractive optics | |
US4436424A (en) | Interferometer using transverse deviation of test beam | |
CN115371587A (en) | Surface topography measuring device and method and object surface height calculating method | |
CN106767500B (en) | Light path system for topography measurement | |
US12104902B2 (en) | Method and apparatus for detecting changes in direction of a light beam | |
JPH02161332A (en) | Device and method for measuring radius of curvature | |
JPH01284704A (en) | Method and device for measuring microstructure of surface | |
JP4183220B2 (en) | Optical spherical curvature radius measuring device | |
KR20110065365A (en) | Method and apparatus for measuring aspherical body | |
JPH03156305A (en) | Aspherical-shape measuring apparatus | |
JP2576576B2 (en) | Interferometry method and Fizeau interferometer using the same | |
US7471398B2 (en) | Method for measuring contour variations | |
JPS62126305A (en) | Method and apparatus for measuring surface shape | |
Scholz et al. | Concept for improving the form measurement results of aspheres and freeform surfaces in a tilted-wave interferometer | |
JPH06174430A (en) | Center thickness measuring method and device used for it | |
JPH05223537A (en) | Shape measuring method and shape measuring system | |
JP2001227929A (en) | Angle measuring method and apparatus | |
JPS61155902A (en) | Interference measuring apparatus | |
JP7289780B2 (en) | Eccentricity measuring method and eccentricity measuring device |