JPH0545140A - Method and device for measuring radius of curvature - Google Patents

Method and device for measuring radius of curvature

Info

Publication number
JPH0545140A
JPH0545140A JP20422091A JP20422091A JPH0545140A JP H0545140 A JPH0545140 A JP H0545140A JP 20422091 A JP20422091 A JP 20422091A JP 20422091 A JP20422091 A JP 20422091A JP H0545140 A JPH0545140 A JP H0545140A
Authority
JP
Japan
Prior art keywords
curvature
wave
radius
inspected
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20422091A
Other languages
Japanese (ja)
Inventor
Seizo Suzuki
清三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20422091A priority Critical patent/JPH0545140A/en
Publication of JPH0545140A publication Critical patent/JPH0545140A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method and a device for obtaining a radius of curvature of a spherical surface to be inspected in a short time and highly accurately. CONSTITUTION:A light which can interfere from a light source 1 is emitted to a reference surface 4 and a calibration spherical surface with a known radius of curvature r0 which is located on a position 9, thus enabling a reference wave to interfere with a wave to be inspected. Then, a spherical surface to be inspected with a known radius of curvature r is placed at the position 9 instead of the calibration spherical surface for achieving interference similarly. At this time, by giving a periodical wavelength change to the light which can interfere and at the same time by giving a frequency difference of by modulation elements 16 and 17 between the reference wave and the wave to be inspected, normal interference and at the same time heterodyne interference are generated. An image-forming surface 11 or 13 of interference fringes receives a beat signal I from a photodiode 13 and can measure a light path difference highly accurately by performing processing with an operation device 23, thus obtaining the radius of curvature r of the spherical surface to be inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学レンズやベアリン
グのボール等、球面を有するものの曲率半径を計測する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring a radius of curvature of a spherical object such as an optical lens or a ball of a bearing.

【0002】光学レンズや、ベアリング等を製造した場
合、それらの球面の仕上がり状態を測定し、球面の曲率
半径が、設計通りになっているか否かを評価する必要が
あるが、かかる球面を測定する場合、従来は次の二つの
方法によっていた。まず第1は、図3に示す光学的スフ
ォロメータを用いるものである。これは、可干渉球面波
を被検球面aに入射させたとき、対物レンズの焦点位置
が被検球面aの表面Aに一致したときと、被検球面の曲
率中心Oと一致した場合の2か所で干渉縞を形成するの
で、この二点間の距離Sを外部に設けたリニアエンコー
ダ等で計測することによって、被検球面の曲率半径rを
計測するものである。すなわち、S=rにより被検球面
aの曲率半径rを求めることができる。
When optical lenses, bearings, etc. are manufactured, it is necessary to measure the finished state of the spherical surface and evaluate whether or not the radius of curvature of the spherical surface is as designed. Conventionally, the following two methods have been used. First, the first uses the optical spherometer shown in FIG. This is the case where the coherent spherical wave is incident on the spherical surface a to be inspected, when the focal position of the objective lens coincides with the surface A of the spherical surface a to be inspected, and when it coincides with the center of curvature O of the inspected spherical surface. Since interference fringes are formed at some points, the radius of curvature r of the spherical surface to be measured is measured by measuring the distance S between these two points with an external linear encoder or the like. That is, the radius of curvature r of the spherical surface a to be tested can be obtained by S = r.

【0003】第2の方法としては、光プローブや接触針
式スタイラスで被検球面上を走査し、そのときの深さ情
報から曲率半径rを算出するものである。
The second method is to scan the surface to be inspected with an optical probe or a stylus of the contact needle type, and calculate the radius of curvature r from depth information at that time.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の第1の
方法では、被検球面を移動させて二回計測しなければな
らず、多数個の測定を行う場合には、長時間を要し、能
率が悪い。また、第2の方法は、点で面を走査するの
で、さらに時間がかかってしまう。本発明は、上記の問
題の解決を図ったもので、短時間で被検球面の曲率半径
を求めることができる方法、および装置を提供すること
を目的としている。
However, in the above-mentioned first method, it is necessary to move the spherical surface to be measured and to measure twice, and it takes a long time to measure a large number of pieces. , Inefficient. In addition, the second method scans the surface at points, which further takes time. The present invention has been made to solve the above problems, and an object of the present invention is to provide a method and an apparatus capable of obtaining the radius of curvature of a spherical surface to be inspected in a short time.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の方法は、光源からの可干渉光を参照面と被
検面とに照射し、参照波と被検波とを重畳して干渉縞を
形成する干渉光学系を用いた測定方法において、参照面
からの参照波と、既知の曲率半径(ro )を持つ校正球
面に、その曲率中心に集束するように可干渉光を照射し
て反射された被検波とを重畳し、干渉縞を形成したとき
の光路差を基準光路差(Lo )として求め、次に、未知
の曲率半径(r)を有する被検球面に、その曲率中心に
集束するように可干渉光を照射して参照波と被検波とを
重畳し、干渉縞を形成したときの光路差(L)を求め、 式 r=Lo −L+ro から被検球面の曲率半径(r)を求める構成を特徴とし
ている。
To achieve the above object, the method of the present invention irradiates a reference surface and a surface to be inspected with coherent light from a light source, and superimposes the reference wave and the object to be detected. In a measurement method using an interference optical system that forms interference fringes, a reference wave from a reference surface and a calibration sphere with a known radius of curvature (ro) are irradiated with coherent light so that they are focused at the center of curvature. Then, the optical path difference when the interference fringes are formed by superimposing it with the reflected test wave is obtained as the reference optical path difference (Lo), and then the curvature of the spherical surface under test having an unknown radius of curvature (r) is measured. The optical path difference (L) when the interference wave is formed by irradiating the coherent light so as to focus on the center and superimposing the reference wave and the test wave is obtained, and the curvature of the spherical surface under test is calculated from the equation r = Lo-L + ro. It is characterized by a configuration for obtaining the radius (r).

【0006】このとき、基準波長(λo )を有する可干
渉光に周期的な波長変化(Δλ)を与え、変調素子によ
って参照波と被検波との間に周波数差(Δν)を与え、
両波を重畳してビート信号(I)を作り、次式 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} r=Lo −L+ro ここに、 A:ビート信号の振幅 t:時間 から前記の光路差(Lo ,L)を求めるようにすること
が望ましい。
At this time, a periodic wavelength change (Δλ) is given to the coherent light having the reference wavelength (λo), and a frequency difference (Δν) is given between the reference wave and the test wave by the modulator.
A beat signal (I) is created by superimposing both waves, and the following equation I = A · cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} r = Lo −L + ro where A: beat signal amplitude t: time It is desirable to obtain the optical path difference (Lo, L) from the above.

【0007】また、本発明の装置は、光源からの可干渉
光を参照面と被検面とに照射し、参照波と被検波とを重
畳して干渉縞を形成する干渉光学系を用いた測定装置に
おいて、基準位置決め用の既知の曲率半径(ro )を有
する校正球と、参照面と構成球面との基準光路差(Lo
)および参照面と被検球面との光路差(L)を測定す
る手段とを有する構成を特徴としている。
Further, the apparatus of the present invention uses an interference optical system for irradiating the reference surface and the surface to be inspected with coherent light from the light source and superimposing the reference wave and the object wave to form interference fringes. In a measuring device, a calibration sphere having a known radius of curvature (ro) for reference positioning, and a reference optical path difference (Lo) between a reference surface and a constituent spherical surface.
) And a means for measuring the optical path difference (L) between the reference surface and the spherical surface to be inspected.

【0008】前記光路差を測定する手段が、前記光路差
を測定する手段が、可干渉光の波長を既知の基準値(λ
o )から既知の値(Δλ)だけ周期的に変化できる光源
と、参照波と被検波との間に周波数差(Δν)を与える
変調素子と、参照波と被検波とが重畳されてできるビー
ト信号(I)の受信手段と、次式、 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} r=Lo −L+ro ここに、 A:ビート信号の振幅 t:時間 から被検球面の曲率半径(r)を求める演算装置とから
なる構成とすることが望ましい。
The means for measuring the optical path difference and the means for measuring the optical path difference measure the wavelength of the coherent light by a known reference value (λ
o)) a light source that can periodically change by a known value (Δλ), a modulator that gives a frequency difference (Δν) between the reference wave and the test wave, and a beat that is created by superimposing the reference wave and the test wave. Signal (I) receiving means and the following equation: I = A.cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} r = Lo −L + ro where A: beat signal amplitude t: time to spherical surface to be detected It is desirable to have a configuration including an arithmetic device for obtaining the radius of curvature (r) of

【0009】[0009]

【作用】光源から発せられた可干渉光は、光路分割素子
により参照面に進むものと、被検球面に進むものとに分
割される。参照面に達して反射されたものは、参照波と
なり、被検球面に達して反射されたものは被検波になっ
て、やがて重畳される。被検球面としては、最初は曲率
半径が既知でro の校正球が置かれ、この校正球面に可
干渉光が照射される。校正球を光軸上で前後に移動し、
可干渉光が校正球の曲率半径の中心に集束するように照
射すると、被検波と参照波とは干渉縞を結像する。この
干渉縞を形成する校正球の位置から参照面との光路差を
測り、基準光路差Lo とする。
The coherent light emitted from the light source is split by the optical path splitting element into one that travels to the reference surface and one that travels to the test spherical surface. The one that reaches the reference surface and is reflected becomes a reference wave, and the one that reaches and is reflected by the spherical surface to be inspected becomes a wave to be inspected and is eventually superimposed. As a spherical surface to be inspected, a calibration sphere having a known radius of curvature and ro is placed at the beginning, and coherent light is irradiated on this calibration spherical surface. Move the calibration sphere back and forth on the optical axis,
When the coherent light is irradiated so as to be focused on the center of the radius of curvature of the calibration sphere, the test wave and the reference wave form an interference fringe. The optical path difference from the reference surface is measured from the position of the calibration sphere that forms this interference fringe, and is set as the reference optical path difference Lo.

【0010】次に、校正球を取り除き、測定しようとす
る被検球面を置き、同様に干渉縞を起こさせ、そのとき
の光路差Lを測定する。以上により求めたLo,L及び
既知の値ro とから、被検球面の曲率半径rは、式r=
Lo−L+ro により求まる。
Next, the calibration sphere is removed, the spherical surface to be measured is placed, interference fringes are similarly generated, and the optical path difference L at that time is measured. From Lo, L obtained as described above and the known value ro, the radius of curvature r of the spherical surface to be inspected is calculated by the equation r =
It can be obtained by Lo-L + ro.

【0011】基準の波長λo を持つ上記の可干渉光に対
し、Δλの範囲で周期的な変動を加えることによりLo
とLを求めることは可能であるが、高精度には求められ
ない。そこで、変調素子で参照波と被検波との間にΔν
の周波数差を与えることにより、ヘテロダイン干渉を起
こし、Lo とLを高精度に求めることができる。そし
て、重畳された可干渉光の交流成分で示されるビート信
号I(強度信号)は、次式で与えられる。 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} ここに、 A:ビート信号の振幅 t:時間 この式のうち、Iはビート信号として干渉縞から測定で
き、λo,Δλ及びΔνは既知の値であるから、Lを算
出することができる。この電気的な位相検出では、分解
能が2π/10,000程度と高く、たとえば、Lが数十cmで
あれば、μmオーダでの測定が可能になる。
The above coherent light having the reference wavelength λo is periodically changed within the range of Δλ to obtain Lo.
And L can be obtained, but they cannot be obtained with high accuracy. Therefore, Δν between the reference wave and the test wave is
By giving the frequency difference of, heterodyne interference is caused, and Lo and L can be obtained with high accuracy. The beat signal I (intensity signal) represented by the AC component of the superimposed coherent light is given by the following equation. I = A · cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} where: A: amplitude of beat signal t: time In this equation, I can be measured as a beat signal from interference fringes, and λo, Δλ and Δν Is a known value, L can be calculated. In this electrical phase detection, the resolution is as high as about 2π / 10,000, and for example, if L is several tens cm, measurement on the order of μm becomes possible.

【0012】[0012]

【実施例】以下に本発明の実施例を、図面に従って説明
する。図1に本発明の装置の構成を示す。なお、この実
施例に示す装置の基本構成は、マッハツェンダの干渉計
であるが、他の干渉計でも同様に実施できるものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the device of the present invention. The basic configuration of the apparatus shown in this embodiment is a Mach-Zehnder interferometer, but other interferometers can be similarly implemented.

【0013】同図に示す1は光源で、可干渉性の高いレ
ーザ光を発する半導体レーザが使用されている。この光
源1からの可干渉光は直線偏光で、コリメータレンズ2
を通って平行にされ、第1のハーフミラー3で一部が反
射されてミラーからなる参照面4の方向に進み、残りが
透過して光アイソレータ5に達する。光アイソレータ5
は、ビームスプリッタ5aとλ/4板5bとから構成さ
れ、ビームスプリッタ5aには反射面5cが設けられて
いる。可干渉光は、この光アイソレータ5の反射面5c
を透過し、λ/4板5bで円偏光にされ、二つのビーム
エクスパンダ6,7で適当な太さの平行光束に拡大さ
れ、対物レンズ8を通過して球面波となって被検球面9
に達し、反射されて被検波となる。被検波は、対物レン
ズ8,ビームエクスパンダ6,7を逆行し、光アイソレ
ータ5のλ/4板5bで行きと直交する方向の直線偏光
にされ、今度は反射面5cで反射され、第2のハーフミ
ラー10に達し、一部は反射してモニター用のイメージ
センサ11に入射し、他は透過してアパーチャ12で軸
外光がけられ、フォトダイオードからなる受信手段13
に達する。なお、被検球面9は、図示しない支持手段
と、リニアアクチュエータ等の駆動手段とによって、光
軸上を進退自在に移動できるように支持されている。
Reference numeral 1 shown in the figure is a light source, and a semiconductor laser which emits laser light having high coherence is used. The coherent light from the light source 1 is linearly polarized light, and the collimator lens 2
Are made parallel to each other, and are partially reflected by the first half mirror 3 to proceed toward the reference surface 4 formed of the mirror, and the rest are transmitted to reach the optical isolator 5. Optical isolator 5
Is composed of a beam splitter 5a and a λ / 4 plate 5b, and the beam splitter 5a is provided with a reflecting surface 5c. The coherent light is reflected by the reflecting surface 5c of the optical isolator 5.
Transmitted through the λ / 4 plate 5b to be circularly polarized light, expanded by two beam expanders 6 and 7 into a parallel light beam having an appropriate thickness, passes through the objective lens 8, and becomes a spherical wave to be a spherical surface to be inspected. 9
Reaches and is reflected to become a test wave. The wave to be detected goes backward through the objective lens 8 and the beam expanders 6 and 7, is linearly polarized in the direction orthogonal to the going direction by the λ / 4 plate 5b of the optical isolator 5, and is then reflected by the reflecting surface 5c. Reaching a half mirror 10, part of which is reflected and enters an image sensor 11 for monitoring, and the other part is transmitted and off-axis light is eclipsed by an aperture 12, and a receiving means 13 including a photodiode is provided.
Reach The spherical surface 9 to be inspected is supported by a supporting means (not shown) and a driving means such as a linear actuator so as to be movable back and forth on the optical axis.

【0014】第1のハーフミラー3で反射され、参照面
4に向かった可干渉光は、ここで反射されて参照波とな
り、90°右方に曲げられて第2のハーフミラー10に
達し、上述の被検波と重畳してイメージセンサ11と受
信手段13とに入射する。イメージセンサ11と受信手
段13とは、光学的に同じ位置に設置されており、被検
球面9を光軸上で進退させると、被検球面9の曲率中心
Oと対物レンズ8の焦点とが一致したときに、参照波と
被検波とが干渉し、イメージセンサ11上に干渉縞の像
を結像する。一方の受信手段13ではフォトダイオード
等がアパーチャ12で干渉縞の像の中心部だけを取り出
し電気信号を得る。
The coherent light reflected by the first half mirror 3 and directed to the reference surface 4 is reflected here to become a reference wave, which is bent 90 ° to the right and reaches the second half mirror 10. It is incident on the image sensor 11 and the receiving means 13 while being superimposed on the above-described test wave. The image sensor 11 and the receiving means 13 are installed at the same optical position, and when the spherical surface 9 to be inspected is moved back and forth on the optical axis, the center of curvature O of the spherical surface 9 to be inspected and the focal point of the objective lens 8 are aligned. When they match, the reference wave and the test wave interfere with each other to form an image of interference fringes on the image sensor 11. On the other hand, in the receiving means 13, a photodiode or the like takes out only the central portion of the image of the interference fringe with the aperture 12 and obtains an electric signal.

【0015】図2に示すように、実際の測定では、先ず
最初に、被検球面9の位置に、点線で示した基準となる
校正球面9aを置き、上記のようにして干渉縞を形成す
る。校正球面9aの曲率半径は既知でro とする。次に
校正球面9aの代わりに測定対象としての被検球面9を
置き、同様にして干渉縞を形成する。また、参照光と被
検光とを同一の光軸に沿って重ねたと仮定したとき、短
い方(この場合は参照光)の終端となるP点(仮想的に
求まる点)は、光路差を算出する基準点となるが、この
P点の座標位置は予め求めておくことができる。以上か
ら、校正球面9aが干渉を生じた座標位置から基準光路
差Lo を求めることができ、被検球面9の座標位置から
光路差Lを求めることができる。
As shown in FIG. 2, in actual measurement, first, a reference calibration spherical surface 9a indicated by a dotted line is placed at the position of the spherical surface 9 to be inspected, and interference fringes are formed as described above. .. The radius of curvature of the calibration spherical surface 9a is known and is set to ro. Next, an inspected spherical surface 9 to be measured is placed instead of the calibration spherical surface 9a, and interference fringes are formed in the same manner. In addition, assuming that the reference light and the test light are superposed along the same optical axis, the point P (the point that is virtually obtained) that is the end of the shorter one (reference light in this case) is the optical path difference. The reference point is calculated, but the coordinate position of this P point can be obtained in advance. From the above, the reference optical path difference Lo can be obtained from the coordinate position where the calibration spherical surface 9a has caused interference, and the optical path difference L can be obtained from the coordinate position of the test spherical surface 9.

【0016】こうして、求めた各値を次式、 r=Lo −L+ro (1) に代入すれば、被検面の曲率半径rを求めることができ
る。実際の測定では、まず校正球面で測定して一度Lo
を求めておけば、あとは、各被検球面についてのLを測
定するだけでよく、また、一つの被検球面について一回
だけ干渉縞を生じさせればよいので、非常に簡単に測定
ができるようになる。
By substituting each value thus obtained into the following equation, r = Lo-L + ro (1), the radius of curvature r of the surface to be inspected can be obtained. In the actual measurement, first measure on the calibration spherical surface and then once Lo
Then, it is only necessary to measure L for each spherical surface to be measured, and since it is only necessary to generate interference fringes once for one spherical surface to be measured, the measurement can be performed very easily. become able to.

【0017】次に、上式におけるLo とLとを、より高
精度に求めるためのヘテロダイン干渉方法を説明する。
光源1を構成する半導体レーザには、バイアス電流が注
入され、レーザ光が発せられるのであるが、このとき、
発振器15にて正弦変調された電流が、モジュレータ1
4によりバイアス電流に加えられ、レーザの波長、基準
のλo に対し、Δλの波長変動を起こすことができる。
この光を上記の測定に使用すると、参照波と被検波との
間には上記Lo 又はLの光路差があるので、位相差を生
じる。
Next, a heterodyne interference method for obtaining Lo and L in the above equation with higher accuracy will be described.
A bias current is injected into the semiconductor laser constituting the light source 1 to emit laser light. At this time,
The current sinusoidally modulated by the oscillator 15 is the modulator 1
4, it is added to the bias current, and a wavelength variation of Δλ can be caused with respect to the wavelength of the laser and the reference λ o.
When this light is used for the above measurement, a phase difference occurs due to the optical path difference of Lo or L between the reference wave and the test wave.

【0018】第1のハーフミラー3で分けられた被検光
の光路には、音響光学素子等による変調素子16が、ま
た、他方の参照光の光路には、同様の変調素子17が設
けられ、それぞれが発振器18,19によって可干渉光
の周波数を変調し、両者間にΔνの周波数差ができるよ
うにしている。
A modulation element 16 such as an acousto-optic element is provided in the optical path of the test light divided by the first half mirror 3, and a similar modulation element 17 is provided in the optical path of the other reference light. , Each modulates the frequency of the coherent light by the oscillators 18 and 19 so that a frequency difference of Δν can be generated between the two.

【0019】この可干渉光によって、前述した干渉縞を
形成させるのであるが、このとき参照波と被検波とは同
時にヘテロダイン干渉を起こしており、周波数Δνのビ
ート信号を発している。これをフォトダイオードからな
る受信手段13で受信して光電変換すると、その強度信
号の交流成分Iは、次式により決まる。 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} (2) ここに、 A:ビート信号の振幅 t:時間 上式中において、位相項の第1項は、Δνの周波数差に
よって生じるヘテロダイン干渉のビート信号の位相成
分、第2項は、光源波長のΔλによるビート信号の位相
成分、そして第3項は初期位相をそれぞれ示している。
The coherent light forms the above-mentioned interference fringes. At this time, the reference wave and the test wave simultaneously cause heterodyne interference, and emit a beat signal of frequency Δν. When this is received by the receiving means 13 including a photodiode and photoelectrically converted, the AC component I of the intensity signal is determined by the following equation. I = A · cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} (2) where: A: beat signal amplitude t: time In the above equation, the first term of the phase term depends on the frequency difference of Δν. The phase component of the beat signal of the generated heterodyne interference, the second term represents the phase component of the beat signal due to the light source wavelength Δλ, and the third term represents the initial phase.

【0020】いま、仮に、Δλの波長変動だけが与えら
れ、Δνの周波数差がないとすると上式は、 I=A・cos {2π(2LΔλ/λo2+2L/λo )} (3) となる。
Now, if only the wavelength variation of Δλ is given and there is no frequency difference of Δν, the above equation becomes I = A · cos {2π (2LΔλ / λo 2 + 2L / λo)} (3) ..

【0021】ここで、λo,λは既知であるから、Iを測
定すれば光路差L(又はLo )を求めることができる。
しかし、光路差Lの測定の精度は、位相の検出精度およ
び波長シフトの大きさΔλで決まる。ところで、市販さ
れているGaAlAsレーザにおいては、注入電流の変
化を大きくし過ぎると、レーザの発振モードが別のモー
ドに跳び移ってしまう。そして、跳び移らない波長シフ
ト量Δλの限度は、最大0.05nm程度とされている。一方
λo として780nm を使用したとすれば、1周期の合成波
長は λo2/Δλ=(780 ×10-6)2/(0.05×10-6) =12mm となる。すなわち、12mm程度の刻みのスケールとして
読み取ることができることになるが、通常、曲率半径は
μmオーダの分解能が必要で、これでは不充分である。
そこで、本発明の実施例では、分解能を向上させるべ
く、前述のΔνの周波数差を与えるヘテロダイン干渉方
式を導入し、(2) 式に示すように位相項に第1項を加え
ているのである。
Since λo and λ are known, the optical path difference L (or Lo) can be obtained by measuring I.
However, the accuracy of measurement of the optical path difference L is determined by the phase detection accuracy and the wavelength shift magnitude Δλ. By the way, in a commercially available GaAlAs laser, if the change of the injection current is made too large, the oscillation mode of the laser jumps to another mode. The limit of the wavelength shift amount Δλ that does not jump is about 0.05 nm at the maximum. On the other hand, if 780 nm is used as λo, the combined wavelength of one cycle is λo 2 / Δλ = (780 × 10 -6 ) 2 / (0.05 × 10 -6 ) = 12 mm. That is, it can be read as a scale with a step of about 12 mm, but normally, the radius of curvature requires a resolution on the order of μm, which is not sufficient.
Therefore, in the embodiment of the present invention, in order to improve the resolution, the above-mentioned heterodyne interference method that gives the frequency difference of Δν is introduced, and the first term is added to the phase term as shown in equation (2). ..

【0022】図1において、参照波と被検波とは第2の
ハーフミラー10で重畳され、かつ二光束に分解され、
一方は、モニタ用のイメージセンサ11に干渉縞の像を
結像し、他方は、アパーチャ12に光軸付近の中央部の
みが取り出され、受信手段13に達する。
In FIG. 1, the reference wave and the test wave are superposed by the second half mirror 10 and decomposed into two light beams,
On the one hand, an image of the interference fringes is formed on the monitor image sensor 11, and on the other hand, only the central portion near the optical axis is taken out by the aperture 12 and reaches the receiving means 13.

【0023】なお、被検球面9の曲率中心と対物レンズ
の焦点位置とを互いに一致させる必要があるが、これは
イメージーセンサ11上の干渉縞像をモニターして、で
きるだけ縞の本数が少なくなるように被検面をセッティ
ングすることで達成でき、このときの精度は、基準波長
λo 以下の高精度で合わせることができる。
The center of curvature of the spherical surface 9 to be inspected and the focal position of the objective lens need to coincide with each other. This is done by monitoring the interference fringe image on the image sensor 11 to reduce the number of fringes as much as possible. This can be achieved by setting the surface to be inspected so that the accuracy at this time can be adjusted with high accuracy of the reference wavelength λo or less.

【0024】受信手段13における干渉光の強度信号
は、前述の(2) 式で与えられるが、これを光電変換して
電気信号Iとして置き換えられる。発振器18,19の
電気信号をミキサ20で合成して位相検出のための参照
信号とし、前記電気信号Iと共に位相比較器21に入力
する。
The intensity signal of the interference light in the receiving means 13 is given by the above equation (2), which is photoelectrically converted and replaced as the electric signal I. The electric signals of the oscillators 18 and 19 are combined by the mixer 20 to form a reference signal for phase detection, which is input to the phase comparator 21 together with the electric signal I.

【0025】位相比較器21の出力は、さらに、発振器
15による変調周波数を中心とするバンドパスフィルタ
22を通すことにより、光学系のゆらぎや振動ノイズが
カットされ、コンピュータからなる演算装置23に入力
される。演算装置23には、予め、λo ,Δλの各既知
の値が入力されており、これらの値とバンドパスフィル
タ22からのIの値とから(2) 式の第2項の位相項が算
出され、第2項の位相成分から光路差LおよびLo を求
めることができ、これから(1) 式によって曲率半径rを
求めることができる。
The output of the phase comparator 21 is further passed through a bandpass filter 22 having the modulation frequency of the oscillator 15 as the center, whereby fluctuations and vibration noise of the optical system are cut, and the result is input to a computer 23 comprising a computer. To be done. Known values of λ o and Δλ are input to the arithmetic unit 23 in advance, and the phase term of the second term of the equation (2) is calculated from these values and the value of I from the bandpass filter 22. Then, the optical path differences L and Lo can be obtained from the phase component of the second term, and the radius of curvature r can be obtained from the equation (1).

【0026】上記のヘテロダイン干渉方式は、Δνだけ
でビート信号を周波数シフトできるため、電気的な位相
検出が容易になり、2π/10,000程度の分解能を得られ
る。これは、上記の例では12/10,000mm=1.2 μm程度
の分解能となる。λo ,Δλを適当に設定することによ
って、μm以下のオーダも可能である。
In the above-mentioned heterodyne interference method, since the beat signal can be frequency-shifted only by Δν, electrical phase detection becomes easy and a resolution of about 2π / 10,000 can be obtained. This is a resolution of about 12 / 10,000 mm = 1.2 μm in the above example. By appropriately setting λ o and Δλ, the order of μm or less is possible.

【0027】[0027]

【発明の効果】以上説明したように、請求項1又は4の
発明によれば、被検球面を一度セッティングするだけ
で、その曲率半径を測定することができ、特に、量産時
などのように多数の被検体を測定する場合に効率的に測
定できる。また、請求項2,3,5,6の発明によれ
ば、上記の効果に加え、被検球面の曲率半径をμm以下
のオーダで高精度に測定することができる。
As described above, according to the invention of claim 1 or 4, the radius of curvature can be measured by setting the spherical surface to be inspected only once, especially in mass production. It can be efficiently measured when a large number of analytes are measured. According to the inventions of claims 2, 3, 5, and 6, in addition to the above effects, the radius of curvature of the spherical surface to be inspected can be measured with high accuracy on the order of μm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による曲率半径の測定装置の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of a curvature radius measuring apparatus according to the present invention.

【図2】本発明により曲率半径を算出する原理を示す図
である。
FIG. 2 is a diagram showing a principle of calculating a radius of curvature according to the present invention.

【図3】従来の曲率半径を測定する方法を説明する図で
ある。
FIG. 3 is a diagram illustrating a conventional method of measuring a radius of curvature.

【符号の説明】[Explanation of symbols]

1 光源 4 参照面 8 対物レンズ 9 被検球面 9a 校正球面 11 イメージセンサ 12 アパーチャ 13 受信手段 14 モジュレータ 15,18,19 発振器 16,17 変調素子 21 位相比較器 23 演算装置 1 Light Source 4 Reference Surface 8 Objective Lens 9 Test Spherical Surface 9a Calibration Spherical Surface 11 Image Sensor 12 Aperture 13 Receiving Means 14 Modulator 15, 18, 19 Oscillator 16, 17 Modulation Element 21 Phase Comparator 23 Arithmetic Device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源からの可干渉光を参照面と被検面と
に照射し、参照波と被検波とを重畳して干渉縞を形成す
る干渉光学系を用いた測定方法において、 参照面からの参照波と、既知の曲率半径(ro )を持つ
校正球面に、その曲率中心に集束するように可干渉光を
照射して反射された被検波とを重畳し、干渉縞を形成し
たときの光路差を基準光路差(Lo )として求め、 次に、未知の曲率半径(r)を有する被検球面に、その
曲率中心に集束するように可干渉光を照射して参照波と
被検波とを重畳し、干渉縞を形成したときの光路差
(L)を求め、 式 r=Lo −L+ro から被検球面の曲率半径(r)を求めることを特徴とす
る曲率半径の測定方法。
1. A measuring method using an interference optical system for irradiating a coherent light from a light source onto a reference surface and a surface to be inspected, and superimposing the reference wave and the wave to be inspected to form interference fringes, When the interference wave is formed by superimposing the reference wave from the target wave on the calibration sphere with a known radius of curvature (ro) and the test wave reflected by irradiating the coherent light so that it is focused on the center of curvature. Is obtained as a reference optical path difference (Lo), and then the coherent light is irradiated onto the spherical surface to be inspected having an unknown radius of curvature (r) so as to focus on the center of the curvature, and the reference wave and the wave to be inspected. A method for measuring a radius of curvature, which is characterized in that the optical path difference (L) when the interference fringes are formed is superposed by and, and the radius of curvature (r) of the spherical surface to be measured is obtained from the equation r = Lo-L + ro.
【請求項2】 基準波長(λo )を有する可干渉光に周
期的な波長変化(Δλ)を与え、 変調素子によって参照波と被検波との間に周波数差(Δ
ν)を与え、 両波を重畳してビート信号(I)を作り、 次式 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} r=Lo −L+ro ここに、 A:ビート信号の振幅 t:時間 から前記の光路差(Lo ,L)を求めることを特徴とす
る請求項1記載の曲率半径の測定方法。
2. A periodic wavelength change (Δλ) is given to coherent light having a reference wavelength (λ o), and a frequency difference (Δ) is generated between a reference wave and a test wave by a modulator.
ν) is given and the two waves are superimposed to form a beat signal (I), and the following equation I = A · cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} r = Lo −L + ro where A: beat signal The method for measuring a radius of curvature according to claim 1, wherein the optical path difference (Lo, L) is obtained from the amplitude t: time.
【請求項3】 干渉縞像を二光路に分岐させ、一方の干
渉縞像からアパーチャにより中央部のみ取り出して前記
ビート信号を受け、他方の干渉縞像はモニター用として
イメージセンサ上に結像させ、イメージセンサ上の干渉
縞の本数をできるだけ少なくなるように被検球面をセッ
トすることを特徴とする請求項2記載の曲率半径の測定
方法。
3. An interference fringe image is branched into two optical paths, only the central portion is taken out from one of the interference fringe images by an aperture to receive the beat signal, and the other interference fringe image is formed on an image sensor for monitoring. The radius of curvature measuring method according to claim 2, wherein the spherical surface to be inspected is set so that the number of interference fringes on the image sensor is reduced as much as possible.
【請求項4】 光源からの可干渉光を参照面と被検面と
に照射し、参照波と被検波とを重畳して干渉縞を形成す
る干渉光学系を用いた測定装置において、 基準位置決め用の既知の曲率半径(ro )を有する校正
球と、参照面と構成球面との基準光路差(Lo )および
参照面と被検球面との光路差(L)を測定する手段とを
有することを特徴とする曲率半径の測定装置。
4. A measuring device using an interference optical system in which coherent light from a light source is applied to a reference surface and a surface to be inspected and an interference fringe is formed by superimposing the reference wave and the wave to be inspected. A calibration sphere having a known radius of curvature (ro), and means for measuring the reference optical path difference (Lo) between the reference surface and the constituent spherical surface and the optical path difference (L) between the reference surface and the test spherical surface. A radius of curvature measuring device characterized by.
【請求項5】 前記光路差を測定する手段が、可干渉光
の波長を既知の基準値(λo )から既知の値(Δλ)だ
け周期的に変化できる光源と、参照波と被検波との間に
周波数差(Δν)を与える変調素子と、参照波と被検波
とが重畳されてできるビート信号(I)の受信手段と、
次式、 I=A・cos {2π(Δνt+2LΔλ/λo 2 +2L/λo )} r=Lo −L+ro ここに、 A:ビート信号の振幅 t:時間 から被検球面の曲率半径(r)を求める演算装置とから
なることを特徴とする請求項4記載の曲率半径の測定装
置。
5. A light source capable of periodically changing the wavelength of coherent light by a known value (Δλ) from a known reference value (λ o) to a reference wave and a test wave. A modulation element for providing a frequency difference (Δν) between them, and a receiving means for receiving a beat signal (I) formed by superimposing a reference wave and a test wave,
The following equation, I = A · cos {2π (Δνt + 2LΔλ / λo 2 + 2L / λo)} r = Lo −L + ro where A: Beat signal amplitude t: Calculation of the radius of curvature (r) of the spherical surface under test from time An apparatus for measuring a radius of curvature according to claim 4, wherein the apparatus comprises a device.
【請求項6】参照波と被検波との重畳された可干渉光を
二つに分割する光路分割素子と、分割された一方の結像
面に設けられた前記ビート信号の受信手段と、分割され
た他方の結像面に設けられたモニター用のイメージセン
サとを有することを特徴とする請求項5記載の曲率半径
の測定装置。
6. An optical path splitting element for splitting a coherent light beam in which a reference wave and a test wave are superimposed into two, a beat signal receiving means provided on one of the split image planes, and splitting. 6. The radius of curvature measuring device according to claim 5, further comprising an image sensor for monitoring provided on the other image forming surface.
JP20422091A 1991-08-14 1991-08-14 Method and device for measuring radius of curvature Withdrawn JPH0545140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20422091A JPH0545140A (en) 1991-08-14 1991-08-14 Method and device for measuring radius of curvature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20422091A JPH0545140A (en) 1991-08-14 1991-08-14 Method and device for measuring radius of curvature

Publications (1)

Publication Number Publication Date
JPH0545140A true JPH0545140A (en) 1993-02-23

Family

ID=16486830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20422091A Withdrawn JPH0545140A (en) 1991-08-14 1991-08-14 Method and device for measuring radius of curvature

Country Status (1)

Country Link
JP (1) JPH0545140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235317A (en) * 2000-02-22 2001-08-31 Fuji Photo Optical Co Ltd Apparatus for measuring radius of curvature of optical spherical surface
CN102168955A (en) * 2011-05-18 2011-08-31 中国科学院长春光学精密机械与物理研究所 Method for detecting curvature radius of optical spherical surface
JP2020517911A (en) * 2017-04-24 2020-06-18 アプレ インストゥルメンツ, インコーポレイテッドAPRE Instruments,Inc. Radius of curvature measurement by spectrum controlled interferometry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235317A (en) * 2000-02-22 2001-08-31 Fuji Photo Optical Co Ltd Apparatus for measuring radius of curvature of optical spherical surface
CN102168955A (en) * 2011-05-18 2011-08-31 中国科学院长春光学精密机械与物理研究所 Method for detecting curvature radius of optical spherical surface
JP2020517911A (en) * 2017-04-24 2020-06-18 アプレ インストゥルメンツ, インコーポレイテッドAPRE Instruments,Inc. Radius of curvature measurement by spectrum controlled interferometry

Similar Documents

Publication Publication Date Title
US4869593A (en) Interferometric surface profiler
EP3326152B1 (en) Laser multibeam differential interferometric sensor and methods for vibration imaging
US4480916A (en) Phase-modulated polarizing interferometer
JP2013092402A (en) Multi-wavelength interferometer, measurement apparatus, and measurement method
JPS61202128A (en) Semiconductor laser heterodyne interferometer
US4842408A (en) Phase shift measuring apparatus utilizing optical meterodyne techniques
US4848908A (en) Optical heterodyne roughness measurement system
EP3899420A1 (en) Full-field heterodyne interferometer for inspecting an optical surface
US7466426B2 (en) Phase shifting imaging module and method of imaging
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JPH0545140A (en) Method and device for measuring radius of curvature
US20230062525A1 (en) Heterodyne light source for use in metrology system
JP2997765B2 (en) High sensitivity space positioning method
JP3441292B2 (en) Phase object measuring device
JP4613310B2 (en) Surface shape measuring device
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
EP0467343A2 (en) Optical heterodyne interferometer
JP3496786B2 (en) Method and apparatus for measuring phase object
JPH10260020A (en) Aspherical shape measuring device and method
US20230069087A1 (en) Digital holography metrology system
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape
JP2517551B2 (en) Phase distribution measuring device
JPS62263428A (en) Apparatus for measuring phase change
JPH055610A (en) Measuring apparatus
JP2942002B2 (en) Surface shape measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112