JP3599921B2 - Method and apparatus for measuring refractive index distribution - Google Patents

Method and apparatus for measuring refractive index distribution Download PDF

Info

Publication number
JP3599921B2
JP3599921B2 JP28128196A JP28128196A JP3599921B2 JP 3599921 B2 JP3599921 B2 JP 3599921B2 JP 28128196 A JP28128196 A JP 28128196A JP 28128196 A JP28128196 A JP 28128196A JP 3599921 B2 JP3599921 B2 JP 3599921B2
Authority
JP
Japan
Prior art keywords
test object
refractive index
test
detector
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28128196A
Other languages
Japanese (ja)
Other versions
JPH10111244A (en
Inventor
浩之 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28128196A priority Critical patent/JP3599921B2/en
Publication of JPH10111244A publication Critical patent/JPH10111244A/en
Application granted granted Critical
Publication of JP3599921B2 publication Critical patent/JP3599921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子、液体、又は気体などの位相物体の測定方法及び装置に関するもので、特に、干渉縞の解析により位相物体における屈折率分布を測定できるものに関する。
【0002】
【従来の技術】
近年、レーザプリンタやカメラなどの光学機器に使用される光学レンズの材料としてプラスチックを用いることが多くなっている。プラスチック成形レンズはガラス研磨レンズに比較して、コスト低減や非球面レンズの製作性に優れ、安価であるというメリットがある。
【0003】
しかし、その反面、ガラスレンズに比べ製造上、屈折率分布が不安定でレンズの内部に不均一性を生じることがある。レンズ内部に不均一性があると、光学特性に大きな影響を及ぼし、画質の劣化やボケといった原因につながる。従って、レンズ内部の屈折率分布を3次元的に高精度に測定し、光学レンズの均質性を評価する必要がある。
【0004】
光学レンズの屈折率を測定する方法としては、精密示差屈折計などを使用してVブロック法等により屈折角を計測して屈折率を求める方法や、トワイマン・グリーン干渉計などの干渉計を使用して干渉縞より屈折率を測定する方法などがあり、また、光学的均質性の測定方法として、フィゾー干渉計、マハツェンダ干渉計などの干渉計を使用して干渉縞像の解析より透過波面を計測し、屈折率分布から光学的均質性を求める方法が知られている。なお、これらについては、光学第20巻第2号(1991年2月)の第63から68頁の「光学素材の屈折率及び光学的均質性の測定」に詳細が記載されている。
【0005】
しかしながら、上記のいずれの方法においても、被検物は、所定形状に加工する必要があり、測定対象の光学素子を破壊しなければならない。また、透過波面より求められる屈折率分布は、光路進行方向に積算された平均値となり、3次元空間的な屈折率分布を測定し、屈折率の不均一部分を3次元空間的に特定することができない。
【0006】
そこで、本発明の出願人は、先願の特願平6−203502号において、CT(コンピュータトモグラフィ)法を利用した屈折率分布の測定方法を提案した。これは、被検物を試液中に浸した状態で光軸と直交する軸を中心に回転させ、複数の回転位置で干渉縞の解析を行い、これらの干渉縞から透過波面量を算出し、これを1次フーリエ変換し、さらに、2次元逆フーリエ変換を行って3次元的な屈折率の分布を求めるものである。
【0007】
【発明が解決しようとする課題】
上記の出願による屈折率分布の測定方法及び装置によれば、被検物を破壊することなく、その3次元的な屈折率の分布を測定することができる。また、試液との屈折率差がわずかでも、高精度で計測が可能であるという利点を有している。しかしながら、その前提として、透過波面を検出する検出器上の被検物(干渉縞像)の大きさを正確に把握しておく必要がある。もし、この大きさの把握に誤差があると、屈折率の測定の根本部分に誤差を含むことになってしまうからである。
【0008】
従来の測定方法によれば、干渉縞を検出器上に結像させるための結像レンズ(ズームレンズ)の焦点距離と位置から結像倍率を算出し、これから検出器上の被検物の大きさを求めていた。しかし、結像レンズの加工上の誤差や、設置誤差が避けられず、3%程度あるいはそれ以上の誤差を生じていた。
【0009】
本発明は、このような事実から考えられたもので、干渉縞計測により被検物の屈折率分布を測定するに際し、結像倍率を正確に把握し、高精度に屈折率分布が測定できる測定方法、測定装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記の目的を達成するために本発明の測定方法は、同一光源からの可干渉光を基準となる参照波と被検物を透過する被検波とに分割し、参照波と被検波とを重畳して検出器上に干渉縞を形成し、該干渉縞を解析することにより被検物の屈折率分布を測定する方法において、上記干渉縞の解析に先だって、上記被検物の近傍に既知の径の開口、即ち、光通過部の大きさが既知の開口を挿入し、上記検出器上に生じる開口像により結像倍率を測定する。
即ち、開口は、被検物の干渉縞像を検出器上に結像させる結像光学系に関して検出器と共役な位置の近傍に挿入配置される。
【0011】
上記結像光学系による開口像は、参照波と被検波とが重畳した干渉縞像でも、被検波のみから結像された回折像でもよい。上記開口像の明部についての強度を複数個所で測定して平均強度を求め、該平均強度からスレッシュレベルを算出して開口像の周縁位置を決定する。この場合、上記平均強度を開口像の回折像から求め、該平均強度の1/4を上記スレッシュレベルとして開口像の周縁位置を求めることができる。
【0012】
また、上記のいずれかの方法により結像倍率を求める工程と、上記被検物を光軸と直交する軸を中心に回転し、被検物を透過した透過波面を回転角の異なる複数個所で測定し、CT法により再構成して被検物の屈折率分布を求めると、被検物の3次元的な屈折率分布を測定できる。
【0013】
本発明の装置は、同一光源からの可干渉光を参照波と被検波とに分割し、被検波が被検物を透過した後参照波と重量する干渉計と、被検物の干渉縞像を結像させる結像光学系と、この結像光学系による被検物の結像位置に設けられた検出器と、結像光学系に関して検出器と共役な位置の近傍に着脱自在に設けられ開口径が既知の開口と、上記検出器の出力を処理する演算装置を有し、該演算装置が、開口像の平均強度を演算し、該平均強度から開口像の大きさを算出して結像倍率を求める。
【0014】
また、上記干渉計が被検物を保持するセルを有し、該セルが上記被検波の入射側と出射側とにオプティカルフラットを有し、内部に被検物を保持して被検波の光軸と直交する軸回りに回転する回転台を備え、セル内部に屈折率が被検物の屈折率とほぼ同一の試液を充填されている構成としてもよい。
【0015】
【発明の実施の形態】
以下に本発明の実施例を図面によって詳細に説明する。
図1は、本発明の屈折率分布測定装置の一実施例を示す図である。同図に示す装置は、マハツェンダ型の干渉計を基本構成としており、可干渉光としてのレーザ光を射出する光源1と、ビームエキスパンダ3と、偏光ビームスプリッタからなる光分割器5と、参照波の光路内に置かれたミラーからなる反射装置7と、被検波を被検物Oに向けて反射させる反射装置9と、光重畳器11としてのビームスプリッタとを備えている。光重畳器11に入射した光は2方向に分割される。すなわち、一方は、偏光子17と、結像レンズ13とを介して検出器15に達し、他方は、これらと直角に配置された偏光子21と第2結像レンズ23とを経てモニター25に達する。検出器15には、CCDのリニアセンサ、あるいはアレイ状のセンサを使用する。モニター25には、CCDなどからなるエリアセンサが使用されている。被検物Oの近傍には、径Dが既知の開口27が着脱自在に設けられている。検出器15の出力は、コンピュータからなる演算装置16に入力される。演算装置16には入力装置、出力装置、CPU及び記憶手段などを有し、予め記憶手段としてのハードディスクなどにインストールされたコンピュータプログラムに沿って、透過波面の処理を行う。
【0016】
光源1より射出されたレーザ光は、ビームエキスパンダ3によって光束径を拡大され、光分割器5によって紙面に垂直な成分が直角に屈折して参照波となり、紙面と平行な成分が直進して被検物Oとしての位相物体を透過する被検波となる。
【0017】
反射装置7は、ピエゾ素子などによる電気−変位変換素子19により支持され、位相シフト法による干渉縞解析を行うために、参照波の光路長を波長のオーダで変更できるように配置されている。
【0018】
参照波は反射装置7で反射され、光重畳器11に達し、他方の被検波は、被検物Oを透過して光重畳器11に達して参照波と重なり合うが、電気−変位変換素子19により参照波と被検波との光路長には、nπ/2の位相の差ができるように調整される。
【0019】
参照波と被検波は重畳され、光重畳器11で2方向に分割されて、一方は、偏光子17に他方は偏光子21に向かう。
偏光子17を透過した光束は、結像レンズ13に入射し、検出器15の撮像面に干渉縞を結像する。検出器15のリニアセンサは、紙面に平行な方向に配置されている。そして、演算装置16がこの検出器15から干渉縞像のデータを取ることによって、被検物Oを透過した透過波面の測定ができ、被検物の1断面についての屈折率分布を測定することができる。
【0020】
一方、光重畳器11から偏光子21に射出された光束も、第2結像レンズ23を経てモニター25に干渉縞の像を結像する。モニター25と検出器15とは、光重畳器11からの距離が等しく、結像レンズ13及び第2結像レンズ23の焦点距離も等しく、検出器15とモニター25に結像される干渉縞像は等しくなるようにしている。さらに、検出器15とモニター25とは、光軸上を同時に同じ距離だけ移動できるように図示しない機構により結合されている。
【0021】
以上のように図1の装置によれば、干渉縞像をモニター25で観測しながら測定できる。しかし、一度の測定で得られる結果は、被検物Oの厚み方向(x方向)に積算された透過波面である。すなわち、図2に示すように、一度の測定では、被検物Oに対してφの角度から被検波を透過させ、P(y,φ)の曲線を得たに過ぎず、被検物Oの屈折率分布はφの方向に積算されたものしか求められない。したがって、不均一部分の空間的な位置を決定するためには被検物を回転させ、同様の縞解析を複数回行う必要がある。すなわち、被検物Oを干渉計の光軸に対して直交する軸のまわりに回転し、入射方向180度(あるいは360度)にわたる範囲で測定し、演算装置16(コンピュータ)上で再合成することにより被検物の3次元屈折率分布を測定することができる。コンピュータ上の処理方法としてはX線CT(Computed Tomography)解析の手法を用いる。
【0022】
図3にその演算の手順を示す。まず、角度φの方向から入射した透過波面データP(y,φ)を算出し(ステップ101)、1次元フーリエ変換する(ステップ103)。フーリエ変換された各断面の極座標のデータを直交座標に変換(ステップ105)した後、2次元逆フーリエ変換を施す(ステップ107)。これを屈折率に変換し(ステップ109)、角度0≦φ≦180゜又は0≦φ≦360゜に渡って複数回行い、それぞれを結合する事により、被検物の2次元屈折率分布を再構成する事が可能である。この再構成された2次元屈折率分布をディスプレイなどの出力させて表示し、あるいは適宜の出力手段を用いて出力させて被検物Oの屈折率分布を目視できるようにすることができる(ステップ111)。
【0023】
以上のCT解析においては、検出器15上に結像される被検物Oの大きさ、つまり干渉縞の大きさを正確に識別する必要がある。仮に、検出器15上の被検物の大きさが10mmであるにかかわらず11mmであるとして上記のCT法を実行してしまうと、屈折率分布の測定に大きな誤差が含まれることになるからである。
【0024】
そこで、本発明では、被検物Oの近傍(結像レンズ13に関して被検物と共役な位置の近傍)に、径Dが既知の開口27を着脱自在に設けている。そして、上記の測定に先だって、以下のようにして結像倍率を予め求めておく。
【0025】
開口27を取り付けた状態で、上記の測定と同様に光源1から可干渉光を照射する。可干渉光は光分割器5で参照波と被検波とに分割され、被検波は反射装置9により反射され、被検物O及び開口27を透過して光重畳器11に達する。参照波は反射装置7を経て光重畳器11に達し、ここで被検波と重なって偏光子17から結像レンズ13を経て検出器15上に干渉縞像を結像する。演算装置16が検出器15の出力から干渉縞像のデータをとる。このときの干渉縞像の大きさは、当然に開口27の径Dに対応した大きさとなっている。そこで、検出器15で検知した干渉縞像の大きさを演算装置16で測定し、演算装置16が次式
結像倍率=干渉縞像の大きさ/開口径の大きさ(D) (1)
から結像倍率を求める。
【0026】
この後、開口27を取り外して被検物Oの干渉縞像を結像して図2に示すCT解析を行うが、被検物Oの大きさは既知であり、結像倍率も求められているので、検出器15上での被検物の大きさは正確に把握できることになる。
以上の結像倍率の求め方は、開口像として干渉縞像を結像させることで説明したが、図4に示すように参照波の光路に反射鏡8を設け、参照波を遮って被検波のみで開口27の回折像を検出器に結像させ、回折像の大きさを検出器で検出して結像倍率を求めることもできる。
【0027】
ところで、上記の結像倍率を求める方法は、開口27と検出器15とが完全共役関係にある場合に有効である。しかし、実際には、開口27と検出器15との位置関係が共役関係からわずかにずれている場合もあり、その場合には、開口像(干渉像であるか回折像であるかを問わず)の周辺がぼやけ、開口像の大きさを正確に把握することができない。
【0028】
このように像の周辺が若干ぼやけた場合を、回折像を例として、図5に示す。検出器15としてのCCDリニアセンサの各素子からは、回折像の直径に沿って出力が図5に示すような強度信号が検出される。すなわち、回折像の外側のA点から検出器(CCD)の出力はすこしづつ上がりだし、回折像の内側B点で開口の本来の明るさ(平均の明るさ)に達する。B点からB´点までの間はいわゆる回折像の明部で、多少の凹凸はあるが、高原状態が続く。そして回折像の内側のB´点から低下し始めて像の外側のA´点で0に戻る。A点からB点またはA´点からB´点の間のどこに回折像の境界を定めるかが重要である。
【0029】
本発明では、フレネル回折の公式を利用して演算装置16が、図6に示すフローチャートから次のようにして境界を定めている。まず、回折像の明部(BからB´間)における平均強度を算出する(ステップ201)。そして、求めた平均値の1/4(0.25)をスレッシュレベルとする(ステップ203)。そして、2値化処理をして(ステップ205)図5のC,C´点を求めこれらの間の距離を算出して開口の検出器上の大きさとする(ステップ207)。この値から上記式(1)により結像倍率を求める(ステップ209)。
【0030】
開口像として干渉縞像を形成した場合には、たとえば、干渉縞の明部の平均強度と縞間隔とを求め、適当なスレッシュレベルを決めることによって、回折像の場合と同様に求めることが可能となる。
【0031】
図7は本発明のまた別の実施例を示す図である。基本的には、図1の実施例と同じであるが、この装置では、被検物Oの屈折率を絶対値で測定できるものである。被検物0は屈折率が被検物とほぼ一致した試液Sの中に浸されたセル31中にあり、光束の入射窓33及び出射窓35には面精度の良いオプティカルフラット37,39を用いている。被検物Oは光軸に対して直交する回転軸Rを持つ回転台41上に設置されておりセル31は固定された状態で被検物Oが回転軸Rを中心として回転可能な構造になっている。
【0032】
あらかじめ被検物Oをセットしない状態で透過波面を測定し装置自身の定常的な誤差成分を排除する。次に被検物Oを回転台41にセットし透過波面を測定する。このとき被検物Oの屈折率が完全に均一で試液Sの屈折率と等しい場合、縞解析結果は0となる。しかし、被検物Oが試液Sの屈折率よりわずかにずれている場合、以下の関係式が成り立つ。
【0033】

Figure 0003599921
【0034】
屈折率分布が一様でない被検物Oに光源1のレーザ光を透過し、検出器15上に生じた干渉縞を演算装置16で取り込み縞解析を行うことで、得られた透過波面から屈折率分布を求めることができる。この方法であれば、試液Sの屈折率が既知であるから、被検物の屈折率を絶対値で求めることが可能となる。この実施例においても、上記の測定に先だって開口27を配置し、結像倍率を測定し、正確な屈折率を測定できる。図8は、参照波を反射装置8で遮断し、検出器15上に回折像を結像させる場合の図である。
【0035】
【発明の効果】
以上に説明したように本発明によれば、同一光源からの可干渉光を基準となる参照波と被検物を透過する被検波とに分割し、参照波と被検波とを重畳して検出器上に干渉縞を形成し、該干渉縞を解析することにより被検物の屈折率分布を測定する方法において、上記干渉縞の解析に先だって、既知の径の開口を用いて検出器上に生じる開口像により結像倍率を測定するようにしたので、被検物の3次元的な屈折率を分布するに際し、被検物の検出器上の大きさを正確に求めることができ、正確な屈折率分布を測定することができる。
【0036】
開口像の明部についての強度を複数個所で測定して平均強度を求め、該平均強度からスレッシュレベルを決めて開口像の周縁位置を決定するので、開口と開口像とが共役関係から若干ずれている場合でも、結像倍率を正確に求めることができる。開口像を回折像とした場合、回折像の明部の平均強度の1/4の値をスレッシュレベルとすればよい。
【0037】
上記の方法により結像倍率を求めてから、上記被検物を光軸と直交する軸を中心に回転し、被検物を透過した透過波面を回転角の異なる複数個所で測定し、CT法により再構成して被検物の屈折率分布を求めると、被検物の3次元的な屈折率の分布を正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の屈折率分布を測定する装置の第1実施例の構成を示す図である。
【図2】CT解析の原理を説明する図である。
【図3】CT解析の方法を示すフローチャートである。
【図4】本発明の屈折率分布を測定する装置で開口の回折像を形成する実施例の構成を示す図である。
【図5】開口と検出器とが完全共役位置にない場合の結像倍率を求める方法を説明する図である。
【図6】図5の方法により結像倍率を求めるフローチャートである。
【図7】本発明の屈折率分布を測定する装置の他の実施例の構成を示す図である。
【図8】図7の装置で開口の回折像を形成する実施例の構成を示す図である。
【符号の説明】
1 光源
5 光分割器
11 光重畳器
15 検出器
16 演算装置
27 開口
37,39 オプティカルフラット
41 回転台
O 被検物
S 試液
R 光軸と直交する軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a phase object such as an optical element, a liquid, or a gas, and more particularly to a method capable of measuring a refractive index distribution in a phase object by analyzing interference fringes.
[0002]
[Prior art]
In recent years, plastics have been increasingly used as materials for optical lenses used in optical devices such as laser printers and cameras. Compared to a glass polished lens, a plastic molded lens has advantages in that cost is reduced, aspherical lens is more easily manufactured, and it is inexpensive.
[0003]
However, on the other hand, the refractive index distribution is unstable in production as compared with the glass lens, and nonuniformity may occur inside the lens. Non-uniformity inside the lens has a great effect on optical characteristics, leading to deterioration of image quality and blurring. Therefore, it is necessary to measure the refractive index distribution inside the lens three-dimensionally with high accuracy and evaluate the homogeneity of the optical lens.
[0004]
As a method of measuring the refractive index of an optical lens, a method of measuring a refractive angle by a V-block method using a precision differential refractometer or the like to obtain a refractive index, or an interferometer such as a Twyman-Green interferometer is used. There is a method of measuring the refractive index from the interference fringes, and as a method of measuring the optical homogeneity, using a Fizeau interferometer, a Mach-Zehnder interferometer, or other interferometer to analyze the transmitted wavefront from the interference fringe image analysis. There is known a method of measuring and measuring optical homogeneity from a refractive index distribution. These are described in detail in “Measurement of Refractive Index and Optical Homogeneity of Optical Materials” on pp. 63-68 of Optics, Vol. 20, No. 2, February, 1991.
[0005]
However, in any of the above methods, the test object needs to be processed into a predetermined shape, and the optical element to be measured must be destroyed. In addition, the refractive index distribution obtained from the transmitted wavefront becomes an average value integrated in the optical path traveling direction. The three-dimensional spatial refractive index distribution is measured, and the non-uniformity of the refractive index is specified three-dimensionally. Can not.
[0006]
Therefore, the applicant of the present invention has proposed a method of measuring a refractive index distribution using a CT (computer tomography) method in Japanese Patent Application No. 6-203502. This means that the specimen is immersed in the test solution and rotated about an axis perpendicular to the optical axis, analysis of interference fringes is performed at a plurality of rotation positions, and the amount of transmitted wavefront is calculated from these interference fringes. This is subjected to a first-order Fourier transform and further to a two-dimensional inverse Fourier transform to obtain a three-dimensional refractive index distribution.
[0007]
[Problems to be solved by the invention]
According to the method and apparatus for measuring the refractive index distribution according to the above-mentioned application, the three-dimensional refractive index distribution can be measured without destroying the test object. In addition, there is an advantage that measurement can be performed with high accuracy even if the difference in refractive index from the sample solution is slight. However, as a premise, it is necessary to accurately grasp the size of the test object (interference fringe image) on the detector that detects the transmitted wavefront. If there is an error in grasping the size, an error will be included in the fundamental part of the measurement of the refractive index.
[0008]
According to the conventional measurement method, an imaging magnification is calculated from a focal length and a position of an imaging lens (zoom lens) for imaging an interference fringe on a detector, and the size of an object on the detector is calculated based on the magnification. I was looking for that. However, errors in processing and installation errors of the imaging lens are inevitable, and errors of about 3% or more have occurred.
[0009]
The present invention has been conceived based on such a fact. In measuring the refractive index distribution of a test object by interference fringe measurement, the imaging magnification is accurately grasped, and the refractive index distribution can be measured with high accuracy. It is intended to provide a method and a measuring device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the measurement method of the present invention divides coherent light from the same light source into a reference wave serving as a reference and a test wave transmitted through a test object, and superimposes the reference wave and the test wave. In the method of measuring the refractive index distribution of the test object by forming an interference fringe on the detector and analyzing the interference fringe, prior to the analysis of the interference fringe, a known method is used in the vicinity of the test object. An opening having a diameter, that is, an opening with a known size of the light passage portion is inserted, and the imaging magnification is measured based on an opening image formed on the detector .
That is, the aperture is inserted and arranged near a position conjugate with the detector with respect to the imaging optical system that forms the interference fringe image of the test object on the detector.
[0011]
The aperture image formed by the imaging optical system may be an interference fringe image in which the reference wave and the test wave are superimposed, or a diffraction image formed only from the test wave. The intensity of the bright portion of the aperture image is measured at a plurality of locations to determine an average intensity, and a threshold level is calculated from the average intensity to determine a peripheral position of the aperture image . In this case, the average intensity can be obtained from the diffraction image of the aperture image, and a peripheral position of the aperture image can be obtained using 1 / of the average intensity as the threshold level.
[0012]
Further, the step of obtaining the imaging magnification by any of the above methods, and rotating the test object around an axis orthogonal to the optical axis, the transmitted wavefront transmitted through the test object at a plurality of locations having different rotation angles. By measuring and reconstructing the refractive index distribution of the test object by the CT method, the three-dimensional refractive index distribution of the test object can be measured.
[0013]
The apparatus of the present invention divides coherent light from the same light source into a reference wave and a test wave, and interferometers that weigh the reference wave after the test wave passes through the test object, and an interference fringe image of the test object. An imaging optical system that forms an image, a detector provided at the imaging position of the test object by the imaging optical system, and a detachably provided near a position conjugate to the detector with respect to the imaging optical system. An arithmetic unit that processes the output of the detector with the aperture having a known aperture diameter, the arithmetic unit calculates the average intensity of the aperture image, calculates the size of the aperture image from the average intensity, and forms the result. Obtain the image magnification .
[0014]
Further, the interferometer has a cell for holding the test object, the cell has an optical flat on the incident side and the output side of the test wave, and holds the test object inside to emit light of the test wave. It is also possible to provide a rotating table that rotates around an axis perpendicular to the axis, and fill the inside of the cell with a test solution whose refractive index is almost the same as the refractive index of the test object.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing one embodiment of the refractive index distribution measuring device of the present invention. The apparatus shown in FIG. 1 has a basic configuration of a Mach-Zehnder interferometer, and includes a light source 1 that emits laser light as coherent light, a beam expander 3, and a light splitter 5 including a polarization beam splitter. The apparatus includes a reflecting device 7 composed of a mirror placed in the optical path of the wave, a reflecting device 9 for reflecting the test wave toward the test object O, and a beam splitter as the optical superimposing device 11. Light incident on the optical superimposer 11 is split in two directions. That is, one reaches the detector 15 via the polarizer 17 and the imaging lens 13, and the other reaches the monitor 25 via the polarizer 21 and the second imaging lens 23 arranged at right angles thereto. Reach. As the detector 15, a CCD linear sensor or an array sensor is used. The monitor 25 uses an area sensor composed of a CCD or the like. An opening 27 having a known diameter D is provided detachably in the vicinity of the test object O. The output of the detector 15 is input to an arithmetic unit 16 composed of a computer. The arithmetic unit 16 has an input device, an output device, a CPU, a storage unit, and the like, and performs processing of a transmitted wavefront in accordance with a computer program previously installed on a hard disk or the like as a storage unit.
[0016]
The laser beam emitted from the light source 1 is expanded in beam diameter by the beam expander 3, and the component perpendicular to the paper is refracted at a right angle by the beam splitter 5 to become a reference wave, and the component parallel to the paper travels straight. A test wave transmitted through a phase object as the test object O is obtained.
[0017]
The reflection device 7 is supported by an electric-displacement conversion element 19 such as a piezo element, and is arranged so that the optical path length of the reference wave can be changed in the order of wavelength in order to perform interference fringe analysis by the phase shift method.
[0018]
The reference wave is reflected by the reflection device 7 and reaches the optical superimposer 11, and the other test wave passes through the test object O and reaches the optical superimposer 11 and overlaps with the reference wave. Accordingly, the optical path length between the reference wave and the test wave is adjusted so as to have a phase difference of nπ / 2.
[0019]
The reference wave and the test wave are superimposed and split in two directions by the optical superimposer 11, one toward the polarizer 17 and the other toward the polarizer 21.
The light beam transmitted through the polarizer 17 is incident on the imaging lens 13 and forms an interference fringe on the imaging surface of the detector 15. The linear sensor of the detector 15 is arranged in a direction parallel to the paper surface. Then, the arithmetic unit 16 obtains the data of the interference fringe image from the detector 15 so that the transmitted wavefront transmitted through the test object O can be measured, and the refractive index distribution for one section of the test object can be measured. Can be.
[0020]
On the other hand, the light flux emitted from the optical superposition device 11 to the polarizer 21 also forms an image of interference fringes on the monitor 25 via the second imaging lens 23. The monitor 25 and the detector 15 have the same distance from the optical superimposer 11, the focal lengths of the imaging lens 13 and the second imaging lens 23 are equal, and an interference fringe image formed on the detector 15 and the monitor 25. Are made equal. Further, the detector 15 and the monitor 25 are coupled by a mechanism (not shown) so that the detector 15 and the monitor 25 can be simultaneously moved on the optical axis by the same distance.
[0021]
As described above, according to the apparatus shown in FIG. 1, it is possible to measure the interference fringe image while observing the image on the monitor 25. However, the result obtained by one measurement is the transmitted wavefront integrated in the thickness direction (x direction) of the test object O. That is, as shown in FIG. 2, in a single measurement, the test wave is transmitted from the test object O at an angle of φ, and only a curve of P (y, φ) is obtained. The refractive index distribution can only be obtained by integrating in the direction of φ. Therefore, in order to determine the spatial position of the non-uniform portion, it is necessary to rotate the test object and perform the same fringe analysis a plurality of times. That is, the test object O is rotated around an axis orthogonal to the optical axis of the interferometer, measured in a range over the incident direction of 180 degrees (or 360 degrees), and recombined on the arithmetic unit 16 (computer). This makes it possible to measure the three-dimensional refractive index distribution of the test object. As a processing method on a computer, an X-ray CT (Computed Tomography) analysis technique is used.
[0022]
FIG. 3 shows the procedure of the calculation. First, the transmitted wavefront data P (y, φ) incident from the direction of the angle φ is calculated (step 101), and one-dimensional Fourier transform is performed (step 103). After the Fourier-transformed polar coordinate data of each section is converted into rectangular coordinates (step 105), a two-dimensional inverse Fourier transform is performed (step 107). This is converted into a refractive index (step 109), and is performed a plurality of times over an angle 0 ≦ φ ≦ 180 ° or 0 ≦ φ ≦ 360 °, and the two are combined to obtain a two-dimensional refractive index distribution of the test object. It is possible to reconfigure. The reconstructed two-dimensional refractive index distribution can be output and displayed on a display or the like, or can be output using an appropriate output means so that the refractive index distribution of the test object O can be visually checked (step). 111).
[0023]
In the above-described CT analysis, it is necessary to accurately identify the size of the test object O imaged on the detector 15, that is, the size of the interference fringes. If the CT method is performed assuming that the size of the test object on the detector 15 is 11 mm regardless of the size of the test object, a large error is included in the measurement of the refractive index distribution. It is.
[0024]
Therefore, in the present invention, an opening 27 having a known diameter D is detachably provided near the test object O ( near a position conjugate with the test object with respect to the imaging lens 13) . Then, prior to the above measurement, the imaging magnification is obtained in advance as follows.
[0025]
With the opening 27 attached, coherent light is emitted from the light source 1 in the same manner as in the above measurement. The coherent light is split into a reference wave and a test wave by the light splitter 5, and the test wave is reflected by the reflection device 9, passes through the test object O and the opening 27, and reaches the optical superimposer 11. The reference wave reaches the optical superimposing device 11 via the reflection device 7, where it overlaps with the test wave and forms an interference fringe image from the polarizer 17 via the imaging lens 13 onto the detector 15. The arithmetic unit 16 obtains the data of the interference fringe image from the output of the detector 15. At this time, the size of the interference fringe image naturally corresponds to the diameter D of the opening 27. Therefore, the size of the interference fringe image detected by the detector 15 is measured by the arithmetic unit 16, and the arithmetic unit 16 calculates the following equation: imaging magnification = size of interference fringe image / size of aperture diameter (D) (1)
To determine the imaging magnification.
[0026]
Thereafter, the aperture 27 is removed, an interference fringe image of the test object O is formed, and the CT analysis shown in FIG. 2 is performed. The size of the test object O is known, and the imaging magnification is also obtained. Therefore, the size of the test object on the detector 15 can be accurately grasped.
The above-described method of obtaining the imaging magnification has been described by forming an interference fringe image as an aperture image. However, as shown in FIG. 4, a reflecting mirror 8 is provided in the optical path of the reference wave, and It is also possible to form a diffraction image of the aperture 27 on the detector only by using the detector and detect the size of the diffraction image with the detector to obtain the imaging magnification.
[0027]
Incidentally, the above-described method of obtaining the imaging magnification is effective when the aperture 27 and the detector 15 have a perfect conjugate relationship. However, in practice, the positional relationship between the aperture 27 and the detector 15 may slightly deviate from the conjugate relationship. In such a case, the aperture image (regardless of whether it is an interference image or a diffraction image) ) Is blurred, and the size of the aperture image cannot be accurately grasped.
[0028]
FIG. 5 shows a case where the periphery of the image is slightly blurred as an example of a diffraction image. From each element of the CCD linear sensor as the detector 15, an intensity signal whose output is shown in FIG. 5 is detected along the diameter of the diffraction image. That is, the output of the detector (CCD) gradually rises from point A outside the diffraction image, and reaches the original brightness (average brightness) of the aperture at point B inside the diffraction image. From point B to point B 'is a so-called bright part of the diffraction image, which has some irregularities, but the plateau state continues. Then, it starts decreasing from the point B 'inside the diffraction image and returns to 0 at the point A' outside the image. It is important where to define the boundary of the diffraction image between point A and point B or between point A 'and point B'.
[0029]
In the present invention, using the formula of Fresnel diffraction, the arithmetic unit 16 determines the boundary from the flowchart shown in FIG. 6 as follows. First, the average intensity in the bright portion (between B and B ') of the diffraction image is calculated (step 201). Then, 1/4 (0.25) of the obtained average value is set as the threshold level (step 203). Then, a binarization process is performed (step 205), points C and C 'in FIG. 5 are obtained, and a distance between them is calculated to be the size of the aperture on the detector (step 207). From this value, the imaging magnification is obtained by the above equation (1) (step 209).
[0030]
When an interference fringe image is formed as an aperture image, for example, it is possible to obtain the average intensity and the fringe interval of the bright portion of the interference fringe and determine an appropriate threshold level in the same manner as in the case of a diffraction image. It becomes.
[0031]
FIG. 7 is a view showing another embodiment of the present invention. Basically, it is the same as the embodiment of FIG. 1, but this apparatus can measure the refractive index of the test object O by an absolute value. The test object 0 is in a cell 31 immersed in a test solution S having a refractive index substantially equal to that of the test object, and optical flats 37 and 39 having good surface precision are provided in an entrance window 33 and an exit window 35 of a light beam. Used. The test object O is installed on a turntable 41 having a rotation axis R orthogonal to the optical axis, and the cell 31 has a fixed structure in which the test object O can rotate about the rotation axis R. Has become.
[0032]
The transmitted wavefront is measured without setting the test object O in advance, and a steady error component of the apparatus itself is eliminated. Next, the test object O is set on the turntable 41 and the transmitted wavefront is measured. At this time, if the refractive index of the test object O is completely uniform and equal to the refractive index of the test solution S, the fringe analysis result becomes zero. However, when the test object O is slightly deviated from the refractive index of the test solution S, the following relational expression holds.
[0033]
Figure 0003599921
[0034]
The laser light of the light source 1 is transmitted through the test object O having a non-uniform refractive index distribution, and the interference fringes generated on the detector 15 are taken in by the arithmetic unit 16 and fringe analysis is performed. The rate distribution can be determined. According to this method, since the refractive index of the test solution S is known, the refractive index of the test object can be obtained as an absolute value. Also in this embodiment, the aperture 27 is arranged prior to the above measurement, the imaging magnification is measured, and an accurate refractive index can be measured. FIG. 8 is a diagram illustrating a case where the reference wave is blocked by the reflection device 8 and a diffraction image is formed on the detector 15.
[0035]
【The invention's effect】
As described above, according to the present invention, coherent light from the same light source is divided into a reference wave serving as a reference and a test wave transmitted through a test object, and the reference wave and the test wave are detected by being superimposed. Forming interference fringes on a device, and measuring the refractive index distribution of the test object by analyzing the interference fringes, prior to the analysis of the interference fringes , on the detector using an aperture of a known diameter Since the imaging magnification is measured based on the generated aperture image , the distribution of the three-dimensional refractive index of the test object can accurately determine the size of the test object on the detector. The refractive index distribution can be measured.
[0036]
The intensity of the bright part of the aperture image is measured at a plurality of locations to determine the average intensity, and the threshold level is determined from the average intensity to determine the peripheral position of the aperture image. In this case, the imaging magnification can be accurately obtained. In the case where the aperture image is a diffraction image, a value of 1 / of the average intensity of the bright portion of the diffraction image may be set as the threshold level.
[0037]
After obtaining the imaging magnification by the above method, the test object is rotated around an axis orthogonal to the optical axis, and the transmitted wavefront transmitted through the test object is measured at a plurality of positions having different rotation angles, and the CT method is used. When the refractive index distribution of the test object is obtained by reconstructing the above, the three-dimensional distribution of the refractive index of the test object can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first embodiment of an apparatus for measuring a refractive index distribution according to the present invention.
FIG. 2 is a diagram illustrating the principle of CT analysis.
FIG. 3 is a flowchart showing a method of CT analysis.
FIG. 4 is a diagram showing a configuration of an embodiment in which a diffraction image of an aperture is formed by the apparatus for measuring a refractive index distribution according to the present invention.
FIG. 5 is a diagram illustrating a method of obtaining an imaging magnification when an aperture and a detector are not at a complete conjugate position.
FIG. 6 is a flowchart for obtaining an imaging magnification by the method of FIG. 5;
FIG. 7 is a diagram showing the configuration of another embodiment of the apparatus for measuring the refractive index distribution of the present invention.
8 is a diagram showing a configuration of an embodiment in which a diffraction image of an aperture is formed by the apparatus shown in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source 5 Light splitter 11 Optical superposition device 15 Detector 16 Arithmetic unit 27 Apertures 37 and 39 Optical flat 41 Turntable O Test object S Test solution R Axis orthogonal to optical axis

Claims (7)

同一光源からの可干渉光を基準となる参照波と被検物を透過する被検波とに分割し、参照波と被検波とを重畳して検出器上に干渉縞を形成し、該干渉縞を解析することにより被検物の屈折率分布を測定する方法において、
上記干渉縞の解析に先だって、上記被検物の干渉縞像を上記検出器上に結像させる結像光学系に関して上記検出器と共役な位置の近傍に、光通過部の大きさが既知の開口を挿入し、上記検出器上に生じる開口像についての強度を複数個所で測定して平均強度を求め、該平均強度からスレッシュレベルを算出して開口像の周縁位置を決定し、
このように周辺位置を決定された開口像により結像倍率を測定することを特徴とする屈折率分布の測定方法。
The coherent light from the same light source is divided into a reference wave serving as a reference and a test wave passing through the test object, and the reference wave and the test wave are superimposed to form an interference fringe on the detector, and the interference fringe is formed. In the method of measuring the refractive index distribution of the test object by analyzing
Prior to the analysis of the interference fringes, the size of the light passing portion is known in the vicinity of a position conjugate with the detector with respect to the imaging optical system that forms the interference fringe image of the test object on the detector. Insert the aperture , determine the average intensity by measuring the intensity of the aperture image generated on the detector at multiple locations, determine the threshold level from the average intensity to determine the peripheral position of the aperture image,
A method for measuring a refractive index distribution, comprising measuring an imaging magnification using an aperture image whose peripheral position has been determined in this way.
上記開口像が参照波と被検波とが重畳した干渉縞像であることを特徴とする請求項1記載の屈折率分布の測定方法。2. The method according to claim 1, wherein the aperture image is an interference fringe image in which a reference wave and a test wave are superimposed. 上記開口像が、被検波のみから結像された回折像であることを特徴とする請求項1記載の屈折率分布の測定方法。2. The method according to claim 1, wherein the aperture image is a diffraction image formed only from the test wave. 上記平均強度を開口像の回折像から求め、該平均強度の1/4を上記スレッシュレベルとして開口像の周縁位置を求めることを特徴とする請求項1〜3の任意の1に記載の屈折率分布の測定方法。The refractive index according to any one of claims 1 to 3, wherein the average intensity is determined from a diffraction image of the aperture image, and a peripheral position of the aperture image is determined using 1/4 of the average intensity as the threshold level. How to measure the distribution. 請求項1から4のいずれかの方法により結像倍率を求める工程と、上記被検物を光軸と直交する軸を中心に回転し、被検物を透過した透過波面を回転角の異なる複数個所で測定し、CT法により再構成して被検物の屈折率分布を求める工程とを有することを特徴とする屈折率分布の測定方法。5. A step of obtaining an imaging magnification by the method according to any one of claims 1 to 4, wherein the test object is rotated around an axis orthogonal to an optical axis, and a plurality of transmitted wavefronts having different rotation angles are transmitted through the test object. Measuring at each location and reconstructing by means of a CT method to obtain a refractive index distribution of the test object. 同一光源からの可干渉光を参照波と被検波とに分割し、被検波が被検物を透過した後参照波と重量する干渉計と、Interferometer that divides coherent light from the same light source into a reference wave and a test wave, and weighs the reference wave after the test wave passes through the test object,
上記被検物の干渉縞像を上記検出器上に結像させる結像光学系と、An imaging optical system for imaging the interference fringe image of the test object on the detector,
該結像光学系による被検物の干渉縞像の結像位置に設けられた検出器と、A detector provided at an imaging position of an interference fringe image of the test object by the imaging optical system;
上記結像光学系に関して上記検出器と共役な位置の近傍に着脱自在に設けられる、光通過部の大きさが既知の開口と、An opening having a known size of the light passing portion, which is detachably provided in the vicinity of a position conjugate with the detector with respect to the imaging optical system,
上記検出器の出力を処理する演算装置とを有し、An arithmetic unit for processing the output of the detector,
該演算装置が、上記結像光学系による開口像の平均強度を演算し、該平均強度から開口像の大きさを算出して結像倍率を求めることを特徴とする屈折率分布の測定装置。An apparatus for measuring a refractive index distribution, wherein the arithmetic unit calculates an average intensity of an aperture image by the imaging optical system, and calculates a size of the aperture image from the average intensity to determine an imaging magnification.
上記干渉計が被検物を保持するセルを有し、該セルが上記被検波の入射側と出射側とにオプティカルフラットを有し、内部に被検物を保持して被検波の光軸と直交する軸回りに回転する回転台を備え、セル内部に屈折率が被検物の屈折率とほぼ同一の試液を充填されていることを特徴とする請求項6記載の屈折率分布の測定装置。The interferometer has a cell for holding the test object, the cell has an optical flat on the incident side and the output side of the test wave, the optical axis of the test wave holding the test object inside and 7. The apparatus for measuring a refractive index distribution according to claim 6, further comprising a rotating table that rotates about an orthogonal axis, wherein the inside of the cell is filled with a test solution having a refractive index substantially the same as the refractive index of the test object. .
JP28128196A 1996-10-03 1996-10-03 Method and apparatus for measuring refractive index distribution Expired - Lifetime JP3599921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28128196A JP3599921B2 (en) 1996-10-03 1996-10-03 Method and apparatus for measuring refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28128196A JP3599921B2 (en) 1996-10-03 1996-10-03 Method and apparatus for measuring refractive index distribution

Publications (2)

Publication Number Publication Date
JPH10111244A JPH10111244A (en) 1998-04-28
JP3599921B2 true JP3599921B2 (en) 2004-12-08

Family

ID=17636893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28128196A Expired - Lifetime JP3599921B2 (en) 1996-10-03 1996-10-03 Method and apparatus for measuring refractive index distribution

Country Status (1)

Country Link
JP (1) JP3599921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618369B2 (en) 2008-08-26 2017-04-11 The University Court Of The University Of Glasgow Uses of electromagnetic interference patterns
JP5751886B2 (en) * 2011-03-30 2015-07-22 キヤノン株式会社 Surface shape measuring device and surface shape measuring method
CN102749303B (en) * 2012-07-14 2016-06-29 浙江师范大学 A kind of apparatus and method measuring refractive index of flat-plate type transparent medium

Also Published As

Publication number Publication date
JPH10111244A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
KR101404427B1 (en) Cuvette for Ophthalmic Lens
JP3913407B2 (en) Refractive index distribution measuring apparatus and method
JP5627610B2 (en) Method and apparatus for measuring substrate shape or thickness information
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
US20140009765A1 (en) Method of measuring refractive index distribution, method of manufacturing optical element, and measurement apparatus of refractive index distribution
JP5173106B2 (en) Method and apparatus for measuring the transmission of the geometric structure of an optical element
JP3699810B2 (en) Method and apparatus for measuring refractive index distribution
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
JP4183220B2 (en) Optical spherical curvature radius measuring device
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
TWI570397B (en) Optical evaluation of lenses and lens molds
JP2000065684A (en) Method and apparatus for measurement of distribution of refractive index
US20160003614A1 (en) Method and apparatus for quantitative measurement of surface accuracy of an area
JP3670821B2 (en) Refractive index distribution measuring device
JP3553743B2 (en) Method and apparatus for measuring refractive index distribution
JPH1090117A (en) Method and instrument for measuring refractive index distribution
JPH11230833A (en) Method and device for measuring phase distribution
JP3441292B2 (en) Phase object measuring device
JP3957911B2 (en) Shearing interferometer, refractive index profile measuring apparatus equipped with the interferometer, and refractive index profile measuring method
JP2005024505A (en) Device for measuring eccentricity
JP2678465B2 (en) Lens refractive index distribution measurement method
TWI596325B (en) Method or system for dertermining information about an object or a transparent optical element and method of forming an optical assembly
JP2831428B2 (en) Aspherical shape measuring machine
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term