JP2000241128A - Plane-to-plane space measuring apparatus - Google Patents

Plane-to-plane space measuring apparatus

Info

Publication number
JP2000241128A
JP2000241128A JP11154540A JP15454099A JP2000241128A JP 2000241128 A JP2000241128 A JP 2000241128A JP 11154540 A JP11154540 A JP 11154540A JP 15454099 A JP15454099 A JP 15454099A JP 2000241128 A JP2000241128 A JP 2000241128A
Authority
JP
Japan
Prior art keywords
light
light beam
optical
optical path
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11154540A
Other languages
Japanese (ja)
Other versions
JP2000241128A5 (en
Inventor
Yorio Wada
和田順雄
Kimihiko Nishioka
西岡公彦
Fumiyoshi Imamura
今村文美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11154540A priority Critical patent/JP2000241128A/en
Publication of JP2000241128A publication Critical patent/JP2000241128A/en
Publication of JP2000241128A5 publication Critical patent/JP2000241128A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for measuring the thickness of a lens or a plane-to-plane space nondestructively and noncontactingly at a high accuracy. SOLUTION: The apparatus comprises a low-coherence light source 101, a beam dividing element 102 for dividing a beam emitted from the light source 101, a reflection mirror 103 for changing the optical path length of one beam divided by the dividing element 102 and reflecting the beam, and a photoelectric detector 105 for detecting an interference signal produced by superposing a light which is reflected from an object 104 after another beam divided by the dividing element 102 is incident on an object 104, on a light reflected from the mirror 103. A signal from the photoelectric detector 105 and information from the reflection mirror 103 are arithmetically processed to measure the distance between (a) and (b).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズの肉厚や面
間隔を測定する面間隔測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface distance measuring apparatus for measuring the thickness and the surface distance of a lens.

【0002】[0002]

【従来の技術】従来の面間隔測定器としては、レンズ等
の光学素子の面頂からの反射像をそれぞれ検出し、面間
隔を測定する方法が知られている。また、X線を用いて
光学系の断面を撮影し、X線写真から素子間の距離を求
める方法もある。
2. Description of the Related Art As a conventional surface distance measuring device, there is known a method of detecting a reflection image from the top of an optical element such as a lens and measuring the surface distance. There is also a method in which a cross section of an optical system is photographed using X-rays, and a distance between elements is obtained from an X-ray photograph.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来の測定器では、面間隔の測定精度が5/100mm程
度であり、光学系の高精度化に伴い、1/100mm位で
測定したいという要求が高まっており、その要求には対
応していない。
However, in the above-mentioned conventional measuring instrument, the measuring accuracy of the surface distance is about 5/100 mm, and there is a demand for measuring at about 1/100 mm with the improvement of the accuracy of the optical system. Are not responding to the demand.

【0004】本発明は上記の従来技術の問題点に鑑みて
なされたものであり、その目的は、非破壊、非接触で高
精度にレンズの肉厚や面間隔を測定できる面間隔測定装
置を提供することである。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a non-destructive, non-contact, surface distance measuring device capable of measuring a lens thickness and a surface distance with high accuracy. To provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する本発
明の面間隔測定装置は、 (1) 空間的コヒーレンス長が短い低コヒーレンス光
源と、該低コヒーレンス光源から射出された光束を分割
する光束分割手段と、該光束分割手段により分割された
一方の光束の光路長を変化させ光束を反射させる手段を
有する光路長変化手段と、前記光束分割手段により分割
された他方の光束が被検物たる光学系に入射して反射し
た反射光と前記光路長変化手段からの反射光とを重畳さ
せて生ずる干渉信号を検出する光強度検出手段とを備
え、該光強度検出手段からの信号と前記光路長変化手段
からの情報を演算処理することにより間隔を測定するこ
とを特徴とする面間隔測定方法および装置。
According to the present invention, there is provided an apparatus for measuring a surface interval, comprising: (1) a low coherence light source having a short spatial coherence length; and a light beam for splitting a light beam emitted from the low coherence light source. A splitting means, an optical path length changing means having means for changing the optical path length of one of the light beams split by the light beam splitting device and reflecting the light beam, and the other light beam split by the light beam splitting device being an object. Light intensity detecting means for detecting an interference signal generated by superimposing reflected light incident and reflected on an optical system and reflected light from the optical path length changing means, wherein a signal from the light intensity detecting means and the optical path A method and an apparatus for measuring a surface interval, wherein an interval is measured by arithmetically processing information from a length changing means.

【0006】(2) 前記低コヒーレンス光源から射出
した光を略平行光束にする光束成形手段と、前記略平行
光束を任意の偏光状態にする偏光状態変換手段と、前記
略平行光束を分割する光束分割手段と、該光束分割手段
により分割された一方の光束の偏光状態を変換する第2
の偏光状態変換手段と、該第2の偏光状態変換手段によ
り偏光状態が変化した光束を反射する反射手段と、該反
射手段を移動せしめる移動手段と、前記反射手段の移動
量を測定する移動量測定手段と、前記光束分割手段によ
り分割された他方の光束を集光する集光手段と、該集光
手段による集光位置に配置されたピンホールと、該ピン
ホールからの光束を測定すべき面間隔を有する被検物へ
と導き該被検物の任意の面へ集光せしめるような調整手
段を伴った光学素子と、前記光束分割手段で分割された
2つの光束を重ねあわせる光束合成手段と、該光束合成
手段により重ね合わされた光束の光強度を電気信号に変
換する光電変換手段と、該光電変換手段からの信号と前
記移動量測定手段からの情報を処理する信号処理手段と
を備えたことを特徴とする前記(1)項に記載の面間隔
測定方法および装置。
(2) Light beam shaping means for converting light emitted from the low coherence light source into a substantially parallel light beam, polarization state converting means for converting the substantially parallel light beam into an arbitrary polarization state, and a light beam for dividing the substantially parallel light beam Splitting means for converting the polarization state of one of the light beams split by the light beam splitting means;
Polarization state conversion means, reflection means for reflecting the light beam whose polarization state has been changed by the second polarization state conversion means, movement means for moving the reflection means, and movement amount for measuring the movement amount of the reflection means Measuring means, light collecting means for condensing the other light beam split by the light beam splitting means, a pinhole arranged at a light collecting position by the light collecting means, and a light beam from the pinhole should be measured. An optical element having an adjusting means for guiding the light to an object having a surface interval and condensing the light on an arbitrary surface of the object, and a light beam combining means for superimposing the two light beams split by the light beam splitting means And photoelectric conversion means for converting the light intensity of the light flux superimposed by the light flux synthesis means into an electric signal, and signal processing means for processing a signal from the photoelectric conversion means and information from the movement amount measurement means. Specially It said to be (1) surface distance measuring method and apparatus according to item.

【0007】(3) 前記低コヒーレンス光源として、
スーパールミネッセントダイオードを用いたことを特徴
とする、前記(1)項に記載の面間隔測定方法および装
置。
(3) As the low coherence light source,
The method and apparatus according to the above mode (1), wherein a super luminescent diode is used.

【0008】(4) 前記低コヒーレンス光源として、
閾値電流以下で動作させた半導体レーザを用いたことを
特徴とする、前記(1)項に記載の面間隔測定方法およ
び装置。
(4) As the low coherence light source,
2. The method and apparatus according to claim 1, wherein a semiconductor laser operated at a threshold current or less is used.

【0009】(5) 前記低コヒーレンス光源として、
パルスレーザを用いたことを特徴とする、前記(1)項
に記載の面間隔測定方法および装置。
(5) As the low coherence light source,
The method and apparatus for measuring a surface interval according to the above mode (1), wherein a pulse laser is used.

【0010】(6) 前記低コヒーレンス光源として、
赤外光を用いたことを特徴とする、前記(1)項に記載
の面間隔測定方法および装置。
(6) As the low coherence light source,
The method and apparatus for measuring a surface interval according to the above mode (1), wherein infrared light is used.

【0011】(7) 前記低コヒーレンス光源として、
可視光を用いることを特徴とする、前記(1)項に記載
の面間隔測定方法および装置。
(7) As the low coherence light source,
The method and apparatus for measuring a surface interval according to the above mode (1), wherein visible light is used.

【0012】(8) 前記光電変換手段として、フォト
ダイオードまたはフォトマルチプライヤまたはラインセ
ンサまたは固体撮像素子を用いたことを特徴とする前記
(1)項に記載の面間隔測定方法および装置。
(8) The method and apparatus according to the above (1), wherein a photodiode, a photomultiplier, a line sensor, or a solid-state image sensor is used as the photoelectric conversion means.

【0013】(9) 前記光束分割手段により分割され
た一方の光束を反射させる手段として、被検物と光学的
に等価な構成の光学系を用いたことを特徴とする、前記
(1)項に記載の面間隔測定方法および装置。
(9) As the means for reflecting one of the light beams split by the light beam splitting means, an optical system having a configuration optically equivalent to the test object is used. 4. The method and apparatus for measuring a surface distance according to claim 1.

【0014】(10) 被検物たる複数の光学素子から
構成される光学系として、ズームレンズの光学系を用い
たことを特徴とする、前記(1)項に記載の面間隔測定
方法および装置。
(10) The method and apparatus for measuring a surface interval according to the above item (1), wherein an optical system of a zoom lens is used as an optical system composed of a plurality of optical elements to be inspected. .

【0015】(11) 光学系のアライメントにデジタ
ルカメラを用いたことを特徴とする、前記(1)項に記
載の面間隔測定方法および装置。
(11) The method and apparatus for measuring a surface interval according to the above (1), wherein a digital camera is used for alignment of the optical system.

【0016】(12) 各種光学機器の光学系の組立て
工程において、前記(1)乃至(11)項に記載の面間
隔測定方法および装置を用いてレンズの間隔調整をおこ
なう方法。
(12) A method for adjusting the distance between lenses using the method and apparatus for measuring the distance between surfaces in the process of assembling the optical system of various optical instruments according to the above (1) to (11).

【0017】(13) 空間的コヒーレンス長が短い低
コヒーレンス光源と、該低コヒーレンス光源から射出さ
れた光束を分割する光束分割手段と、該光束分割手段に
より分割された一方の光束の光路長を変化させる光路長
変化手段と、前記光束分割手段により分割された他方の
光束が被検物たる光学系に入射し、該光学系からの反射
光または透過光と、前記光路長変化手段を経由した光束
とを重畳させて生ずる干渉信号を検出し、前記光路長変
化手段からの情報とから、間隔を測定することを特徴と
する面間隔測定方法および装置。
(13) A low coherence light source having a short spatial coherence length, light beam splitting means for splitting a light beam emitted from the low coherence light source, and changing the optical path length of one of the light beams split by the light beam splitting device The other light beam split by the light beam splitting device is incident on an optical system as a test object, and the reflected light or transmitted light from the optical system and the light beam passing through the light path length changing device. And an apparatus for detecting an interference signal generated by superimposing the distance and measuring the distance from the information from the optical path length changing means.

【0018】(14) 前記低コヒーレンス光源から射
出した光を略平行光束にする光束整形手段と、前記略平
行光束を任意の偏光状態にする偏光状態変換手段と、前
記略平行光束を分割する光束分割手段と、該光束分割手
段により分割された一方の光束の偏光状態を変換する第
2の偏光状態変換手段と、該第2の偏光状態変換手段に
より偏光状態が変化した光束を反射する反射手段と、該
反射手段を移動せしめる移動手段と、前記反射手段の移
動量を測定する移動量測定手段と、前記光束分割手段に
より分割された他方の光束の偏光状態を変換する第3の
偏光状態変換手段と、該第3の偏光状態変換手段により
偏光状態が変化した光束を測定すべき面間隔を有する被
検物たる光学系へと導き、測定すべき面の略球心または
面頂に向かって光束が入射するような調整手段を伴った
光学素子と、前記光束分割手段で分割された2つの光束
を重ね合わせる光束合成手段と、該光束合成手段により
重ね合わされた光束の光強度を電気信号に変換する光電
変換手段と、該光電変操手段からの信号と前記移動量測
定手段からの情報とから、面間隔を測定することを特徴
とする(13)記載の面間隔測定方法および装置。
(14) A light beam shaping means for converting light emitted from the low coherence light source into a substantially parallel light beam, a polarization state converting means for converting the substantially parallel light beam into an arbitrary polarization state, and a light beam for dividing the substantially parallel light beam Splitting means, second polarization state converting means for converting the polarization state of one of the light beams split by the light beam splitting means, and reflecting means for reflecting the light beam whose polarization state has been changed by the second polarization state converting means Moving means for moving the reflecting means; moving amount measuring means for measuring the moving amount of the reflecting means; and third polarization state conversion for converting the polarization state of the other light beam split by the light beam splitting means. Means for guiding the light flux whose polarization state has been changed by the third polarization state conversion means to an optical system as a test object having a surface interval to be measured, toward a substantially spherical center or a surface top of the surface to be measured. Luminous flux An optical element with an adjusting device such that the light beam enters, a light beam combining device for superimposing the two light beams split by the light beam splitting device, and converting the light intensity of the light beam superimposed by the light beam combining device into an electric signal. The method and apparatus according to (13), wherein the distance between the surfaces is measured from the photoelectric conversion means, and the signal from the photoelectric conversion means and the information from the movement amount measuring means.

【0019】(15) 前記低コヒーレンス光源から射
出した光を略平行光束にする光束整形手段と、前記略平
行光束を分割する光束分割手段と、該光束分割手段によ
り分割された一方の光束を反射する反射手段と、該反射
手段を移動せしめる移動手段と、前記反射手段の移動量
を測定する移動量測定手段と、前記光束分割手段により
分割された他方の光束を測定すべき面間隔を有する被検
物たる光学系へと導き、該被検物の任意の面で反射した
反射光と、前配光路長変化手段からの反射光とを重畳さ
せて生ずる干渉信号を検出する光強度検出手段とを備
え、該光強度を電気信号に変換する光電変換手段と、該
光電変換手段からの信号と前記移動量測定手段からの情
報とから、面間隔を測定することを特徴とする(13)
記載の面間隔測定方法および装置。
(15) A light beam shaping device for converting light emitted from the low coherence light source into a substantially parallel light beam, a light beam dividing device for dividing the substantially parallel light beam, and reflecting one of the light beams divided by the light beam dividing device. Reflecting means, a moving means for moving the reflecting means, a moving amount measuring means for measuring a moving amount of the reflecting means, and an object having a surface interval for measuring the other light beam divided by the light beam dividing means. Light intensity detecting means for detecting an interference signal generated by superimposing reflected light reflected from an arbitrary surface of the test object and reflected light from the front light distribution path length changing means, leading to an optical system serving as an inspection object; And (13) a photoelectric conversion means for converting the light intensity into an electric signal; and measuring a surface interval from a signal from the photoelectric conversion means and information from the movement amount measuring means.
The method and apparatus for measuring a surface distance according to the description.

【0020】(16) 前記低コヒーレンス光源から射
出した光を所望の形状の光束に整形する光束整形手段
と、光束を所望の偏光状態にする偏光状態変換手段と、
光束分割手段と、該光束分割手段により分割された一方
の光束の偏光状態を変換する第2の偏光状態変換手段
と、該第2の偏光状態変換手段により偏光状態が変化し
た光束を反射する反射手段と、該反射手段を移動せしめ
る移動手段と、前記反射手段の移動量を測定する移動量
測定手段と、前記光束分割手段により分割された他方の
光束の偏光状態を変換する第3の偏光状態変換手段と、
該第3の偏光状態変換手段により偏光状態が変化した光
束を測定すべき面間隔を有する被検物たる光学系へと導
き、測定すべき面に向かって光束が入射するような調整
手段を伴った光学素子と、前記光束分割手段で分割され
た2つの光束を重ね合わせる光束合成手段と、該光束合
成手段により重ね合わされた光束の光強度を電気信号に
変換する光電変換手段と、該光電変換手段からの信号と
前記移動量測定手段からの惰報とから、面間隔を測定す
ることを特徴とする(13)記載の面間隔測定方法およ
び装置。
(16) a light beam shaping means for shaping light emitted from the low coherence light source into a light beam having a desired shape; a polarization state converting means for converting the light beam into a desired polarization state;
Light beam splitting means, second polarization state conversion means for converting the polarization state of one of the light beams split by the light beam splitting means, and reflection for reflecting the light beam whose polarization state has been changed by the second polarization state conversion means Means, moving means for moving the reflecting means, moving amount measuring means for measuring the moving amount of the reflecting means, and third polarization state for converting the polarization state of the other light beam split by the light beam splitting means. Conversion means;
The light beam whose polarization state has been changed by the third polarization state conversion means is guided to an optical system which is a test object having a surface interval to be measured, and an adjusting means is provided so that the light beam enters the surface to be measured. Optical element, a light beam combining means for superimposing two light beams split by the light beam splitting means, a photoelectric conversion means for converting the light intensity of the light beam superposed by the light beam combining means into an electric signal, and the photoelectric conversion means The method and apparatus according to (13), wherein the surface distance is measured from a signal from the means and coasting information from the movement amount measuring means.

【0021】(17) コヒーレンス長が短い光源から
射出された光束を光束分割素子により分割し、一方は参
照光として反射部材で反射され、他方は測定光として間
隔や厚さを測定すべき被検物へと導き、前記参照光およ
び測定光を前記光束分割素子で重ねあわせ、被検物の一
方の面からの反射光と、前記反射部材からの反射光との
光路長差が光源のコヒーレンス長以内のときに生ずる干
渉信号を検出し、被検物の他方の面からの反射光に対
し、前記反射部材を移動して光路長を変化させ干渉信号
が得られたとき、前記反射部材の移動量から前記被検物
の間隔を測定することを特徴とする光学素子または光学
系または光学装置の面間隔を求める方法または装置。
(17) A light beam emitted from a light source having a short coherence length is split by a light beam splitting element, one of which is reflected by a reflecting member as reference light, and the other of which is to be measured and whose distance and thickness are to be measured as measurement light. The reference light and the measurement light are superimposed on each other by the light beam splitting element, and the optical path length difference between the reflected light from one surface of the test object and the reflected light from the reflecting member is the coherence length of the light source. When the interference signal generated when the interference signal is detected, and the interference signal is obtained by changing the optical path length by moving the reflection member with respect to the reflected light from the other surface of the test object, moving the reflection member A method or apparatus for determining a surface distance of an optical element, an optical system, or an optical device, wherein the distance between the test objects is measured from an amount.

【0022】(18) 低コヒーレンス光源から射出さ
れた光束を参照光と被検物へ入射する測定光とに分割
し、被検物から反射された測定光と参照光とを干渉させ
て、その干渉信号から面間隔を求める方法または装置。
(18) The light beam emitted from the low coherence light source is split into reference light and measurement light incident on the test object, and the measurement light reflected from the test object and the reference light interfere with each other. A method or apparatus for determining a surface interval from an interference signal.

【0023】(19) コヒーレンス長が短い光源から
射出された光束を光束分割手段により分割し、一方を参
照光と、他方は測定光として間隔を測定すべき被検物へ
と導き、前記参照光と測定光を重畳させ、光学素子また
は光学系または光学装置または各種機械の面間隔を求め
る方法または装置。
(19) A light beam emitted from a light source having a short coherence length is split by a light beam splitting means, one of which is guided as a reference light, and the other is guided as a measurement light to a test object whose interval is to be measured. A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines by superimposing measurement light with a measurement light.

【0024】(20) コヒーレンス長が短い光源を用
いた干渉計と、前記干渉計の光路中に被検物を配置して
干渉を生じさせ、光学素子または光学系または光学装置
または各種機械の面間隔を求める方法または装置。
(20) An interferometer using a light source having a short coherence length, and a test object arranged in an optical path of the interferometer to cause interference, thereby causing an optical element, an optical system, an optical device, or a surface of various machines. The method or device for determining the interval.

【0025】(21) コヒーレンス長の短い光源と、
測定光光路と、参照光光路とを備え、被測定物に前記光
源からの光を入射し、その出射光と参照光光路の光を干
渉させて、光学素子または光学系または光学装置または
各種機械の面間隔を求める方法または装置。
(21) a light source having a short coherence length;
A measuring light beam path and a reference light beam path; light from the light source is incident on the object to be measured; and the emitted light and the light in the reference light beam path interfere with each other to form an optical element or an optical system or an optical device or various machines. Method or device for determining the surface spacing of

【0026】(22) 被測定面に非平面を含むことを
特徴とする(19)から(21)の何れか1項記載記載
の光学素子または光学系または光学装置または各種機械
の面間隔を求める方法または装置。
(22) The surface spacing of an optical element, an optical system, an optical device, or various machines according to any one of (19) to (21), wherein the surface to be measured includes a non-planar surface. Method or equipment.

【0027】(23) 被測定物に入射する光路中に少
なくとも1枚のレンズを含むことを特徴とする(19)
から(21)の何れか1項記載記載の光学素子または光
学系または光学装置または各種機械の面間隔を求める方
法または装置。
(23) At least one lens is included in an optical path incident on the object to be measured (19).
(21) A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines according to any one of (21) to (21).

【0028】(24) 共通光路中に少なくとも1枚の
レンズを含むことを特徴とする(19)から(21)の
何れか1項記載記載の光学素子または光学系または光学
装置または各種機械の面間隔を求める方法または装置。
(24) The optical element, the optical system, the optical device, or the surface of various machines according to any one of (19) to (21), wherein at least one lens is included in the common optical path. The method or device for determining the interval.

【0029】(25) 被測定物がズームレンズを含む
ことを特徴とする(19)から(21)の何れか1項記
載記載の光学素子または光学系または光学装置または各
種機械の面間隔を求める方法または装置。
(25) The surface spacing of an optical element, an optical system, an optical device, or various machines according to any one of (19) to (21), wherein the object to be measured includes a zoom lens. Method or equipment.

【0030】(26) レンズ厚を測定するときに、群
屈折率を用いることを特徴とする(19)から(21)
の何れか1項記載記載の光学素子または光学系または光
学装置または各種機械の面間隔を求める方法または装
置。
(26) When measuring the lens thickness, the group refractive index is used (19) to (21).
A method or apparatus for determining a surface interval of an optical element, an optical system, an optical device, or various machines according to any one of the preceding claims.

【0031】(27) 干渉縞をTVモニター上で観察
することを特徴とする(19)から(21)の何れか1
項記載記載の光学素子または光学系または光学装置また
は各種機械の面間隔を求める方法または装置。
(27) Any one of (19) to (21), wherein the interference fringes are observed on a TV monitor.
A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines according to the item.

【0032】(28) 同心円状の干渉縞またはその一
部の縞を見ることを特徴とする(19)から(21)の
何れか1項記載記載の光学素子または光学系または光学
装置または各種機械の面間隔を求める方法または装置。
(28) The optical element, the optical system, the optical device, or various machines according to any one of (19) to (21), wherein concentric interference fringes or a part thereof are viewed. Method or device for determining the surface spacing of

【0033】(29) 被検物に対し、非平行光束を入
射させることを特徴とする(19)から(21)の何れ
か1項記載記載の光学素子または光学系または光学装置
または各種機械の面間隔を求める方法または装置。
(29) The optical element, the optical system, the optical device, or the various machines according to any one of (19) to (21), wherein a non-parallel light beam is incident on the test object. A method or device for determining the surface spacing.

【0034】(30) 球心近傍あるいは面頂近傍に測
定光を入射させるときの光束の光軸に対する角度が光学
的理論値に対し、±15°以内であることを特徴とする
(19)から(21)の何れか1項記載記載の光学素子
または光学系または光学装置または各種機械の面間隔を
求める方法または装置。
(30) The method according to (19), wherein the angle of the light beam with respect to the optical axis when the measuring light is incident near the spherical center or near the surface top is within ± 15 ° with respect to the theoretical optical value. (21) A method or apparatus for determining a surface interval of an optical element, an optical system, an optical device, or various machines according to any one of (21).

【0035】(31) 被検物が加工中の光学素子であ
ることを特徴とする(19)から(21)の何れか1項
記載記載の光学素子または光学系または光学装置または
各種機械の面間隔を求める方法または装置。
(31) The surface of an optical element, an optical system, an optical device, or various machines according to any one of (19) to (21), wherein the test object is an optical element being processed. The method or device for determining the interval.

【0036】(32) コヒーレンス長の短い光源から
の光束に異なる複数の光路長を与えた上で、被検物に入
射し、反射光の干渉光を調べることで光学素子または光
学系または光学装置または各種機械の面間隔を求める方
法または装置。
(32) After giving a plurality of different optical path lengths to a light beam from a light source having a short coherence length, the light beam is made incident on a test object, and the interference light of the reflected light is examined to determine an optical element, an optical system, or an optical device. Or a method or device for determining the surface spacing of various machines.

【0037】(33) コヒーレンス長の短い光源から
の光束を複数に分割し、それぞれ異なる光路長を与えた
上で、被検物に入射し、反射光の干渉光を調べることで
光学素子または光学系または光学装置または各種機械の
面間隔を求める方法または装置。
(33) A light beam from a light source having a short coherence length is divided into a plurality of light beams, each having a different optical path length, and then incident on a test object, and the interference light of the reflected light is examined to determine the optical element or the optical element. A method or device for determining the surface spacing of a system or optical device or various machines

【0038】(34) コヒーレンス長の短い光源から
の光束を複数に分割し、それぞれ異なる光路長を与えた
上で、統合し、その光束を被検物に入射し、反射光の干
渉光強度、あるいは干渉縞のコントラストを調べること
で光学素子または光学系または光学装置または各種機械
の面間隔を求める方法または装置。
(34) A light beam from a light source having a short coherence length is divided into a plurality of light beams, each having a different optical path length, and then integrated. The light beam is incident on a test object, and the interference light intensity of reflected light, Alternatively, a method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines by examining the contrast of interference fringes.

【0039】(35) コヒーレンス長が短い光源を用
いた干渉計と、前記干渉計の光路中に被検物を配置して
干渉を生じさせる面間隔を求める方法または装置。であ
り、複数の光学素子から構成される各素子の厚さおよび
間隔を測定するものである。
(35) An interferometer using a light source having a short coherence length, and a method or an apparatus for arranging a test object in an optical path of the interferometer and obtaining a surface interval causing interference. This is to measure the thickness and interval of each element composed of a plurality of optical elements.

【0040】(36) コヒーレンス長の短い光源と、
測定光光路と、参照光光路とを備え、被測定物に前記光
源からの光を入射し、その出射光と参照光光路の光を干
渉させて面間隔を求める方法または装置。
(36) A light source having a short coherence length,
A method or apparatus comprising a measurement light path and a reference light path, wherein light from the light source is incident on an object to be measured, and the emitted light and the light on the reference light path interfere with each other to determine a surface interval.

【0041】(37) 低コヒーレンス光源から射出し
た光束を光束分割素子で分割し、一方は参照光として反
射鏡で反射され、他方は測定光として間隔を測定すべき
被検物へと導かれ、前記参照光の光路長が可変できるよ
うになっており、前記参照光と前記測定光とは前記光束
分割素子で重なり合わされ、被検物の任意のの面からの
反射光と前記反射鏡からの反射光との光路長差が前記光
源のコヒーレンス長以内であれば干渉を生じ、光電検出
器でその干渉信号が検出され、次に、被検物のもう一つ
の面からの反射光に対し、前記反射鏡を移動して光路長
を変化させ前記光電検出器で干渉信号が得られたとき、
前記反射鏡の移動距離を測定することにより前記2つの
面の間隔を求めることを特徴とする面間隔測定方法およ
び装置。
(37) A light beam emitted from the low coherence light source is split by a light beam splitting element, one of which is reflected by a reflecting mirror as reference light, and the other is guided to a test object whose interval is to be measured as measurement light, The optical path length of the reference light is variable, and the reference light and the measurement light are overlapped by the light beam splitting element, and the reflected light from any surface of the test object and the light from the reflecting mirror. If the optical path difference with the reflected light is within the coherence length of the light source, interference occurs, the interference signal is detected by the photoelectric detector, and then, for reflected light from another surface of the test object, When an interference signal is obtained by the photoelectric detector by changing the optical path length by moving the reflecting mirror,
A method and apparatus for measuring a surface distance, wherein a distance between the two surfaces is obtained by measuring a moving distance of the reflecting mirror.

【0042】(38) 低コヒーレンス光源から光束が
射出され、その光束を光束分割素子で測定光と参照光に
分割し、測定光側には複数のレンズ面の面間隔を測定す
べき被検物たるレンズを配置し、参照光側には反射鏡を
設置し、参照光側光路の光路長と測定光側光路の光路長
との光路差が光源のコヒーレンス長以内に調整できるよ
うに参照光側光路の光路長が可変になっており、この測
定光側光路と参照光側光路とを重なり合わせ、その重な
り合った光路を光電検出器で受光して光源のコヒーレン
ス長以内での光路差による干渉縞の発生を検出できるよ
うにし、まず、被検レンズ面の一つのレンズ面にて干渉
縞を検出し、次に他の被検レンズ面にて干渉縞を検出す
べく、前記他の被検レンズ面による測定光側光路の光路
長に対して光路長差を光源のコヒーレンス長以内にする
ように参照光側光路の光路長を変化させ、前記他の被検
レンズ面にて干渉縞を検出させ、このときの参照光側光
路の光路長の変化量によって前記被検レンズ面と前記他
の被検レンズ面との面間隔を測定する面間隔測定方法お
よび装置。
(38) A light beam is emitted from the low coherence light source, the light beam is split into a measuring beam and a reference beam by a light beam splitting element, and an object to be measured on the measuring beam side is to measure a surface interval of a plurality of lens surfaces. A barrel lens is placed, and a reflecting mirror is installed on the reference light side.The reference light side is adjusted so that the optical path difference between the reference light side optical path and the measurement light side optical path can be adjusted within the coherence length of the light source. The optical path length of the optical path is variable, the measuring light side optical path and the reference light side optical path are overlapped, the overlapping optical path is received by a photoelectric detector, and the interference fringes due to the optical path difference within the coherence length of the light source. First, an interference fringe is detected on one of the lens surfaces to be detected, and then the other lens to be detected is detected on another lens surface to be detected. Optical path length difference to the optical path length of the measuring light side optical path due to the surface The optical path length of the reference light side optical path is changed so as to be within the coherence length of the light source, interference fringes are detected on the other lens surface to be measured, and the amount of change in the optical path length of the reference light side optical path at this time is A surface distance measuring method and apparatus for measuring a surface distance between the lens surface to be measured and the another lens surface to be measured.

【0043】(39) 前記被検レンズ面の曲面による
測定誤差を減少させるように、前記測定光側光路の光束
の直径(R0 )が前記被検レンズ面の直径(Rs )に対
して、2/3以下(3R0 <2Rs )となるように光束
径を変化させる光学素子(例えば、光源近傍あるいはコ
リメータレンズ近傍に配置した開口)を光路中に配置し
たことを特徴とする(38)記載の面間隔測定方法およ
び装置。
(39) The diameter (R 0 ) of the light beam on the measurement light side optical path is smaller than the diameter (R s ) of the lens surface to be measured so as to reduce the measurement error due to the curved surface of the lens surface to be measured. An optical element (for example, an opening arranged near the light source or near the collimator lens) that changes the light flux diameter so as to be / or less (3R 0 <2R s ) is arranged in the optical path (38). 2) The method and apparatus for measuring a surface interval described in the above.

【0044】(40) 前記測定光側光路の光路長に対
して光路長差を光源のコヒーレンス長以内にするように
参照光側光路の光路長を変化させるため、前記参照光側
光路中に配置された反射鏡が光路に沿って移動可能にセ
ッティングされていることを特徴とする(38)記載の
面間隔測定方法および装置。
(40) In order to change the optical path length of the reference light side optical path so that the optical path length difference with respect to the optical path length of the measurement light side optical path is within the coherence length of the light source, it is arranged in the reference light side optical path. The method and apparatus according to (38), wherein the set reflecting mirror is set so as to be movable along an optical path.

【0045】まず、本発明による面間隔測定方法および
装置の基本的な構成を図1を用いて説明する。低コヒー
レンス光源101から射出した光束は、光束分割素子1
02で分割され、一方は参照光として反射鏡103で反
射され、他方は測定光として間隔を測定すべき被検物1
04へと導かれる。ここで、参照光の光路長は可変でき
るようにしておく。参照光と測定光とは光束分割素子1
02で重なり合うが、被検物104の面aからの反射光
と反射鏡103からの反射光との光路長差が光源のコヒ
ーレンス長以内であれば干渉を生じ、光電検出器105
で干渉信号が検出される。次に、被検物104のもう一
つの面bからの反射光に対し、反射鏡103を移動して
光路長を変化させ光電検出器105で干渉信号が得られ
たとき、反射鏡103の移動距離を測定すれば、a−b
の間隔が得られる。
First, a basic configuration of the method and apparatus for measuring a surface distance according to the present invention will be described with reference to FIG. The light beam emitted from the low coherence light source 101 is
02, one of which is reflected by the reflecting mirror 103 as reference light, and the other is an object 1 whose interval is to be measured as measurement light.
It is led to 04. Here, the optical path length of the reference light is made variable. The reference beam and the measuring beam are divided by the beam splitter 1
02, the optical path length difference between the reflected light from the surface a of the test object 104 and the reflected light from the reflecting mirror 103 is within the coherence length of the light source.
, An interference signal is detected. Next, with respect to the reflected light from another surface b of the test object 104, the reflecting mirror 103 is moved to change the optical path length, and when an interference signal is obtained by the photoelectric detector 105, the reflecting mirror 103 is moved. If the distance is measured, ab
Are obtained.

【0046】[0046]

【発明の実施の形態】以下に、本発明の面間隔測定方法
および装置の実施形態について説明する。 (第1実施形態)図2は本発明の第1実施形態の構成を
示す図である。低コヒーレンス光源1から射出した光束
は、コリメータレンズ2により平行光となり、偏光子
(ポラライザ)3で直線偏光になる。次に、この直線偏
光を偏光ビームスプリッタ(PBS)4で分割する際、
透過光と反射光がほぼ等しい光量になるよう、偏光子3
の透過軸の方位角を設定しておく。偏光ビームスプリッ
タ4で分割された光束のうち、反射光は参照光として、
1/4波長板5で円偏光となり、反射鏡6で反射した
後、再度1/4波長板5を通り直線偏光になり、偏光ビ
ームスプリッタ4を透過し、レンズ7で集光され光電検
出器(フォトデテクタ)8に入射する。反射鏡6はリニ
アガイド等で移動することができ、さらにその移動距離
は測長器9により正確に測定できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method and apparatus for measuring a surface distance according to the present invention will be described below. (First Embodiment) FIG. 2 is a diagram showing a configuration of a first embodiment of the present invention. The light beam emitted from the low coherence light source 1 becomes parallel light by the collimator lens 2 and becomes linearly polarized light by the polarizer (polarizer) 3. Next, when this linearly polarized light is split by the polarizing beam splitter (PBS) 4,
The polarizer 3 is set so that the amount of transmitted light and the amount of reflected light are substantially equal.
The azimuth of the transmission axis is set in advance. Among the light beams split by the polarization beam splitter 4, the reflected light is used as reference light.
The light becomes circularly polarized light by the quarter-wave plate 5, is reflected by the reflecting mirror 6, becomes linearly polarized light again through the quarter-wave plate 5, passes through the polarization beam splitter 4, is condensed by the lens 7, and is collected by the photoelectric detector. (Photodetector) 8. The reflecting mirror 6 can be moved by a linear guide or the like, and its moving distance can be accurately measured by the length measuring device 9.

【0047】一方、偏光ビームスプリッタ4で分割され
た透過光は、測定光として、第2の1/4波長板10を
通り円偏光になったあと、レンズ11によりピンホール
12に集光する。ピンホール12を透過した光はレンズ
13を通り、面の間隔や肉厚を測定したい被検レンズ1
4に入射する。ここで、測定光の集光位置が被検レンズ
14の中の面間隔や肉厚を測定したいレンズの面頂に位
置するようレンズ13と被検レンズ14で調整すれば、
レンズ面からの反射光はレンズ13、ピンホール12、
レンズ11、1/4波長板10を透過して、偏光ビーム
スプリッタ4で反射し、レンズ7で集光して光電検出器
8に入射する。光電検出器8としては、フォトダイオー
ドの他、CCDのような固体撮像素子を用いてもよい。
ここで、レンズ11とピンホール12とレンズ13およ
び被検レンズ14は共焦点光学系を構成しているので、
被検レンズの測定したい面以外からの反射光は、ピンホ
ールで遮断される。
On the other hand, the transmitted light split by the polarization beam splitter 4 passes through the second quarter-wave plate 10 to become circularly polarized light as measurement light, and is then condensed on the pinhole 12 by the lens 11. The light transmitted through the pinhole 12 passes through the lens 13, and the lens 1 to be measured whose surface distance and thickness are to be measured.
4 is incident. Here, if the lens 13 and the test lens 14 are adjusted so that the condensing position of the measurement light is located at the top of the surface of the lens whose surface distance and thickness are to be measured,
The reflected light from the lens surface is the lens 13, the pinhole 12,
The light passes through the lens 11 and the quarter-wave plate 10, is reflected by the polarization beam splitter 4, is condensed by the lens 7, and is incident on the photoelectric detector 8. As the photoelectric detector 8, a solid-state imaging device such as a CCD may be used in addition to the photodiode.
Here, since the lens 11, the pinhole 12, the lens 13, and the test lens 14 constitute a confocal optical system,
The reflected light from the surface of the lens to be measured other than the surface to be measured is blocked by the pinhole.

【0048】光電検出器8では、反射鏡6で反射された
光(参照光)と、被検レンズで反射された光(測定光)
とが重なり合い、両者の光路長差が光源のコヒーレンス
長の範囲内であれば干渉が生じ干渉信号が観測される。
この際、光源としてコヒーレンス長が数十μm程度の低
コヒーレンス光源を用いれば、参照光と測定光の光路長
差がコヒーレンス長の範囲内になったとき干渉信号が観
測される。干渉信号のコントラストを上げたい場合は、
参照光と測定光の強度ができるだけ等しくなるよう、反
射鏡6の反射率が被検レンズの反射率に近いものを用い
るか、偏光子3の方位角を変えて反射光と透過光の光量
比を変えるか、参照鏡6の前にNDフィルタなどの光量
調整素子を置けばよい。
In the photoelectric detector 8, the light reflected by the reflecting mirror 6 (reference light) and the light reflected by the lens to be measured (measurement light)
When the optical path length difference between the two is within the range of the coherence length of the light source, interference occurs and an interference signal is observed.
At this time, if a low coherence light source having a coherence length of about several tens of μm is used as the light source, an interference signal is observed when the optical path length difference between the reference light and the measurement light falls within the range of the coherence length. If you want to increase the contrast of the interference signal,
In order to make the intensities of the reference light and the measurement light as equal as possible, use a mirror whose reflectance is close to that of the lens to be measured or change the azimuth angle of the polarizer 3 to change the light amount ratio between the reflected light and the transmitted light. Or a light amount adjusting element such as an ND filter may be placed in front of the reference mirror 6.

【0049】実際の面間隔測定においては、まず、被検
レンズ14の測定すべきレンズ面間隔のうち一方のレン
ズ面頂aに光源からの光が集光するようレンズ13の位
置を調整する。この状態で測長器9のカウンタをリセッ
トしておく。次に被検レンズ14の測定したいレンズ面
間隔のもう一方のレンズ面頂bに集光するよう、レンズ
13を調整する。ここで、光電検出器8の出力に干渉信
号が現れるまで参照鏡6を移動させる。低コヒーレンス
光源の場合、光源のコヒーレンス長は数十μm程度なの
で、干渉信号のピークが現れる位置が、参照光と測定光
の光学的な光路長がほぼ等しい位置になる。このとき、
測長器9で得られた値から被検レンズ14の内部でのレ
ンズ倍率やガラスの光路長や被検レンズで発生した収差
成分を補正する信号処理手段15を設け、補正演算を施
すことで求めたいレンズ面間隔a−bが正確に得られ
る。
In the actual measurement of the distance between the lenses, first, the position of the lens 13 is adjusted so that the light from the light source is focused on one of the lens surfaces a of the lens surfaces to be measured of the lens 14 to be measured. In this state, the counter of the length measuring device 9 is reset. Next, the lens 13 is adjusted so that light is condensed on the other lens surface vertex b of the lens surface interval of the lens 14 to be measured. Here, the reference mirror 6 is moved until an interference signal appears in the output of the photoelectric detector 8. In the case of a low coherence light source, the coherence length of the light source is about several tens of μm, and the position where the peak of the interference signal appears is the position where the optical path lengths of the reference light and the measurement light are almost equal. At this time,
A signal processing unit 15 for correcting the lens magnification, the optical path length of the glass, and the aberration component generated in the lens to be inspected from the value obtained by the length measuring device 9 is provided, and the correction operation is performed. The desired lens surface distance a-b can be accurately obtained.

【0050】低コヒーレンス光源としては、コヒーレン
ス長が数十μmのスーパールミネッセントダイオードが
よく知られているが、シングルモード発振の半導体レー
ザを閾値電流以下で動作させても同様な効果が得られ
る。また、短パルスレーザを用いてもよい。
As a low coherence light source, a super luminescent diode having a coherence length of several tens of μm is well known, but a similar effect can be obtained by operating a single mode oscillation semiconductor laser at a threshold current or less. . Further, a short pulse laser may be used.

【0051】なお、光学系のアライメントをおこなう
際、光源が不可視光の場合には光源の波長に感度を有す
る可視化装置を用いるが、一般的に高価なので、光源の
波長が近赤外光であれば、市販の安価な液晶モニター付
のデジタルカメラを代わりに用いてもよい。一般的にデ
ジタルカメラの撮像素子の直前には、赤外カットフィル
ターが組み込まれているが、800nm程度の近赤外光
には多少感度があるのでビームが写る。そこで、デジタ
ルカメラにカメラの取り込み画像をリアルタイムで直接
液晶モニターに表示できる機能があれば、この機能を利
用してビームをモニターすることにより高価な可視化装
置を用いなくても光学系の調整が容易におこなえる。 (第2実施形態)次に本発明の第2実施形態を図3に示
す。本実施形態例では、第1実施形態における反射鏡6
を用いる代わりに、被検レンズと光学的に等価な構成
で、レンズ間隔と厚さが厳密に調整され、それらの値が
既知のレンズ基準鏡枠を参照光学系として用いる。すな
わち、第1実施形態において、被検レンズ14と同様な
構成の光学系を参照光学系とするものである。
When the alignment of the optical system is performed, if the light source is invisible light, a visualization device having sensitivity to the wavelength of the light source is used. For example, a commercially available digital camera with a liquid crystal monitor may be used instead. Generally, an infrared cut filter is incorporated immediately before an image pickup device of a digital camera. However, a beam is captured because near infrared light of about 800 nm is somewhat sensitive. Therefore, if the digital camera has a function that can directly display the captured image of the camera on the LCD monitor in real time, it is easy to adjust the optical system without using an expensive visualization device by monitoring the beam using this function Can be done. (Second Embodiment) Next, a second embodiment of the present invention is shown in FIG. In the present embodiment, the reflecting mirror 6 in the first embodiment is used.
Instead of using a lens reference lens frame having a configuration optically equivalent to the lens to be inspected, the lens interval and the thickness being strictly adjusted, and the values thereof being known, are used as the reference optical system. That is, in the first embodiment, an optical system having a configuration similar to that of the lens 14 to be measured is used as a reference optical system.

【0052】第1実施形態と同様に、低コヒーレンス光
源1から射出した光束は、コリメータレンズ2により平
行光となり、偏光子3で直線偏光になる。偏光ビームス
プリッタ4で反射と透過の2つに分割された光束のう
ち、一方は参照光として、1/4波長板5で円偏光とな
り、レンズ20によりピンホール21に集光する。ピン
ホール21を透過した光はレンズ22を通り、レンズ面
間隔が既知の参照レンズ23に入射する。参照レンズ2
3に入射した光の集光位置に、参照レンズ23の一つの
レンズ面頂があれば、そこで反射した光はレンズ22、
ピンホール21、レンズ20、1/4波長板5を透過し
て、偏光ビームスプリッタ4を透過して、レンズ7で集
光して光電検出器8に入射し、被検レンズからの反射光
と重なり合って、両者の光路長差が光源のコヒーレンス
長の範囲内なら干渉信号が観測される。
As in the first embodiment, the light beam emitted from the low coherence light source 1 becomes parallel light by the collimator lens 2 and becomes linearly polarized light by the polarizer 3. One of the two luminous fluxes, reflected and transmitted by the polarization beam splitter 4, is circularly polarized by the 板 wavelength plate 5 as reference light, and condensed on the pinhole 21 by the lens 20. The light transmitted through the pinhole 21 passes through a lens 22 and enters a reference lens 23 having a known lens surface distance. Reference lens 2
If there is one lens surface vertex of the reference lens 23 at the condensing position of the light that has entered the lens 3, the light reflected therefrom is
The light passes through the pinhole 21, the lens 20 and the quarter-wave plate 5, passes through the polarization beam splitter 4, is condensed by the lens 7, is incident on the photoelectric detector 8, and is reflected by the reflected light from the lens to be measured. Overlapping, if the optical path length difference between the two is within the coherence length of the light source, an interference signal is observed.

【0053】本実施形態における実際の測定としては、
まず、被検レンズ14の測定したいレンズ面間隔の一方
のレンズ面頂aに測定光が集光するようレンズ13また
は14を動かし、面頂aからの反射光を得る。同様に、
参照レンズ23では、被検レンズの面頂aに相当するレ
ンズの面頂a’に集光させ、反射光を得る。ここで、2
つの光束を互いに重ねあわせ、光電検出器8で干渉信号
が観測されるようレンズ22または23を動かして調整
する。
The actual measurement in this embodiment is as follows.
First, the lens 13 or 14 is moved so that the measurement light is converged on one lens surface a of the lens surface interval of the lens 14 to be measured, and reflected light from the surface a is obtained. Similarly,
In the reference lens 23, the reflected light is obtained by condensing the light on the surface a 'of the lens corresponding to the surface a of the test lens. Where 2
The two light beams are superimposed on each other and adjusted by moving the lens 22 or 23 so that the interference signal is observed by the photoelectric detector 8.

【0054】次に、被検レンズの測定したい間隔のもう
一方のレンズ面頂bからの反射光が得られるよう、レン
ズ13を調整する。そして、レンズ22を動かして、b
に相当する参照レンズ23の面頂b’からの反射光が得
られるよう調整をおこなう。このとき、レンズ13とレ
ンズ22の移動距離が等しければ、a−b間の距離と
a’−b’間の距離とが等しいことがわかる。a−b間
の距離とa’−b’間の距離とが異なる場合、レンズ1
3の移動量とレンズ14の移動量の差から演算により被
検レンズのレンズ面間隔がわかる。
Next, the lens 13 is adjusted so that the reflected light from the other lens surface top b at the interval to be measured of the lens to be measured is obtained. Then, by moving the lens 22, b
Is adjusted so as to obtain the reflected light from the surface vertex b ′ of the reference lens 23 corresponding to the above. At this time, if the moving distances of the lens 13 and the lens 22 are equal, it is understood that the distance between a and b is equal to the distance between a ′ and b ′. When the distance between a and b is different from the distance between a ′ and b ′, the lens 1
From the difference between the movement amount of the lens 3 and the movement amount of the lens 14, the distance between the lens surfaces of the test lens can be obtained by calculation.

【0055】本実施形態では参照光と測定光が光学的に
ほぼ等価な光学系を通るので、それぞれの光学系で収差
が発生しても、参照光、測定光とも等しく影響を受けキ
ャンセルされるので、レンズ系で発生する収差に対する
補正がほぼ不要となる。 (第3実施形態)図4に本発明の第3実施形態の構成を
示す。図4において、低コヒーレンス光源1から射出し
た光束は、コリメータレンズ2により略平行光となり、
偏光子(ポラライザ)3で直線偏光になる。コリメータ
レンズ2としては顕微鏡対物レンズを用いてもよい。
In this embodiment, since the reference light and the measuring light pass through optical systems which are optically substantially equivalent, even if aberration occurs in each optical system, the reference light and the measuring light are equally affected and canceled. Therefore, correction for aberration generated in the lens system is almost unnecessary. (Third Embodiment) FIG. 4 shows the configuration of a third embodiment of the present invention. In FIG. 4, a light beam emitted from the low coherence light source 1 becomes substantially parallel light by the collimator lens 2,
The polarizer (polarizer) 3 converts the light into linearly polarized light. A microscope objective lens may be used as the collimator lens 2.

【0056】この直線偏光を偏光ビームスプリッタ(P
BS)4で分割する際、偏光子3の透過軸の方位角を変
化させることで、透過光と反射光の光量比を任意に変化
させることができる。偏光ビームスプリッタ4で分割さ
れた光束のうち、反射光は参照光として、第1の1/4
波長板5で円偏光となり、反射鏡6で反射した後、再度
1/4波長板5を通り直線偏光になり、偏光ビームスプ
リッタ4を透過し、光電検出器8に入射する。反射鏡6
はリニアガイド等で移動することができ、さらにその移
動距離は測長器9により正確に測定できる。測長器9と
しては、マグネスケール、ガラススケール、レーザー測
長器などを用いればよい。
The linearly polarized light is converted into a polarization beam splitter (P
When the light is divided by the BS) 4, by changing the azimuth of the transmission axis of the polarizer 3, the light amount ratio between the transmitted light and the reflected light can be arbitrarily changed. Of the light beams split by the polarizing beam splitter 4, the reflected light is the first quarter of the light beam as the reference light.
After being converted into circularly polarized light by the wave plate 5 and reflected by the reflecting mirror 6, the light again passes through the quarter-wave plate 5, becomes linearly polarized light, passes through the polarization beam splitter 4, and enters the photoelectric detector 8. Reflector 6
Can be moved by a linear guide or the like, and the movement distance can be accurately measured by the length measuring device 9. As the length measuring device 9, a magne scale, a glass scale, a laser measuring device, or the like may be used.

【0057】一方、偏光ビームスプリッタ4で分割され
た透過光は測定光として、第2の1/4波長板10を通
り円偏光になり、面の間隔や肉厚を測定したい被検光学
系14の測定すべき一方の面aの球心または面頂に向か
って光が入射するよう被検光学系14の入射側に配置し
たレンズ30の位置を調整する。このように調整するこ
とで、面aで反射した光束はレンズ30で、たとえば光
軸に対して±10°以内の略平行光となる。そして、そ
の反射光は1/4波長板10で直線偏光になり偏光ビー
ムスプリッタ4で反射し、光電検出器8に入射する。
On the other hand, the transmitted light split by the polarization beam splitter 4 is converted into circularly polarized light passing through the second quarter-wave plate 10 as measurement light, and the optical system 14 to be measured for the spacing and thickness of the surfaces is to be measured. The position of the lens 30 disposed on the incident side of the test optical system 14 is adjusted so that light is incident toward the spherical center or the top of one surface a to be measured. By adjusting in this way, the light beam reflected by the surface a becomes substantially parallel light within ± 10 ° with respect to the optical axis by the lens 30, for example. Then, the reflected light becomes linearly polarized light by the 板 wavelength plate 10, is reflected by the polarization beam splitter 4, and enters the photoelectric detector 8.

【0058】光電検出器8としては、1次元または2次
元の固体撮像素子、撮像管、フォトダイオード等を用い
ることができる。2次元の光電変換素子を用いれば、被
検光学系14の測定すべき各面からの反射像がCRT上
で確認できるので、被検レンズの位置決めがしやすいメ
リットがある。
As the photoelectric detector 8, a one-dimensional or two-dimensional solid-state imaging device, an imaging tube, a photodiode, or the like can be used. If a two-dimensional photoelectric conversion element is used, reflected images from each surface of the test optical system 14 to be measured can be confirmed on the CRT, and thus there is an advantage that the test lens can be easily positioned.

【0059】ここで、被検光学系14としては、カメ
ラ、デジタルカメラのズームレンズ、単焦点レンズ、顕
微鏡、内視鏡のレンズ、メガネレンズ、コンタクトレン
ズなどがある。
Here, the optical system to be inspected 14 includes a camera, a zoom lens of a digital camera, a single focus lens, a microscope, a lens of an endoscope, a spectacle lens, a contact lens, and the like.

【0060】光電検出器8、たとえば、フォトダイオー
ド、CCD、C−MOSセンサ、撮像管、フォトマルチ
プライヤ、ラインセンサ、CdS等では、反射鏡6で反
射された光(参照光)と、被検レンズで反射された光
(測定光)が重なり合い、両者の光路長差が光源のコヒ
ーレンス長の範囲内であれば干渉が生じ干渉信号が観測
される。光源1にコヒーレンス長が数十μm程度の低コ
ヒーレンス光源を用いれば、参照光と測定光の光路長差
がコヒーレンス長の範囲内になったとき干渉信号が観測
される。
In the photoelectric detector 8, for example, a photodiode, a CCD, a C-MOS sensor, an imaging tube, a photomultiplier, a line sensor, a CdS, etc., the light reflected by the reflecting mirror 6 (reference light) and the test light The light reflected by the lens (measurement light) overlaps, and if the optical path length difference between them is within the range of the coherence length of the light source, interference occurs and an interference signal is observed. If a low coherence light source having a coherence length of about several tens of μm is used as the light source 1, an interference signal is observed when the optical path length difference between the reference light and the measurement light falls within the range of the coherence length.

【0061】低コヒーレンス光源1としては、コヒーレ
ンス長が半値全幅0.1μm〜200μmまたは波長の
半値全幅で1nm〜500nmの光源を用いることがで
きる。たとえば、スーパールミネセントダイオード(S
LD)が近年よく知られているが、半導体レーザを閾値
電流以下で動作させるか、短パルスレーザ、ハロゲンラ
ンプ、LED等を用いてもよい。
As the low coherence light source 1, a light source having a coherence length of 0.1 μm to 200 μm in full width at half maximum or 1 nm to 500 nm in full width at half maximum of wavelength can be used. For example, a superluminescent diode (S
Although LD) is well known in recent years, a semiconductor laser may be operated at a threshold current or less, or a short pulse laser, a halogen lamp, an LED, or the like may be used.

【0062】この状態で測長器9の表示値を記録する
か、リセットしておく。
In this state, the display value of the length measuring device 9 is recorded or reset.

【0063】次に、被検光学系14の測定すべきもう一
方の面bの球心または面頂に向かって光が入射するよう
レンズ30の位置を調整し、面bからの反射光が光電検
出器8に入射するようにしておく。そして、反射鏡6の
位置を変化させ、干渉信号が得られる位置を求める。
Next, the position of the lens 30 is adjusted so that light enters the spherical center or the top of the other surface b of the optical system 14 to be measured. It is made to enter the detector 8. Then, the position of the reflecting mirror 6 is changed to obtain a position at which an interference signal is obtained.

【0064】この位置での反射鏡6の位置を測長器9の
値を読み取る。この値と面aで求めた値を差し引くこと
で、求めるべき間隔が得られる。
The position of the reflecting mirror 6 at this position is read from the value of the length measuring device 9. By subtracting this value from the value obtained on the surface a, an interval to be obtained can be obtained.

【0065】ここで求めた値は空気換算長なので、測定
したい間隔の間の媒質が空気の場合、測長器9の表示値
がほぼそのまま求めるべき間隔となるが、間隔がガラス
のような光学的に密な媒質の場合、媒質の屈折率で割る
ことで実際の間隔を求めることができる。
Since the value obtained here is an air conversion length, if the medium between the intervals to be measured is air, the display value of the length measuring device 9 becomes the interval to be obtained almost as it is. In the case of a dense medium, the actual distance can be obtained by dividing the medium by the refractive index of the medium.

【0066】ここで、SLD等の低コヒーレンス光源を
使用しているので、光源の波長に広がりがある。したが
って、媒質が波長分散を持つ場合、分散を考慮した群屈
折率を使用することで、正確な間隔が求められる。
Here, since a low coherence light source such as an SLD is used, the wavelength of the light source has a wide range. Therefore, when the medium has chromatic dispersion, an accurate interval can be obtained by using the group refractive index in consideration of the dispersion.

【0067】群屈折率ng は次の式で表される。The group refractive index ng is represented by the following equation.

【0068】 ng =np −λ(dnp /dλ) ・・・式1 ここで、np では位相屈折率を表し、λは波長を表す。
この考え方は本発明全般に使用できる。
[0068] Here n g = n p -λ (dn p / dλ) ··· Equation 1, represents the phase refractive index at n p, lambda represents a wavelength.
This concept can be used throughout the present invention.

【0069】このとき、反射鏡6の位置は、被検光学系
14の屈折率と面間隔がおよそ既知の場合には、干渉縞
が生じる位置をあらかじめ計算しておくとよい。
At this time, the position of the reflection mirror 6 may be calculated in advance when the refractive index and the surface interval of the optical system 14 to be measured are known.

【0070】干渉縞が生じる反射鏡6の位置zj+1 は次
式でおよそ計算できる。
The position z j + 1 of the reflecting mirror 6 where the interference fringes occur can be approximately calculated by the following equation.

【0071】 ただし、zj+1 は、j番目の反射光で生じる干渉縞が発
生する反射鏡6の位置である ngiは、i番目とi+1番目の面の間の既知の媒質の群
屈折率である。ti は、i番目とi+1番目の面の間の
既知の間隔である。Cは、定数項で原点をどこにとるか
で変わる。
[0071] Here, z j + 1 is a position of the reflecting mirror 6 at which an interference fringe generated by the j-th reflected light is generated. N gi is a group refractive index of a known medium between the i-th surface and the (i + 1) -th surface. . t i is the known spacing between the i-th and (i + 1) -th surfaces. C varies depending on where the origin is taken in a constant term.

【0072】なお、本実施例では、干渉縞の検出に光電
検出器を用いているが、干渉縞をスリガラス等のスクリ
ーン上に投影し、直接肉眼で観察してもよい。さらに、
光電検出器としてTVカメラを用いてCRTで干渉縞を
肉眼で観察してもよいし、波形モニター、オシロスコー
プ等で信号を観察してもよい。
In this embodiment, the photoelectric detector is used for detecting the interference fringes. However, the interference fringes may be projected on a screen such as a ground glass and observed directly with the naked eye. further,
The interference fringes may be observed with the naked eye on a CRT using a TV camera as a photoelectric detector, or the signals may be observed with a waveform monitor, an oscilloscope, or the like.

【0073】光電検出器8の前には偏光子31を設け
て、参照光と測定光の偏光状態をそろえることで干渉縞
のコントラストが向上する。
A polarizer 31 is provided in front of the photoelectric detector 8 to make the polarization states of the reference light and the measurement light uniform, thereby improving the contrast of interference fringes.

【0074】干渉信号のコントラストを上げたい場合
は、その他に、偏光子3の方位角を変化させ、偏光ビー
ムスプリッタ4における反射光と透過光の光量比を変え
て参照光と測定光の反射光の強度をそろえることで、干
渉縞のコントラストが向上する。精度を上げるために
は、参照光と測定光の光量比がほぼ等しくなる、つまり
1:20〜20:1になるのがよい。そのためには光路
中にフィルター等を適宜挿入するかあるいは反射率の異
なる反射鏡等を使えばよい。
When it is desired to increase the contrast of the interference signal, the azimuth of the polarizer 3 is changed, and the ratio of the amount of reflected light to the amount of transmitted light in the polarizing beam splitter 4 is changed. By making the intensities uniform, the contrast of interference fringes is improved. In order to improve the accuracy, it is preferable that the light amount ratio between the reference light and the measurement light be approximately equal, that is, 1:20 to 20: 1. For this purpose, a filter or the like may be appropriately inserted into the optical path, or a reflecting mirror having a different reflectance may be used.

【0075】なお、レンズ30は省略して、コリメータ
レンズ2を光軸方向に適宜移動させ、測定面の球心近傍
あるいは面頂近傍に測定光が入射させるようにしてもよ
い。このようにしても面間隔測定は可能である。
It is to be noted that the lens 30 may be omitted, and the collimator lens 2 may be appropriately moved in the optical axis direction so that the measuring light is made to enter near the spherical center or near the top of the measuring surface. Even in this manner, the surface interval measurement is possible.

【0076】また、レンズ30あるいはコリメータレン
ズ2は被検物により、適宜交換してもよい。
The lens 30 or the collimator lens 2 may be appropriately replaced depending on the test object.

【0077】測定対象としては、ズームレンズの面間隔
等の他に、レンズ面とフィルム面、レンズ面と圧板、レ
ンズ面とCCD撮像面の距離、カメラのファインダーの
プリズムの面間隔等を測定してもよい。
As the measurement object, in addition to the surface distance of the zoom lens, the distance between the lens surface and the film surface, the lens surface and the pressure plate, the distance between the lens surface and the CCD imaging surface, the surface distance between the prisms of the camera finder, and the like are measured. You may.

【0078】第1実施形態において、信号処理手段15
はなくてもよい。その場合は、信号処理手段15で行う
処理を手計算、電卓で行えばよい。このとき、レンズ倍
率、収差成分の補正など一部の計算処理は省略してもよ
い。
In the first embodiment, the signal processing means 15
May not be required. In that case, the processing performed by the signal processing means 15 may be manually calculated and performed by a calculator. At this time, some calculation processing such as correction of lens magnification and aberration components may be omitted.

【0079】以下、本発明に共通して言えることを述べ
る。
Hereinafter, what can be said in common to the present invention will be described.

【0080】光電検出器8として、固体撮像素子を用い
た場合、光電検出器8の出力はオシロスコープ、波形モ
ニター、テレビディスプレイ等で観察し、干渉信号の強
度がピークになる、あるいは干渉縞のコントラストがピ
ークとなる反射鏡の位置を求めて、レンズ面間隔を求め
てもよい。
When a solid-state image pickup device is used as the photoelectric detector 8, the output of the photoelectric detector 8 is observed with an oscilloscope, a waveform monitor, a television display, or the like, and the intensity of the interference signal reaches a peak or the contrast of the interference fringes. Alternatively, the position of the reflecting mirror at which the peak becomes may be obtained, and the lens surface interval may be obtained.

【0081】また、球心近傍あるいは面頂近傍に測定光
を入射させるときの許容範囲は、被検面への入射光ある
いは射出光の光軸に対する角度で±15°程度の誤差が
あってもよい。精密な測定の場合には誤差は±10°以
内にすればよい。なぜなら、測定には光軸近傍で生じる
干渉縞をつかえばよいからである。このとき、たいてい
の場合、干渉縞は同心円状になるがコントラストが比較
的見やすいので都合がよい。
The allowable range when the measuring light is made to enter the vicinity of the spherical center or the top of the surface is such that even if there is an error of about ± 15 ° with respect to the optical axis of the incident light or the emitted light to the surface to be measured. Good. In the case of precise measurement, the error may be within ± 10 °. This is because the interference fringes generated near the optical axis may be used for the measurement. At this time, in most cases, the interference fringes are concentric, but the contrast is relatively easy to see, which is convenient.

【0082】また、本発明は、平面でない光学素子、あ
るいはそれら光学素子を含む光学系の面間隔の測定に使
えるが、これらの場合、より精度の良い測定を行うため
に大切なことは、それら被検物へ入射する光束が非平行
であることである。これは、光束を被検非平面の球心近
傍あるいは面頂近傍に入射させるために有効である。
Further, the present invention can be used for measuring the plane distance of an optical element that is not a plane or an optical system including the optical element. In these cases, it is important to perform more accurate measurement. That is, the light beam incident on the test object is non-parallel. This is effective for causing the light beam to enter the vicinity of the spherical center or the top of the surface of the non-planar surface to be measured.

【0083】また、本発明は、光学素子の加工中の厚さ
の検査にも使える。光学素子がレンズの場合は、加工中
とは、レンズの屈折面の研磨、削り(精研削)中、レン
ズ1個の心取り加工中(コバの削り中)、レンズ組み立
て中の複数のレンズの面間隔調整と偏心調整(2個以上
のレンズの心合わせ)、接合レンズ後のレンズ肉厚管理
(接合レンズの心合わせ、接合レンズのレンズ厚、接着
剤の厚さ、エアースペース接合の場合のエアー間隔、両
レンズの心合わせ)が含まれる。
The present invention can also be used for inspecting the thickness of an optical element during processing. When the optical element is a lens, the term "under processing" means that during the polishing and shaving (fine grinding) of the refracting surface of the lens, during the centering of one lens (during edge cutting), and during the assembly of a plurality of lenses. Surface spacing adjustment and eccentricity adjustment (centering of two or more lenses), lens thickness management after cemented lens (centering of cemented lens, lens thickness of cemented lens, adhesive thickness, in case of air space joining) Air spacing, alignment of both lenses).

【0084】図5は、図4に示した干渉計を用いて研磨
皿40に貼った研磨加工中のレンズ41の中心の厚さを
測定する例を示す。レンズ41のb面は研磨前の砂ずり
後のざらざらした面でも研磨後の面でもよい。a面はあ
る程度光が透過する面の状態ならばよい。図中、42は
ピッチで、ピッチ42により研磨皿40とレンズ41を
固着する。
FIG. 5 shows an example in which the interferometer shown in FIG. 4 is used to measure the thickness of the center of the lens 41 being polished on the polishing plate 40 during polishing. The b surface of the lens 41 may be a rough surface after sanding before polishing or a surface after polishing. The surface a may be a surface through which light is transmitted to some extent. In the figure, reference numeral 42 denotes a pitch, and the polishing dish 40 and the lens 41 are fixed by the pitch 42.

【0085】図6に、干渉計の別の構成を示す。この構
成においては、低コヒーレンス光源1から出た光は、第
1の偏光ビームスプリッタ4で2つの偏光に分割され、
紙面に垂直な方向の振動方向を持つ光l(点線)は可動
プリズム43に入り、第2の偏光ビームスプリッタ4B
で、紙面内に振動方向を持つ光m(実線)で再度一つに
なる。
FIG. 6 shows another configuration of the interferometer. In this configuration, the light emitted from the low coherence light source 1 is split into two polarized lights by the first polarizing beam splitter 4,
Light 1 (dotted line) having a vibration direction perpendicular to the paper surface enters the movable prism 43, and enters the second polarizing beam splitter 4B.
Then, the light m (solid line) having the vibration direction in the paper becomes one again.

【0086】このとき、可動プリズム43の位置を図に
示した座標のx軸方向に動かすことで、光mの光路と光
lの光路の差Δを自由に変えることができる。被検レン
ズ41の予想される平均の厚さをts 、被検レンズ41
の群屈折率をngsとすると、 2ngs・(ts −2e)≦Δ≦2ngs・(ts +2e) ・・・式3 を満たすように可動プリズム43で光路差Δを変えられ
るようにしておく。Δは式3の範囲を含んでいればよ
く、式3の範囲を越えていてもよい。ここで、eは被検
レンズ41の厚さのバラツキ量である。
At this time, by moving the position of the movable prism 43 in the x-axis direction of the coordinates shown in the figure, the difference Δ between the optical path of the light m and the optical path of the light 1 can be changed freely. The expected average thickness of the test lens 41 is represented by t s , and the test lens 41
When the group index of the a n gs, 2n gs · (t s -2e) ≦ Δ ≦ 2n gs · (t s + 2e) to be changed optical path difference delta movable prism 43 so as to satisfy Equation 3 Keep it. Δ only needs to include the range of Equation 3, and may exceed the range of Equation 3. Here, e is the amount of variation in the thickness of the test lens 41.

【0087】第2の偏光ビームスプリッタで一つになっ
た光は偏光子3で直線偏光となり、ハーフプリズム44
を透過し、レンズ30を経由して被検レンズ41に入射
する。被検レンズ41のa面、b面で反射した光は、レ
ンズ30、ハーフプリズム44、レンズ45を経由して
光電検出器8に入射し、TVモニター46に干渉光強度
が表示される。
The light united by the second polarizing beam splitter is converted into linearly polarized light by the polarizer 3,
Through the lens 30 and enters the lens to be tested 41 via the lens 30. The light reflected on the surfaces a and b of the test lens 41 enters the photoelectric detector 8 via the lens 30, the half prism 44, and the lens 45, and the interference light intensity is displayed on the TV monitor 46.

【0088】ここで、光mのうち、b面で反射する光
と、光lのうち、a面で反射する光とに着目すると、光
lは光mよりΔだけ遅れて波束が被検レンズ41に入射
するのだが、光lは手前のa面で反射するため、a面で
反射後の光lとb面で反射後の光mとは光路差がおよそ
2ngs・ts だけ縮まり、 Δ=2ngs・t41 ・・・式4 となったとき、干渉光の強度は最大となる。ここで、t
41は被検レンズ41の真の厚さである。
Here, focusing on the light reflected on the b-plane of the light m and the light reflected on the a-plane of the light 1, the light 1 is delayed by Δ from the light m, and the wave packet is changed to the lens to be measured. 41 I incident on it, the light l is to reflect in front of a plane, the optical path difference shrinks by about 2n gs · t s is the light m after reflection by the light l and b face after reflection at a surface, Δ = 2ngs · t 41 ... Equation 4 When the following expression is satisfied , the intensity of the interference light becomes maximum. Where t
41 is the true thickness of the test lens 41.

【0089】したがって、式3の範囲又はその近傍でΔ
を変えることで干渉光強度あるいは干渉縞のコントラス
トが最大になるようにすれば、式4からt41が求まる訳
である。
Therefore, in the range of Expression 3 or in the vicinity thereof, Δ
If the intensity of the interference light or the contrast of the interference fringes is maximized by changing the value of t, t 41 can be obtained from Equation 4.

【0090】この例では、レンズ30と被検レンズ41
との間の距離が変化しても、光l、mの共通光路となっ
ているため、t41の測定に影響を与えない点で優れてい
る。なお、被検レンズ41への入射光はレンズ30を用
いて被検レンズ41のa、b面の中間あたりを目指して
集光するように入射させればよい。そのようにすれば、
a、b面の面頂近傍に入射したことになり、見やすい干
渉縞を得ることができる。
In this example, the lens 30 and the test lens 41
Even if the distance is changed between, for that is the light l, common optical path of m, it is superior in that it does not affect the measurement of t 41. The light incident on the lens 41 to be measured may be incident using the lens 30 so as to converge on the middle of the a and b surfaces of the lens 41 to be measured. If you do that,
Since the light is incident near the tops of the surfaces a and b, an easily visible interference fringe can be obtained.

【0091】図6の例の測定対象はレンズ41に限ら
ず、ズームレンズ、単焦点レンズ、等、前述したように
本発明の他の実施例と同様な対象も測定可能である。特
に、複数のレンズからなる光学系の面間隔測定に効果が
ある。
The object to be measured in the example shown in FIG. 6 is not limited to the lens 41, but can also be used to measure objects such as a zoom lens, a single focus lens, and the like as described in the other embodiments of the present invention. In particular, it is effective for measuring the surface interval of an optical system including a plurality of lenses.

【0092】また、本発明に共通して言えることである
が、測定対象としては既に述べた対象に加えて、各種機
械、すなわち光学素子の製造装置、光学装置の製造装置
など、光学関連製造装置、あるいは光学以外の機械の面
間隔なども含まれる。光学素子、光学系、光学装置、各
種機械を含めて、特に面形状が非平面の場含に本発明は
有効である。面形状が非球面の場含には、光束入射点近
傍での接球面あるいは近似球面に対して、これまでの説
明を適用すればよい。たとえば、“球心”としては接球
面あるいは近似球面の球心を当てはめればよい。
Further, as can be said in common to the present invention, in addition to the above-mentioned objects to be measured, various machines, that is, optical device manufacturing devices, optical device manufacturing devices, etc. Or the surface spacing of machines other than optics. The present invention is effective for optical elements, optical systems, optical devices, and various machines, particularly when the surface shape is non-planar. In the case where the surface shape is an aspherical surface, the above description may be applied to a tangent spherical surface or an approximate spherical surface near the light beam incident point. For example, as the “sphere center”, a sphere center of a tangent spherical surface or an approximate spherical surface may be applied.

【0093】以上は、主としてトワイマングリーン型の
干渉計の例を述べたが、マッハツェンダー型、フィゾー
型あるいはファイバーを用いた干渉計で構成してもよ
い。
[0093] Although the above has mainly described an example of a Twyman-Green interferometer, it may be constituted by a Mach-Zehnder type, a Fizeau type or an interferometer using a fiber.

【0094】また、本発明の面間隔測定方法および装置
の適用例として、ズームレンズのレンズ群間隔測定があ
る。ズームレンズでは、ズーム状態の変化に伴う、各レ
ンズ群の移動量を正確に測定したいという要求が強い。
このとき、間隔を測定したいズームレンズを被検レンズ
として、参照側に被検レンズと同様の構成で、各ズーム
状態に対応するレンズ間隔が正確にわかっている基準光
学鏡筒を用いれば、基準光学系との差を本発明の方法で
測定することで、レンズ群間隔を正確に求めることがで
きる。
As an application example of the surface distance measuring method and apparatus of the present invention, there is a lens group distance measurement of a zoom lens. In a zoom lens, there is a strong demand to accurately measure the amount of movement of each lens group according to a change in zoom state.
At this time, if the zoom lens whose interval is to be measured is the test lens and the reference optical barrel having the same configuration as the test lens on the reference side and the lens interval corresponding to each zoom state is accurately known is used, By measuring the difference from the optical system by the method of the present invention, the lens group interval can be accurately obtained.

【0095】なお、各種光学機器の光学系の製造工程で
は、レンズ間隔が設計値どおりにできているか検査する
必要がしばしばあるが、本発明の面間隔測定器を光学系
の組立て時に使用すれば、レンズ間隔が容易に測定でき
るので、調整も簡単におこなえるようになる。
In the manufacturing process of the optical system of various optical instruments, it is often necessary to check whether the lens spacing is as designed, but if the surface spacing measuring device of the present invention is used when assembling the optical system. Since the distance between the lenses can be easily measured, the adjustment can be easily performed.

【0096】[0096]

【発明の効果】以上の説明から明らかなように、本発明
の面間隔測定方法および装置によって、レンズ、ミラ
ー、プリズム等の光学素子の面間隔が、非破壊、非接触
で高精度な測定が可能となる。
As is apparent from the above description, the method and apparatus for measuring the surface distance of the present invention makes it possible to measure the surface distance of optical elements such as lenses, mirrors, prisms, etc. in a non-destructive, non-contact and highly accurate manner. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の面間隔測定方法の基本的な構成を示す
図である。
FIG. 1 is a diagram showing a basic configuration of a surface distance measuring method of the present invention.

【図2】本発明の第1実施形態を示す図である。FIG. 2 is a diagram showing a first embodiment of the present invention.

【図3】本発明の第2実施形態を示す図である。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3実施形態を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

【図5】図4に示した干渉計を用いて研磨皿に貼った研
磨加工中のレンズの中心の厚さを測定する例を示す図で
ある。
5 is a diagram showing an example of measuring the thickness of the center of a lens affixed to a polishing plate during polishing using the interferometer shown in FIG. 4;

【図6】干渉計の別の構成を示す図である。FIG. 6 is a diagram showing another configuration of the interferometer.

【符号の説明】[Explanation of symbols]

1、101…低コヒーレンス光源 2…コリメータレンズ 3…偏光子(ポラライザ) 4、4B…偏光ビームスプリッタ 5、10…1/4波長板 6、103…反射鏡 7、11、13、20、22、30、45…レンズ 8、105…光電検出器 9…測長器 12、21…ピンホール 14、41…被検レンズ(被検光学系) 15…信号処理手段 23…参照レンズ 31…偏光子(ナラライザ) 40…研磨皿 42…ピッチ 43…可動プリズム 44…ハーフプリズム 46…TVモニター 102…光束分割素子 104…被検物 DESCRIPTION OF SYMBOLS 1, 101 ... Low coherence light source 2 ... Collimator lens 3 ... Polarizer (polarizer) 4, 4B ... Polarization beam splitter 5, 10 ... 1/4 wavelength plate 6,103 ... Reflection mirror 7, 11, 13, 20, 22, Reference numerals 30, 45: Lens 8, 105: Photoelectric detector 9: Length measuring device 12, 21, Pinhole 14, 41: Lens to be inspected (optical system to be inspected) 15: Signal processing means 23: Reference lens 31: Polarizer ( 40: Polishing plate 42: Pitch 43: Movable prism 44: Half prism 46: TV monitor 102: Light beam splitting element 104: Test object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今村文美 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2F065 AA22 AA30 BB05 CC22 DD03 FF51 FF61 FF67 GG02 GG04 GG07 HH03 HH13 JJ03 JJ18 JJ26 LL04 LL06 LL09 LL12 LL13 LL21 LL33 LL36 LL37 QQ13 SS13 UU07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Fumi, Imamura 2-43-2, Hatagaya, Shibuya-ku, Tokyo F-term (reference) 2F065 AA22 AA30 BB05 CC22 DD03 FF51 FF61 FF67 GG02 GG04 GG07 HH03 HH13 JJ03 JJ18 JJ26 LL04 LL06 LL09 LL12 LL13 LL21 LL33 LL36 LL37 QQ13 SS13 UU07

Claims (40)

【特許請求の範囲】[Claims] 【請求項1】 空間的コヒーレンス長が短い低コヒーレ
ンス光源と、該低コヒーレンス光源から射出された光束
を分割する光束分割手段と、該光束分割手段により分割
された一方の光束の光路長を変化させ光束を反射させる
手段を有する光路長変化手段と、前記光束分割手段によ
り分割された他方の光束が被検物たる光学系に入射して
反射した反射光と前記光路長変化手段からの反射光とを
重畳させて生ずる干渉信号を検出する光強度検出手段と
を備え、該光強度検出手段からの信号と前記光路長変化
手段からの情報を演算処理することにより間隔を測定す
ることを特徴とする面間隔測定方法および装置。
1. A low coherence light source having a short spatial coherence length, a light beam splitting means for splitting a light beam emitted from the low coherence light source, and changing an optical path length of one of the light beams split by the light beam splitting device. An optical path length changing means having a means for reflecting a light beam, and reflected light reflected by the other light beam split by the light beam splitting device incident on an optical system serving as a test object and reflected light from the light path length changing device. And a light intensity detecting means for detecting an interference signal generated by superimposing the optical path length, and an interval is measured by arithmetically processing a signal from the light intensity detecting means and information from the optical path length changing means. Surface distance measuring method and apparatus.
【請求項2】 前記低コヒーレンス光源から射出した光
を略平行光束にする光束成形手段と、前記略平行光束を
任意の偏光状態にする偏光状態変換手段と、前記略平行
光束を分割する光束分割手段と、該光束分割手段により
分割された一方の光束の偏光状態を変換する第2の偏光
状態変換手段と、該第2の偏光状態変換手段により偏光
状態が変化した光束を反射する反射手段と、該反射手段
を移動せしめる移動手段と、前記反射手段の移動量を測
定する移動量測定手段と、前記光束分割手段により分割
された他方の光束を集光する集光手段と、該集光手段に
よる集光位置に配置されたピンホールと、該ピンホール
からの光束を測定すべき面間隔を有する被検物へと導き
該被検物の任意の面へ集光せしめるような調整手段を伴
った光学素子と、前記光束分割手段で分割された2つの
光束を重ねあわせる光束合成手段と、該光束合成手段に
より重ね合わされた光束の光強度を電気信号に変換する
光電変換手段と、該光電変換手段からの信号と前記移動
量測定手段からの情報を処理する信号処理手段と、を具
備したことを特徴とする請求項1に記載の面間隔測定方
法および装置。
2. A light beam shaping means for converting light emitted from the low coherence light source into a substantially parallel light beam, a polarization state converting means for converting the substantially parallel light beam into an arbitrary polarization state, and a light beam splitting device for splitting the substantially parallel light beam Means, second polarization state conversion means for converting the polarization state of one of the light beams split by the light beam splitting means, and reflection means for reflecting the light beam whose polarization state has been changed by the second polarization state conversion means. Moving means for moving the reflecting means; moving amount measuring means for measuring the moving amount of the reflecting means; condensing means for condensing the other light beam divided by the light beam dividing means; With a pinhole arranged at a light condensing position, and adjusting means for guiding a light beam from the pinhole to a test object having a surface interval to be measured and condensing the light beam on an arbitrary surface of the test object. Optics and front A light beam combining means for superimposing the two light beams split by the light beam dividing means, a photoelectric conversion means for converting the light intensity of the light beam superposed by the light beam combining device into an electric signal, and a signal from the photoelectric conversion means. 2. The method and apparatus according to claim 1, further comprising signal processing means for processing information from the movement amount measuring means.
【請求項3】 前記低コヒーレンス光源として、スーパ
ールミネッセントダイオードを用いたことを特徴とす
る、請求項1に記載の面間隔測定方法および装置。
3. The method and apparatus according to claim 1, wherein a super luminescent diode is used as the low coherence light source.
【請求項4】 前記低コヒーレンス光源として、閾値電
流以下で動作させた半導体レーザを用いたことを特徴と
する、請求項1に記載の面間隔測定方法および装置。
4. The method and apparatus according to claim 1, wherein a semiconductor laser operated at a threshold current or less is used as the low coherence light source.
【請求項5】 前記低コヒーレンス光源として、パルス
レーザを用いたことを特徴とする、請求項1に記載の面
間隔測定方法および装置。
5. The method and apparatus according to claim 1, wherein a pulse laser is used as the low coherence light source.
【請求項6】 前記低コヒーレンス光源として、赤外光
を用いたことを特徴とする、請求項1に記載の面間隔測
定方法および装置。
6. The method and apparatus according to claim 1, wherein infrared light is used as the low coherence light source.
【請求項7】 前記低コヒーレンス光源として、可視光
を用いることを特徴とする、請求項1に記載の面間隔測
定方法および装置。
7. The method and apparatus according to claim 1, wherein visible light is used as the low coherence light source.
【請求項8】 前記光電変換手段として、フォトダイオ
ードまたはフォトマルチプライヤまたはラインセンサま
たは固体撮像素子を用いたことを特徴とする請求項1に
記載の面間隔測定方法および装置。
8. The method and apparatus according to claim 1, wherein a photodiode, a photomultiplier, a line sensor, or a solid-state image sensor is used as the photoelectric conversion unit.
【請求項9】 前記光束分割手段により分割された一方
の光束を反射させる手段として、被検物と光学的に等価
な構成の光学系を用いたことを特徴とする、請求項1に
記載の面間隔測定方法および装置。
9. The apparatus according to claim 1, wherein an optical system having a configuration optically equivalent to a test object is used as a unit for reflecting one of the light beams split by the light beam splitting unit. Surface distance measuring method and apparatus.
【請求項10】 被検物たる複数の光学素子から構成さ
れる光学系として、ズームレンズの光学系を用いたこと
を特徴とする、請求項1に記載の面間隔測定方法および
装置。
10. The method and apparatus according to claim 1, wherein an optical system of a zoom lens is used as an optical system including a plurality of optical elements to be inspected.
【請求項11】 光学系のアライメントにデジタルカメ
ラを用いたことを特徴とする、請求項1に記載の面間隔
測定方法および装置。
11. The method and apparatus according to claim 1, wherein a digital camera is used for alignment of the optical system.
【請求項12】 各種光学機器の光学系の組立て工程に
おいて、請求項1乃至11に記載の面間隔測定方法およ
び装置を用いてレンズの間隔調整をおこなう方法。
12. A method for adjusting the distance between lenses using the surface distance measuring method and apparatus according to claim 1 in an assembling step of an optical system of various optical devices.
【請求項13】 空間的コヒーレンス長が短い低コヒー
レンス光源と、該低コヒーレンス光源から射出された光
束を分割する光束分割手段と、該光束分割手段により分
割された一方の光束の光路長を変化させる光路長変化手
段と、前記光束分割手段により分割された他方の光束が
被検物たる光学系に入射し、該光学系からの反射光また
は透過光と、前記光路長変化手段を経由した光束とを重
畳させて生ずる干渉信号を検出し、前記光路長変化手段
からの情報とから、間隔を測定することを特徴とする面
間隔測定方法および装置。
13. A low coherence light source having a short spatial coherence length, a light beam splitting means for splitting a light beam emitted from the low coherence light source, and changing an optical path length of one of the light beams split by the light beam splitting device. Light path length changing means, the other light beam split by the light beam splitting means is incident on the optical system as the test object, reflected light or transmitted light from the optical system, and the light beam passing through the light path length changing means And an apparatus for detecting an interference signal generated by superimposing the distance and measuring an interval from the information from the optical path length changing means.
【請求項14】 前記低コヒーレンス光源から射出した
光を略平行光束にする光束整形手段と、前記略平行光束
を任意の偏光状態にする偏光状態変換手段と、前記略平
行光束を分割する光束分割手段と、該光束分割手段によ
り分割された一方の光束の偏光状態を変換する第2の偏
光状態変換手段と、該第2の偏光状態変換手段により偏
光状態が変化した光束を反射する反射手段と、該反射手
段を移動せしめる移動手段と、前記反射手段の移動量を
測定する移動量測定手段と、前記光束分割手段により分
割された他方の光束の偏光状態を変換する第3の偏光状
態変換手段と、該第3の偏光状態変換手段により偏光状
態が変化した光束を測定すべき面間隔を有する被検物た
る光学系へと導き、測定すべき面の略球心または面頂に
向かって光束が入射するような調整手段を伴った光学素
子と、前記光束分割手段で分割された2つの光束を重ね
合わせる光束合成手段と、該光束合成手段により重ね合
わされた光束の光強度を電気信号に変換する光電変換手
段と、該光電変操手段からの信号と前記移動量測定手段
からの情報とから、面間隔を測定することを特徴とする
請求項13記載の面間隔測定方法および装置。
14. A light beam shaping means for converting light emitted from the low coherence light source into a substantially parallel light beam, a polarization state converting means for converting the substantially parallel light beam into an arbitrary polarization state, and a light beam splitting device for splitting the substantially parallel light beam Means, second polarization state conversion means for converting the polarization state of one of the light beams split by the light beam splitting means, and reflection means for reflecting the light beam whose polarization state has been changed by the second polarization state conversion means. Moving means for moving the reflecting means; moving amount measuring means for measuring the moving amount of the reflecting means; and third polarization state converting means for converting the polarization state of the other light beam split by the light beam splitting means. And guiding the light beam whose polarization state has been changed by the third polarization state conversion means to an optical system as a test object having a surface interval to be measured, and toward the substantially spherical center or the top of the surface to be measured. Is incident An optical element having an adjusting means for performing the operation, a light beam combining means for superimposing two light beams split by the light beam dividing means, and a photoelectric device for converting the light intensity of the light beam superposed by the light beam combining means into an electric signal. 14. The method and apparatus according to claim 13, wherein a plane distance is measured from a conversion unit, a signal from the photoelectric conversion unit, and information from the movement amount measuring unit.
【請求項15】 前記低コヒーレンス光源から射出した
光を略平行光束にする光束整形手段と、前記略平行光束
を分割する光束分割手段と、該光束分割手段により分割
された一方の光束を反射する反射手段と、該反射手段を
移動せしめる移動手段と、前記反射手段の移動量を測定
する移動量測定手段と、前記光束分割手段により分割さ
れた他方の光束を測定すべき面間隔を有する被検物たる
光学系へと導き、該被検物の任意の面で反射した反射光
と、前配光路長変化手段からの反射光とを重畳させて生
ずる干渉信号を検出する光強度検出手段とを備え、該光
強度を電気信号に変換する光電変換手段と、該光電変換
手段からの信号と前記移動量測定手段からの情報とか
ら、面間隔を測定することを特徴とする請求項13記載
の面間隔測定方法および装置。
15. A light beam shaping device for converting light emitted from the low coherence light source into a substantially parallel light beam, a light beam splitting device for splitting the substantially parallel light beam, and reflecting one of the light beams split by the light beam splitting device. A reflecting means, a moving means for moving the reflecting means, a moving amount measuring means for measuring a moving amount of the reflecting means, and a test object having a surface interval for measuring the other light beam divided by the light beam dividing means. A light intensity detecting means for detecting an interference signal generated by superimposing the reflected light reflected on an arbitrary surface of the test object and the reflected light from the pre-distribution path length changing means. The photoelectric conversion device for converting the light intensity into an electric signal, and a surface interval is measured from a signal from the photoelectric conversion device and information from the movement amount measurement device. Surface spacing measurement method and And equipment.
【請求項16】 前記低コヒーレンス光源から射出した
光を所望の形状の光束に整形する光束整形手段と、光束
を所望の偏光状態にする偏光状態変換手段と、光束分割
手段と、該光束分割手段により分割された一方の光束の
偏光状態を変換する第2の偏光状態変換手段と、該第2
の偏光状態変換手段により偏光状態が変化した光束を反
射する反射手段と、該反射手段を移動せしめる移動手段
と、前記反射手段の移動量を測定する移動量測定手段
と、前記光束分割手段により分割された他方の光束の偏
光状態を変換する第3の偏光状態変換手段と、該第3の
偏光状態変換手段により偏光状態が変化した光束を測定
すべき面間隔を有する被検物たる光学系へと導き、測定
すべき面に向かって光束が入射するような調整手段を伴
った光学素子と、前記光束分割手段で分割された2つの
光束を重ね合わせる光束合成手段と、該光束合成手段に
より重ね合わされた光束の光強度を電気信号に変換する
光電変換手段と、該光電変換手段からの信号と前記移動
量測定手段からの惰報とから、面間隔を測定することを
特徴とする請求項13記載の面間隔測定方法および装
置。
16. A light beam shaping device for shaping light emitted from the low coherence light source into a light beam having a desired shape, a polarization state converting device for converting the light beam into a desired polarization state, a light beam splitting device, and the light beam splitting device. Second polarization state conversion means for converting the polarization state of one of the light beams split by
Reflecting means for reflecting a light beam whose polarization state has been changed by the polarization state converting means, moving means for moving the reflecting means, moving amount measuring means for measuring the moving amount of the reflecting means, and splitting by the light beam dividing means. To the third polarization state conversion means for converting the polarization state of the other light beam, and the optical system as the test object having a surface interval to measure the light beam whose polarization state has been changed by the third polarization state conversion means. And an optical element with an adjusting unit that allows the light beam to enter the surface to be measured, a light beam combining unit that superimposes the two light beams split by the light beam dividing unit, and a light beam combining unit that overlaps the two light beams. 2. A photoelectric conversion means for converting the light intensity of the light beam into an electric signal, and a surface interval is measured from a signal from the photoelectric conversion means and coast information from the movement amount measuring means. Surface distance measuring method and apparatus according.
【請求項17】 コヒーレンス長が短い光源から射出さ
れた光束を光束分割素子により分割し、一方は参照光と
して反射部材で反射され、他方は測定光として間隔や厚
さを測定すべき被検物へと導き、前記参照光および測定
光を前記光束分割素子で重ねあわせ、被検物の一方の面
からの反射光と、前記反射部材からの反射光との光路長
差が光源のコヒーレンス長以内のときに生ずる干渉信号
を検出し、被検物の他方の面からの反射光に対し、前記
反射部材を移動して光路長を変化させ干渉信号が得られ
たとき、前記反射部材の移動量から前記被検物の間隔を
測定することを特徴とする光学素子または光学系または
光学装置の面間隔を求める方法または装置。
17. A light beam emitted from a light source having a short coherence length is split by a light beam splitting element, one of which is reflected by a reflecting member as reference light, and the other is an object to be measured whose distance or thickness is to be measured as measuring light. And the reference light and the measurement light are overlapped by the light beam splitting element, and the optical path length difference between the reflected light from one surface of the test object and the reflected light from the reflecting member is within the coherence length of the light source. The interference signal generated at the time of is detected, and the reflected light from the other surface of the test object is moved to move the reflecting member to change the optical path length, and when the interference signal is obtained, the moving amount of the reflecting member A method or apparatus for determining a surface distance of an optical element, an optical system, or an optical device, wherein the distance between the test objects is measured from the distance.
【請求項18】 低コヒーレンス光源から射出された光
束を参照光と被検物へ入射する測定光とに分割し、被検
物から反射された測定光と参照光とを干渉させて、その
干渉信号から面間隔を求める方法または装置。
18. A light beam emitted from a low coherence light source is split into reference light and measurement light incident on a test object, and the measurement light reflected from the test object and the reference light interfere with each other, and the interference occurs. A method or device for determining the surface spacing from a signal.
【請求項19】 コヒーレンス長が短い光源から射出さ
れた光束を光束分割手段により分割し、一方を参照光
と、他方は測定光として間隔を測定すべき被検物へと導
き、前記参照光と測定光を重畳させ、光学素子または光
学系または光学装置または各種機械の面間隔を求める方
法または装置。
19. A light beam emitted from a light source having a short coherence length is split by a light beam splitting unit, one of which is guided as a reference beam, and the other is guided as a measuring beam to an object to be measured. A method or apparatus for superimposing measurement light to determine the surface spacing of an optical element, an optical system, an optical device, or various machines.
【請求項20】 コヒーレンス長が短い光源を用いた干
渉計と、前記干渉計の光路中に被検物を配置して干渉を
生じさせ、光学素子または光学系または光学装置または
各種機械の面間隔を求める方法または装置。
20. An interferometer using a light source having a short coherence length, and a test object arranged in an optical path of the interferometer to cause interference, thereby causing an optical element, an optical system, an optical device, or a surface interval between various machines. Method or device to seek.
【請求項21】 コヒーレンス長の短い光源と、測定光
光路と、参照光光路とを備え、被測定物に前記光源から
の光を入射し、その出射光と参照光光路の光を干渉させ
て、光学素子または光学系または光学装置または各種機
械の面間隔を求める方法または装置。
21. A light source having a short coherence length, a measurement light path, and a reference light path, wherein light from the light source is incident on an object to be measured, and the emitted light and the light on the reference light path interfere with each other. A method or an apparatus for determining a surface interval of an optical element or an optical system or an optical device or various machines.
【請求項22】 被測定面に非平面を含むことを特徴と
する請求項19から21の何れか1項記載記載の光学素
子または光学系または光学装置または各種機械の面間隔
を求める方法または装置。
22. A method or apparatus for determining a surface interval of an optical element, an optical system, an optical device, or various machines according to claim 19, wherein the surface to be measured includes a non-planar surface. .
【請求項23】 被測定物に入射する光路中に少なくと
も1枚のレンズを含むことを特徴とする請求項19から
21の何れか1項記載記載の光学素子または光学系また
は光学装置または各種機械の面間隔を求める方法または
装置。
23. An optical element, an optical system, an optical device, or various machines according to claim 19, wherein at least one lens is included in an optical path incident on the object to be measured. Method or device for determining the surface spacing of
【請求項24】 共通光路中に少なくとも1枚のレンズ
を含むことを特徴とする請求項19から21の何れか1
項記載記載の光学素子または光学系または光学装置また
は各種機械の面間隔を求める方法または装置。
24. The method according to claim 19, wherein at least one lens is included in the common optical path.
A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines according to the item.
【請求項25】 被測定物がズームレンズを含むことを
特徴とする請求項19から21の何れか1項記載記載の
光学素子または光学系または光学装置または各種機械の
面間隔を求める方法または装置。
25. A method or apparatus for determining a surface interval of an optical element, an optical system, an optical device, or various machines according to claim 19, wherein the object to be measured includes a zoom lens. .
【請求項26】 レンズ厚を測定するときに、群屈折率
を用いることを特徴とする請求項19から21の何れか
1項記載記載の光学素子または光学系または光学装置ま
たは各種機械の面間隔を求める方法または装置。
26. The surface spacing of an optical element, an optical system, an optical device, or various machines according to claim 19, wherein a group refractive index is used when measuring a lens thickness. Method or device to seek.
【請求項27】 干渉縞をTVモニター上で観察するこ
とを特徴とする請求項19から21の何れか1項記載記
載の光学素子または光学系または光学装置または各種機
械の面間隔を求める方法または装置。
27. The method according to claim 19, wherein the interference fringes are observed on a TV monitor. apparatus.
【請求項28】 同心円状の干渉縞またはその一部の縞
を見ることを特徴とする請求項19から21の何れか1
項記載記載の光学素子または光学系または光学装置また
は各種機械の面間隔を求める方法または装置。
28. The method according to claim 19, wherein the concentric interference fringes or a part thereof are viewed.
A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines according to the item.
【請求項29】 被検物に対し、非平行光束を入射させ
ることを特徴とする請求項19から21の何れか1項記
載記載の光学素子または光学系または光学装置または各
種機械の面間隔を求める方法または装置。
29. An optical element, an optical system, an optical device, or various machines according to claim 19, wherein a non-parallel light beam is made incident on the test object. The method or device to be sought.
【請求項30】 球心近傍あるいは面頂近傍に測定光を
入射させるときの光束の光軸に対する角度が光学的理論
値に対し、±15°以内であることを特徴とする請求項
19から21の何れか1項記載記載の光学素子または光
学系または光学装置または各種機械の面間隔を求める方
法または装置。
30. The method according to claim 19, wherein the angle of the light beam with respect to the optical axis when the measuring light is incident near the spherical center or near the surface top is within ± 15 ° with respect to the theoretical optical value. A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines according to any one of the preceding claims.
【請求項31】 被検物が加工中の光学素子であること
を特徴とする請求項19から21の何れか1項記載記載
の光学素子または光学系または光学装置または各種機械
の面間隔を求める方法または装置。
31. The surface spacing of an optical element, an optical system, an optical device, or various machines according to claim 19, wherein the test object is an optical element being processed. Method or equipment.
【請求項32】 コヒーレンス長の短い光源からの光束
に異なる複数の光路長を与えた上で、被検物に入射し、
反射光の干渉光を調べることで光学素子または光学系ま
たは光学装置または各種機械の面間隔を求める方法また
は装置。
32. After giving a plurality of different optical path lengths to a light beam from a light source having a short coherence length, the light beam enters a test object,
A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines by examining interference light of reflected light.
【請求項33】 コヒーレンス長の短い光源からの光束
を複数に分割し、それぞれ異なる光路長を与えた上で、
被検物に入射し、反射光の干渉光を調べることで光学素
子または光学系または光学装置または各種機械の面間隔
を求める方法または装置。
33. A light beam from a light source having a short coherence length is divided into a plurality of light beams, and different light path lengths are given.
A method or apparatus for determining the surface spacing of an optical element, an optical system, an optical device, or various machines by investigating interference light of reflected light that is incident on a test object.
【請求項34】 コヒーレンス長の短い光源からの光束
を複数に分割し、それぞれ異なる光路長を与えた上で、
統合し、その光束を被検物に入射し、反射光の干渉光強
度、あるいは干渉縞のコントラストを調べることで光学
素子または光学系または光学装置または各種機械の面間
隔を求める方法または装置。
34. A light beam from a light source having a short coherence length is divided into a plurality of light beams, each having a different optical path length, and
A method or apparatus that integrates the light flux, enters the test object, and checks the interference light intensity of reflected light or the contrast of interference fringes to determine the surface spacing of an optical element, an optical system, an optical device, or various machines.
【請求項35】 コヒーレンス長が短い光源を用いた干
渉計と、前記干渉計の光路中に被検物を配置して干渉を
生じさせる面間隔を求める方法または装置。
35. An interferometer using a light source having a short coherence length, and a method or an apparatus for arranging a test object in an optical path of the interferometer and obtaining a surface interval causing interference.
【請求項36】 コヒーレンス長の短い光源と、測定光
光路と、参照光光路とを備え、被測定物に前記光源から
の光を入射し、その出射光と参照光光路の光を干渉させ
て面間隔を求める方法または装置。
36. A light source having a short coherence length, a measurement light path, and a reference light path, wherein light from the light source is made incident on an object to be measured, and emitted light and light in the reference light path are caused to interfere with each other. A method or device for determining the surface spacing.
【請求項37】 低コヒーレンス光源から射出した光束
を光束分割素子で分割し、一方は参照光として反射鏡で
反射され、他方は測定光として間隔を測定すべき被検物
へと導かれ、前記参照光の光路長が可変できるようにな
っており、前記参照光と前記測定光とは前記光束分割素
子で重なり合わされ、被検物の任意のの面からの反射光
と前記反射鏡からの反射光との光路長差が前記光源のコ
ヒーレンス長以内であれば干渉を生じ、光電検出器でそ
の干渉信号が検出され、次に、被検物のもう一つの面か
らの反射光に対し、前記反射鏡を移動して光路長を変化
させ前記光電検出器で干渉信号が得られたとき、前記反
射鏡の移動距離を測定することにより前記2つの面の間
隔を求めることを特徴とする面間隔測定方法および装
置。
37. A light beam emitted from the low coherence light source is split by a light beam splitting element, one of which is reflected by a reflecting mirror as reference light, and the other is guided to a test object to be measured as a measuring light, and the distance is measured. The optical path length of the reference light can be changed, the reference light and the measurement light are overlapped by the light beam splitting element, and the reflected light from any surface of the test object and the reflection from the reflecting mirror are reflected. If the optical path length difference with light is within the coherence length of the light source, interference occurs, the interference signal is detected by the photoelectric detector, and then, for reflected light from another surface of the test object, When a reflection mirror is moved to change an optical path length and an interference signal is obtained by the photoelectric detector, a distance between the two surfaces is obtained by measuring a movement distance of the reflection mirror. Measurement method and device.
【請求項38】 低コヒーレンス光源から光束が射出さ
れ、その光束を光束分割素子で測定光と参照光に分割
し、測定光側には複数のレンズ面の面間隔を測定すべき
被検物たるレンズを配置し、参照光側には反射鏡を設置
し、参照光側光路の光路長と測定光側光路の光路長との
光路差が光源のコヒーレンス長以内に調整できるように
参照光側光路の光路長が可変になっており、この測定光
側光路と参照光側光路とを重なり合わせ、その重なり合
った光路を光電検出器で受光して光源のコヒーレンス長
以内での光路差による干渉縞の発生を検出できるように
し、 まず、被検レンズ面の一つのレンズ面にて干渉縞を検出
し、次に他の被検レンズ面にて干渉縞を検出すべく、前
記他の被検レンズ面による測定光側光路の光路長に対し
て光路長差を光源のコヒーレンス長以内にするように参
照光側光路の光路長を変化させ、前記他の被検レンズ面
にて干渉縞を検出させ、このときの参照光側光路の光路
長の変化量によって前記被検レンズ面と前記他の被検レ
ンズ面との面間隔を測定する面間隔測定方法および装
置。
38. A light beam is emitted from a low coherence light source, and the light beam is split into a measuring beam and a reference beam by a beam splitting element. A lens is arranged, a reflecting mirror is installed on the reference light side, and the reference light side optical path is adjusted so that the optical path difference between the reference light side optical path and the measurement light side optical path can be adjusted within the coherence length of the light source. The measurement optical side optical path and the reference optical side optical path are overlapped, and the overlapped optical path is received by the photoelectric detector, and the interference fringes due to the optical path difference within the coherence length of the light source are obtained. First, an interference fringe is detected on one lens surface of the lens surface to be detected, and then the other lens surface to be detected is detected on another lens surface to be detected. Optical path length difference with respect to the optical path length of the measuring light side optical path The optical path length of the reference light side optical path is changed so as to be within the coherence length of the reference light path, interference fringes are detected on the other lens surface to be measured, and the amount of change in the optical path length of the reference light side optical path at this time is changed. A method and apparatus for measuring a surface distance between an inspection lens surface and the another lens surface to be measured.
【請求項39】 前記被検レンズ面の曲面による測定誤
差を減少させるように、前記測定光側光路の光束の直径
(R0 )が前記被検レンズ面の直径(Rs )に対して、
2/3以下(3R0 <2Rs )となるように光束径を変
化させる光学素子(例えば、光源近傍あるいはコリメー
タレンズ近傍に配置した開口)を光路中に配置したこと
を特徴とする請求項38記載の面間隔測定方法および装
置。
39. The diameter (R 0 ) of the luminous flux of the optical path on the measurement light side with respect to the diameter (R s ) of the lens surface to be measured so as to reduce the measurement error due to the curved surface of the lens surface to be measured.
39. An optical element (for example, an opening arranged near a light source or a collimator lens) for changing a light beam diameter so as to be 2 or less (3R 0 <2R s ) is arranged in an optical path. The method and apparatus for measuring a surface distance according to the description.
【請求項40】 前記測定光側光路の光路長に対して光
路長差を光源のコヒーレンス長以内にするように参照光
側光路の光路長を変化させるため、前記参照光側光路中
に配置された反射鏡が光路に沿って移動可能にセッティ
ングされていることを特徴とする請求項38記載の面間
隔測定方法および装置。
40. An optical path provided in the reference light side optical path for changing the optical path length of the reference light side optical path so that the optical path length difference with respect to the optical path length of the measurement light side optical path is within the coherence length of the light source. 39. The method and apparatus according to claim 38, wherein the reflecting mirror is set so as to be movable along an optical path.
JP11154540A 1998-12-25 1999-06-02 Plane-to-plane space measuring apparatus Pending JP2000241128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154540A JP2000241128A (en) 1998-12-25 1999-06-02 Plane-to-plane space measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37108998 1998-12-25
JP10-371089 1998-12-25
JP11154540A JP2000241128A (en) 1998-12-25 1999-06-02 Plane-to-plane space measuring apparatus

Publications (2)

Publication Number Publication Date
JP2000241128A true JP2000241128A (en) 2000-09-08
JP2000241128A5 JP2000241128A5 (en) 2006-07-27

Family

ID=26482798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154540A Pending JP2000241128A (en) 1998-12-25 1999-06-02 Plane-to-plane space measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000241128A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310620A (en) * 2001-04-19 2002-10-23 Olympus Optical Co Ltd Lens middle-thickness measuring instrument and lens middle-thickness measuring method
JP2003098034A (en) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd Lens face spacing measuring device and measuring method
JP2006517028A (en) * 2003-01-16 2006-07-13 メディツィニシェス ラザーツェントラム リューベック ゲゼルシャフト ミット ベシュレンクテル ハフツング Non-contact temperature monitor and control method and apparatus
WO2006088186A1 (en) * 2005-02-21 2006-08-24 National University Corporation Nagoya University Apparatus for measuring space between two objects, method for measuring space between two objects and method for calibrating apparatus for measuring space between two objects
JP2008224568A (en) * 2007-03-15 2008-09-25 Fujitsu Ltd Surface shape measuring device and surface shape measuring method
JP2008292296A (en) * 2007-05-24 2008-12-04 Toray Eng Co Ltd Method for measuring film thickness of transparency film and its apparatus
JP2012232383A (en) * 2011-05-02 2012-11-29 Olympus Corp Apparatus and method for manufacturing optical element
JP2013076733A (en) * 2011-09-29 2013-04-25 Kyocera Crystal Device Corp Wafer bonding device
KR101457303B1 (en) * 2013-10-07 2014-11-04 조선대학교산학협력단 Apparatus and method for 3d measurements of surface, thickness and refractive indices of a wafer using nir light
CN105674903A (en) * 2016-01-08 2016-06-15 中国科学院上海光学精密机械研究所 Measurement device and measurement method for measuring mirror spacing of lens assembly
CN105674902A (en) * 2016-01-08 2016-06-15 中国科学院上海光学精密机械研究所 Mirror surface clearance measurement device and measurement method for optical lens assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109582A (en) * 1992-09-25 1994-04-19 Olympus Optical Co Ltd Integrated lens inspecting machine
JPH102855A (en) * 1996-06-17 1998-01-06 Rikagaku Kenkyusho Layer thickness and refractive index measuring method for layered structure and measuring apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109582A (en) * 1992-09-25 1994-04-19 Olympus Optical Co Ltd Integrated lens inspecting machine
JPH102855A (en) * 1996-06-17 1998-01-06 Rikagaku Kenkyusho Layer thickness and refractive index measuring method for layered structure and measuring apparatus therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310620A (en) * 2001-04-19 2002-10-23 Olympus Optical Co Ltd Lens middle-thickness measuring instrument and lens middle-thickness measuring method
JP2003098034A (en) * 2001-09-26 2003-04-03 Olympus Optical Co Ltd Lens face spacing measuring device and measuring method
JP2006517028A (en) * 2003-01-16 2006-07-13 メディツィニシェス ラザーツェントラム リューベック ゲゼルシャフト ミット ベシュレンクテル ハフツング Non-contact temperature monitor and control method and apparatus
WO2006088186A1 (en) * 2005-02-21 2006-08-24 National University Corporation Nagoya University Apparatus for measuring space between two objects, method for measuring space between two objects and method for calibrating apparatus for measuring space between two objects
JP2008224568A (en) * 2007-03-15 2008-09-25 Fujitsu Ltd Surface shape measuring device and surface shape measuring method
JP2008292296A (en) * 2007-05-24 2008-12-04 Toray Eng Co Ltd Method for measuring film thickness of transparency film and its apparatus
JP2012232383A (en) * 2011-05-02 2012-11-29 Olympus Corp Apparatus and method for manufacturing optical element
JP2013076733A (en) * 2011-09-29 2013-04-25 Kyocera Crystal Device Corp Wafer bonding device
KR101457303B1 (en) * 2013-10-07 2014-11-04 조선대학교산학협력단 Apparatus and method for 3d measurements of surface, thickness and refractive indices of a wafer using nir light
CN105674903A (en) * 2016-01-08 2016-06-15 中国科学院上海光学精密机械研究所 Measurement device and measurement method for measuring mirror spacing of lens assembly
CN105674902A (en) * 2016-01-08 2016-06-15 中国科学院上海光学精密机械研究所 Mirror surface clearance measurement device and measurement method for optical lens assembly

Similar Documents

Publication Publication Date Title
US4948253A (en) Interferometric surface profiler for spherical surfaces
US3958884A (en) Interferometric apparatus
US6909509B2 (en) Optical surface profiling systems
TW201205114A (en) Linear chromatic confocal microscope system
KR20120026108A (en) Equal-path interferometer
US20220187161A1 (en) Deflectometry Measurement System
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
CN108957781A (en) Optical lens adjustment and detection system and method
CN112556991A (en) Lens refractive index measuring device and measuring method thereof
JPH08122211A (en) Spectacle lens measuring device
JP3426552B2 (en) Shape measuring device
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2001091223A (en) Spacing measuring method and device
JP2008039750A (en) Device for height measuring
JPH02161332A (en) Device and method for measuring radius of curvature
US8269157B2 (en) Optical imaging system
CN210863101U (en) Lens refractive index measuring device
JPS5979104A (en) Optical device
WO2023098349A1 (en) Optical lens parameter measurement device and method
US4105335A (en) Interferometric optical phase discrimination apparatus
US20130235386A1 (en) Measurement apparatus
JPS6024401B2 (en) How to measure the physical constants of a measured object
JP2007093288A (en) Light measuring instrument and light measuring method
JP2020198999A (en) Optical interference tomographic imaging apparatus
JP2966950B2 (en) Sample displacement measuring device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080910