JPS5979104A - Optical device - Google Patents

Optical device

Info

Publication number
JPS5979104A
JPS5979104A JP57189761A JP18976182A JPS5979104A JP S5979104 A JPS5979104 A JP S5979104A JP 57189761 A JP57189761 A JP 57189761A JP 18976182 A JP18976182 A JP 18976182A JP S5979104 A JPS5979104 A JP S5979104A
Authority
JP
Japan
Prior art keywords
light
objective lens
photodetector
optical
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57189761A
Other languages
Japanese (ja)
Other versions
JPH0256604B2 (en
Inventor
Keiichi Yoshizumi
恵一 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57189761A priority Critical patent/JPS5979104A/en
Publication of JPS5979104A publication Critical patent/JPS5979104A/en
Publication of JPH0256604B2 publication Critical patent/JPH0256604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To improve the measurement precision by detecting deviations of the position and the distribution of a reflected light due to the inclination of an object face to be irradiated and moving an object lens in the direction vertical to the optical axis in accordance with an error signal obtained from this detection output. CONSTITUTION:The light emitted from a Zeeman laser 9 having oscillation frequencies f1 and f2 is divided into lights of frequencies f2 and f1, which are polarized in two directions of polarization, by a lambda/4 plate 10. A beat frequency f1-f2 is detected by a photodetector 12. The light of f2 reaches a photodetector 15 by a polarizing prism 13. The light of f1 is reflected on the surface of an object 16 to be measured and is reflected totally by the polarizing prism 13 and reaches the photodetector 15. A beat frequency f1+DELTAf-f2 between frequencies f2 and f1+DELTAf is attained on the photodetector 15, and DELTAf is obtained on a basis of the difference between this beat frequency and the beat frequency f1-f2 obtained on the photodetector 12 and is integrated to obtain a displacement Z. The movement of an objective lens 20 in the Z-axis direction is measured by measuring the displacement of the object to be measured. Thus, the measurement precision is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、マツハツエンダ−干渉計型のレーザ干渉測長
器あるいは光へテロダイン法を利用したレーザ干渉測長
器を利用して面形状を測定する装置Nや、面に記録され
た情1/9あるいは欠陥を検出する装置等に使用される
光学装置であって、レーザ光を対物レンズで被照射面上
に絞し込み、その反射光から、被照射面の何らかの情報
、例えば表ta」の凹凸、反射率、欠陥などを検出した
り、反射光の波面のずれあるいは周波数のドプラーシフ
トから、面形状や面の@き等を測定したりする光学装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring a surface shape using a Matsuhatsu Ender interferometer type laser interferometric length measuring device or a laser interferometric length measuring device using an optical heterodyne method. This is an optical device used in devices that detect information 1/9 or defects recorded on a surface, and focuses laser light onto the irradiated surface using an objective lens, and detects the surface of the irradiated surface from the reflected light. Optical technology that detects some information on the irradiated surface, such as surface irregularities, reflectance, defects, etc., or measures surface shape, surface deviation, etc. from the wavefront shift of reflected light or Doppler shift of frequency. It is related to the device.

従来例の構成とその問題点 従来のこの種光学装置においては、第1図にボtように
、被照射l]1i (3)は、対物レンズ(2)の焦点
位置にあるが、この場合、反則光が対物レンズ(2)を
再びJ出シ過ぎると、入射光と同一の方向VC戻るとい
う性質がある。従って、反射光を11]びレンズ全使用
して結像すると、被照射面(3ンに少し傾きがあっても
、同一の点に結像される。従って、この結像点は不動点
となり、この結像点か、あるいはその近くに光検出器を
置いて情報の検出を行なっていた。ところが実)祭は、
このような従来装置においても、被照射面(3)の傾き
に対する許容度はきわめてきびしい。なぜならば、第1
図に示すように、被照射面(3)がθ、傾くと、反射光
ば2θ1傾くので、入射光が平行光の場合、対物レンズ
(2)透過後の反射光の中心位lifは、F、5in2
θ、だけ変化する。なおF、は対物レンズ(2)の焦点
距離である。この現象は光学システムに悪影響を及ぼす
ので、従来の装置における被照射面の傾きの許容度はき
わめてきびしい。
Structure of the conventional example and its problems In the conventional optical device of this type, as shown in Fig. 1, the irradiated object l]1i (3) is located at the focal position of the objective lens (2). , when the repulsed light passes through the objective lens (2) again, it returns in the same direction as the incident light. Therefore, when an image is formed using the reflected light and the entire lens, even if there is a slight inclination on the irradiated surface (3), the image will be formed at the same point. Therefore, this image forming point will be a fixed point. , information was detected by placing a photodetector at or near this imaging point.However, in the actual festival,
Even in such a conventional device, the tolerance for the inclination of the irradiated surface (3) is extremely strict. Because the first
As shown in the figure, when the irradiated surface (3) is tilted by θ, the reflected light is tilted by 2θ1, so if the incident light is parallel light, the center position lif of the reflected light after passing through the objective lens (2) is F ,5in2
It changes by θ. Note that F is the focal length of the objective lens (2). Since this phenomenon has a negative effect on the optical system, the tolerance of the tilt of the irradiated surface in conventional devices is extremely strict.

−例として、レーザ干渉測定器では0.005°以内、
光ティスフでは0.2°以内である。光ディスクでは、
この精度内に入るようシステムが設計されているが、干
渉測長器では普通被測定物にコーナキューブをJIX付
け、コーナキューブの動きで被測定物の動きを測定する
等の方法がとられている。
- For example, within 0.005° for a laser interferometer;
For photonics, it is within 0.2°. On optical discs,
The system is designed to be within this accuracy, but with interferometric length measuring instruments, a method such as attaching a JIX corner cube to the object to be measured and measuring the movement of the object by the movement of the corner cube is usually used. There is.

発明の一部J 本発明は上記従来の欠点を解消するもので、被1に4射
面が傾いていても、傾きが対物レンズの開口角以内であ
れば、反射光が入射光と同一の経路をたどシ、したがっ
て?&照射面の傾きに対する許容度が非常に大きい光学
装置を得ることを目的とする。
Part of the Invention J The present invention solves the above-mentioned conventional drawbacks. Even if the incident surface is tilted to the object 1, as long as the tilt is within the aperture angle of the objective lens, the reflected light is the same as the incident light. Follow the route, therefore? & The purpose is to obtain an optical device with very high tolerance to the tilt of the irradiation surface.

発明の構成 上記目的を達するため、本発明の光学装置i¥ケ」1、
放射光源とこの放射光源から放射された光を一定のスポ
ットサイズ及び広がυ角を持つ放射光に変換する光学系
とを備えた光放射手段と、この光放射手段からの放射光
を被照射物体面上に集光する対物レンズと、前記被照射
物体面からの反射光の一部を受光して前記?&照射物体
面の傾きによって生ずる前記反射光の位置や分布のずれ
を検出する第1の光検出器と、この第1の光検出器の出
力から得られる誤差信号に応じて前記対物レンズオだは
光放射手段を光軸に対して垂直な方向に移動させる駆動
手段とを有し、前記被照射物体面からの反射光が入射光
とほぼ同一光路をとる4’j+成としたものである。
Structure of the Invention In order to achieve the above object, an optical device of the present invention is provided.
A light emitting means comprising a synchrotron radiation source and an optical system that converts the light emitted from the synchrotron radiation source into synchrotron radiation having a fixed spot size and a spread angle υ; An objective lens condenses light onto the object surface, and receives a portion of the reflected light from the irradiated object surface. & A first photodetector that detects a shift in the position and distribution of the reflected light caused by the inclination of the irradiated object surface; and a driving means for moving the light emitting means in a direction perpendicular to the optical axis, and the light reflected from the surface of the object to be irradiated takes substantially the same optical path as the incident light.

実施例の説明 以ト、本発明の一実施例について、図面に基づいて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will now be described based on the drawings.

先ず、ノ占本「ムコな原理について第2図及び第3図に
より説明する。被照射面(4)が02傾くと、反射光は
2θ2傾き、対物レンズ(5)透過後の反射光の中心位
!tM、は(’;2s’u+2θ2だけ変化する。なお
F2は対物レンズ(5)の焦点距#tである。ところが
、対物レンズ(5)か、あるいは入射光の中心をF25
Inθ2だけ平行移動させれば、反射光は入射光と同一
の光路を戻る。すなわち第2図のように、反射光の位置
ずれがあれば、例えば反射光の一部を、四分割されてい
る光検出器(6)で受け、位置ずれに応じて発生する誤
差信号によって、対物レンズ(5)を光軸に対して垂直
な方向に動かし、第3図のように、反射光位置が一定に
なるようサーボをかける。光検出器の形状や誤差信号の
とp方は神々考えられる。例えば、反射光をビームスプ
リッタ(7)で分離しなくても、第4図のごとく入射光
の大きさの穴(8a)のあいた四分割の光検出器(8)
を使用すれば、誤差信号が得られる。
First, I will explain the principle of the ``muko'' in Noshihon with Figures 2 and 3. When the irradiated surface (4) is tilted by 02, the reflected light is tilted by 2θ2, and the center of the reflected light after passing through the objective lens (5). The position !tM changes by (';2s'u+2θ2.F2 is the focal length #t of the objective lens (5).However, if the objective lens (5) or the center of the incident light is
If it is translated by Inθ2, the reflected light returns along the same optical path as the incident light. In other words, as shown in FIG. 2, if there is a positional shift in the reflected light, a portion of the reflected light is received by the photodetector (6), which is divided into four parts, and an error signal generated in accordance with the positional shift is detected. The objective lens (5) is moved in a direction perpendicular to the optical axis, and servo is applied so that the position of the reflected light is constant, as shown in FIG. The shape of the photodetector and the direction of the error signal are highly conceivable. For example, even if the reflected light is not separated by a beam splitter (7), a four-part photodetector (8) with a hole (8a) the size of the incident light as shown in Figure 4 can be used.
Using , we can obtain the error signal.

壕だ、受光位置によって両側の端子に発生する電圧が変
わる、市販の光位置検出器を使用しても良い。
You can also use a commercially available optical position detector, which changes the voltage generated at both terminals depending on the light receiving position.

被照射面(4)が焦点位置からずれた場合、反射光の光
路は一定でなくなるので良くない。ヤこで例えば、反射
光をレンズと内柱レンズとで紋り込み、生じた非点収差
から誤差信号を取多出し、対物レンズ(5)するいは被
照射物体を光軸方向に動かし、フォーカスサーボをかけ
る。非点収差からフォーカス誤差イ8号全数り出す方法
は、最も一般的な方法であるが、他にナイフェツジ法等
種々の方式が知られており、本発明にかかる光学装置に
も使用1■能である。
If the irradiated surface (4) deviates from the focal position, the optical path of the reflected light will no longer be constant, which is not good. For example, the reflected light is reflected by the lens and the inner column lens, an error signal is extracted from the astigmatism that occurs, and the objective lens (5) or the object to be irradiated is moved in the direction of the optical axis. Apply focus servo. The method of calculating the total number of focus errors from astigmatism is the most common method, but various other methods such as the Naifezi method are also known, and they can also be used in the optical device according to the present invention. It is.

対物レンズ(5)あるいは被照射物体を上記の誤差信号
によって動かず駆動機構は、送りネジをモータで動かす
方法や、リニアモータを使用する等の方法がor能であ
る。
The driving mechanism that does not move the objective lens (5) or the object to be irradiated by the above-mentioned error signal can be a method of moving a feed screw with a motor, a method of using a linear motor, or the like.

レーザ干渉測長器に本発明にかかる光学装置を適用する
と、傾きを持った曲面の厚さを直接精密に測定すること
なども0J能である。被照射面(4)の傾きは対物レン
ズ(5)の開口角程度せで許各尽れるので、例えENA
 (開口数) −0,6の対物レンズ(5)を使用した
場合、開口角は光軸から36°であるので、±、300
程度の傾きを持った被照射面(4)まで十分測定”J’
 (+’r<である。但し、こうした使い方では、対物
レンズ〈5)に入射する入射光の光束径は、対物レンズ
(5)の入射瞳径よシ十分小さくしなければならない。
When the optical device according to the present invention is applied to a laser interferometric length measuring device, it is possible to directly and precisely measure the thickness of a curved surface with an inclination of 0J. The tilt of the irradiated surface (4) is limited by the aperture angle of the objective lens (5), so even if ENA
(Numerical aperture) When using the -0.6 objective lens (5), the aperture angle is 36° from the optical axis, so ±, 300
Sufficient measurement up to the irradiated surface (4) with a certain degree of inclination "J'
(+'r<. However, in such usage, the diameter of the luminous flux of the incident light that enters the objective lens (5) must be made sufficiently smaller than the entrance pupil diameter of the objective lens (5).

例えば、NAが06の対物レンズ(5)で、±30°の
傾きを持った被照射面(4)まで光束がけられることな
く測定0丁能である為には、入射光の光束径は対物レン
ズ(5)の入射瞳径の1/6以下である必要がある。
For example, in order for an objective lens (5) with an NA of 06 to be able to measure the irradiated surface (4) with an inclination of ±30° without vignetting, the diameter of the incident light beam must be It needs to be 1/6 or less of the entrance pupil diameter of the lens (5).

筐だ、入射光が発散光や集束光であった場合で、対物レ
ンズ(5)を光軸方向に動かすと、焦点位置がずれ、誤
差発生の原因となる。従ってこの場合は入射光が平行光
である方が良い。
However, when the incident light is diverging light or converging light, moving the objective lens (5) in the optical axis direction shifts the focal position, causing errors. Therefore, in this case, it is better that the incident light be parallel light.

被照射面(4)の傾きに応じて対物レンズ(5)を移動
させた場合、集光点の位置は対物レンズ(5)の移動量
だけ移動する。これは入射光が平行光であれば厳密に成
り立つ。上記のレーザ干渉測長器を利用した曲面厚をの
測定器や欠陥検査装置等においては、測定点の位置をX
−Y座標で知る必要がある。
When the objective lens (5) is moved according to the inclination of the irradiated surface (4), the position of the focal point moves by the amount of movement of the objective lens (5). This strictly holds true if the incident light is parallel light. In curved surface thickness measuring devices and defect inspection devices using the laser interferometric length measuring device mentioned above, the position of the measurement point is
-Need to know by Y coordinate.

この場合、測定点の位置は、被測定物の移動相:(X、
“。
In this case, the position of the measurement point is the mobile phase of the object to be measured: (X,
“.

Y、)に対物レンズ(5)の移動量(X2.Y、、 )
を加えた(X。
Movement amount of objective lens (5) (X2.Y,, )
added (X.

−1−X2.Y、 十Y2)になる。対物レンズ(5)
を移動させずに入射光を移動させだ場合は、測戻点位置
は動かない。
-1-X2. Y, 10Y2). Objective lens (5)
If the incident light is moved without moving, the return point position will not move.

レーザ干渉測長器は測定精度が0.01μn1才でと極
めて高いが、これに本発明にかかる光学装置を組合せる
と効果は非常に大きい。例えば、非球面レンズ面の精密
な形状測定は、従来技術的に極めて困難であるとされて
いた。非球面レンズ面は、X−Y座標に対する関数型に
よって厚さZの値がきめられ、形状が決定される。本発
明にかかる光学装置を利用すれば、レンズ而の任意のX
 −Y I!P標位置に対する厚さZの値をレーザ干渉
測長器の精度で測定できるので、実測寸法の、与えられ
た関数によシ導出された数値とのずれを失14間で目動
的に測定可能なシステムとなる。
Although the measurement accuracy of the laser interferometric length measuring device is extremely high at 0.01 .mu.m, the effect is very large when it is combined with the optical device according to the present invention. For example, it has been considered extremely difficult to precisely measure the shape of an aspherical lens surface in the prior art. The thickness Z of the aspherical lens surface is determined by the function type with respect to the X-Y coordinates, and the shape thereof is determined. By using the optical device according to the present invention, any X of the lens can be
-Y I! Since the value of thickness Z with respect to the P target position can be measured with the accuracy of a laser interferometer, the deviation of the actual measurement dimension from the value derived by the given function can be eliminated and measured manually within 14 minutes. It becomes a possible system.

第5図は、光ヘテロダイン法を利用したレーザ干渉測長
器に、本発明にかかる光学装作を適用した表面形状の測
定装置であり、以Fこれについて、iR,明する、発振
周波数f、、f2のゼーマンレーザ(9)から出だ光は
、λ/4板(10で、2つの偏光方向、つ1す、″市場
がit(面に框直な方向に偏波したf2の光と、紙面に
平行な方向に偏波しだflの光に分けられる。
FIG. 5 shows a surface shape measuring device in which the optical device according to the present invention is applied to a laser interferometric length measuring device using the optical heterodyne method. , the light emitted from the f2 Zeeman laser (9) is split into two polarization directions by a λ/4 plate (10). , the light is polarized in a direction parallel to the plane of the paper and is divided into light fl.

そして、ビームスプリッタUυで一部の光が分離きれ、
ヒート周波数(f、−f2)が光検出器θのによシ検出
される。ビームスプリッタ(+1)を通過した光のりち
f2の光は偏光プリズムa3によって上方に反引し、固
定ミラー(1弔で反射(−で光検出器aυ上に達する。
Then, some of the light is separated by the beam splitter Uυ,
The heat frequency (f, -f2) is detected by the photodetector θ. The light beam f2 that has passed through the beam splitter (+1) is retracted upward by the polarizing prism a3 and is reflected by the fixed mirror (1) (-) and reaches the photodetector aυ.

一方、flの光は被測定物OQの表面で反射するが、被
測定物Ut9が4多動すると、移動速度のZ1戊分■2
にダム0力によって分けられ、上記の位置サーボと〕A
−カスサーボの誤差信号を発生させる為、光検出器O→
(Ic上に達する。il記偏光プリズムロはP偏波が全
透過し、S偏波が一部反躬し、残シが透過する性質を持
つ。偏光プリズム0θを透過した反1=1光は、偏光プ
リヌ゛ム(ハ)で全反射し、光検出器(へ)上に達する
。光検出器Q9上でf2とf、+Δfとのビート周波数
f1+Δf−f2が得られ、光検出器@十で得られたビ
ート周波数f、−f2との差からΔfが求捷り、これを
積分して変位Zが求まる。こうして求めたZの測定精度
は、0.1〜0.01μ7/Z程没である。対物レンズ
(ホ)のZ方向の動きを測定して被jKJ射面の変位を
測定することができるが、この場合の測定精良ハ数μ2
21である。なお、c2])はビームスプリッタ、(4
)(ハ)はλ/4 t&、(財)〜(イ)はレンズ、(
ハ)は円柱レンズ、(ハ)は測定値表示部、いルは被測
定物測定位置表示部、(至)は対物レンズ駆動装置、4
31+1l−1:被測定物1ル動装置である。
On the other hand, the light fl is reflected by the surface of the object to be measured OQ, but when the object to be measured Ut9 moves 4 times, the moving speed Z1
divided by the dam zero force, the above position servo and]A
- Photodetector O→ to generate the error signal of the customer servo
(Achieves above Ic. The polarizing prism has the property of completely transmitting the P polarized wave, partially reflecting the S polarized wave, and transmitting the remaining light. , it is totally reflected by the polarization prinium (c) and reaches the photodetector (to).The beat frequency f1+Δf-f2 of f2, f, and +Δf is obtained on the photodetector Q9, and the photodetector @1 Δf is determined from the difference between the beat frequencies f and -f2 obtained in , and displacement Z is determined by integrating this.The measurement accuracy of Z determined in this way is approximately 0.1 to 0.01μ7/Z. It is possible to measure the movement of the objective lens (e) in the Z direction to measure the displacement of the plane of incidence on jKJ, but in this case, the measurement accuracy is the number μ2
It is 21. Note that c2]) is a beam splitter, (4
) (c) is λ/4 t&, (goods) ~ (a) are lenses, (
C) is a cylindrical lens, (C) is a measured value display section, I is a measured object measurement position display section, (to) is an objective lens drive device, 4
31+1l-1: An apparatus for moving one object to be measured.

発明の詳細 な説明したように本発明によれば、被照射面が傾いてい
ても、傾きが対物レンズの開口角以内であれば、反射光
が入射光と同一の経路をたどるので、被照射面の傾きに
苅する許容度が非常に大きな光学装置を得ることができ
、その工業的利用価値は極めて大である。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, even if the irradiated surface is tilted, as long as the inclination is within the aperture angle of the objective lens, the reflected light will follow the same path as the incident light. It is possible to obtain an optical device with a very large tolerance for adjusting the inclination of the surface, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の光学系における光路の説明図、第2
図及び第3図は本発明の実施例の京理説明図、第4図は
本発明の一実施、例における光学装置it(に使用され
る光検出器の説明図、第5図は本発明の一実施例におけ
る光学装置の概1洛構成図である。 (S) UV曽UIW (R)・・・光検出器、(9)
・・・ゼーマンレーザ、0()(2)の・・λ/4板、
回り)・・・ビームスプリッタ、UQ力・・偏光プリズ
ム、圓・・・固定ミラー、αQ・・・被測定物、(4)
・・・対物レンズ、(ハ)〜(イ)・・・レンズ、(イ
)・・・円柱レンズ、(ハ)・−・測定値表示部、翰・
・・被測定物測定位置表示部、CyJ・・・対物レンズ
駆動装置、色11・・・被測定物駆動装置 代理人   森  本  義  弘 第1図 第2図 第3図
Figure 1 is an explanatory diagram of the optical path in the optical system of a conventional device;
3 and 3 are explanatory diagrams of an embodiment of the present invention, FIG. 4 is an explanatory diagram of a photodetector used in an optical device IT (in an embodiment of the present invention), and FIG. It is a schematic diagram of an optical device in one embodiment of the present invention. (S) UV SOUIW (R)...Photodetector, (9)
... Zeeman laser, 0()(2)...λ/4 plate,
Circumference)...beam splitter, UQ force...polarizing prism, circle...fixed mirror, αQ...object to be measured, (4)
...Objective lens, (C) - (A)...Lens, (A)...Cylindrical lens, (C)--Measurement value display section, wire...
...Measurement object measurement position display section, CyJ...Objective lens drive device, color 11...Measurement object drive device agent Yoshihiro MorimotoFigure 1Figure 2Figure 3

Claims (1)

【特許請求の範囲】 1、放射光源とこの放射光源から放射された光を一定の
7ポツトサイズ及び広が多角を持つ放射光に変換する光
学系とを備えた光放射手段と、この光放射手段からの放
射光を被照射物体面上に集光する対物レンズと、前記被
照射物体面からの反射光の一部を受光して前記被照射物
体面の傾きによって生ずる前記反射光の位1にや分布の
ずれを検出する第1の光検出器と、この第1の光検出器
の出方から得られる誤差信号に応じてIii前記対物レ
ンし寸たは光放射手段を光軸に対して垂直な方向に移動
させる駆動手段とを有し、前記被照射物体面からの反射
光が入射光とほぼ同一光路をとる構成とした光学装置。 2、 被照射物体面からの反射光の一部を受光し。 被照射物体面の対物レンズによる放射光の集光位置から
のずれによって生ずる前記反射光の光路の変化を検出す
る第2の光検出器と、前記対物レンズと前記第2の光検
出器との間に位置し、前記反射光の光路を前記第2の光
検出器上で好適な焦点誤差信号を得ることのできる形に
変換する為の、光透過性あるいは反射性または遮光性の
光学手段とを備え、焦点誤差信号によって前記対物レン
ズまたは前記被照射物を光軸方向に移動させ、常に前記
被照射物体面上に集光位置を位置させる構成とした特許
請求の範囲第1項記載の光学装置。 3、放射光の対物レンズに入射する直前における光束径
を対物レンズの入射瞳よシ小さくした特許請求の範囲第
1項または第2項記載の光学装置。 4、放射光を、格子行光とした特#F a青水の範囲第
1項ないし第3項のいずれかに記載の光学装置。 5、 対物レンズの、放射光の光軸に苅して垂直な方向
の移動量全測定する手段を備えた特if!f謂求の範囲
第1項ないし第4項のいずれかに記載の光学装置。 6 放射光の光軸に対して垂直な方向への対物レンズの
移動量の測定値を、被照射物体の光() 軸に対して垂直な方向への動き量の測定値に加算する手
段を備えた特許請求の範囲第1項ないし第5項のいずれ
かに記載の光学装置。 7、 放射光の被照射物体面からの反射光と、前記放射
光の対物レンズに到達する前で一部分離された第2の放
射光、あるいは前記放射光とは別の第3の放射光を、同
一の受光面′!1:たけ光検出器上で干渉させる光学系
と、前記反射光と11■記第2又は第3の放射光との干
渉によって、前記受光面又はOiJ記光検光検出器上ず
る干渉縞の変化またはビート周波数の便化から、前記被
照射物体面の反位等の情報を検出する検出手段とを備え
た特許請求の範囲第1項ないし第6項のいずれかに記載
の光学装置+ffi 。
[Scope of Claims] 1. A light emitting means comprising a radiation light source and an optical system that converts the light emitted from the radiation light source into radiation having a fixed 7-pot size and a polygonal spread, and this light emitting means. an objective lens for condensing the emitted light from the irradiated object onto the surface of the irradiated object; and a first photodetector for detecting deviations in the optical distribution and distribution; an optical device having a driving means for moving in a vertical direction, and configured such that light reflected from the surface of the irradiated object follows substantially the same optical path as the incident light. 2. Receives part of the reflected light from the surface of the irradiated object. a second photodetector for detecting a change in the optical path of the reflected light caused by a deviation from a condensing position of the emitted light by the objective lens on the surface of the irradiated object; and a combination of the objective lens and the second photodetector. a light-transmissive, reflective, or light-blocking optical means located between, for converting the optical path of the reflected light into a form capable of obtaining a suitable focus error signal on the second photodetector; 2. The optical system according to claim 1, wherein the objective lens or the object to be irradiated is moved in the optical axis direction by a focus error signal, and the condensing position is always positioned on the surface of the object to be irradiated. Device. 3. The optical device according to claim 1 or 2, wherein the beam diameter of the emitted light just before it enters the objective lens is smaller than the entrance pupil of the objective lens. 4. The optical device according to any one of items 1 to 3, wherein the emitted light is lattice line light. 5. Special if equipped with a means to measure the total amount of movement of the objective lens in the direction perpendicular to the optical axis of the synchrotron radiation! f. The optical device according to any one of claims 1 to 4. 6. A means for adding the measured value of the amount of movement of the objective lens in the direction perpendicular to the optical axis of the synchrotron radiation to the measured value of the amount of movement of the irradiated object in the direction perpendicular to the light axis. An optical device according to any one of claims 1 to 5. 7. The reflected light from the surface of the object to be irradiated with the synchrotron radiation, and the second synchrotron radiation that is partially separated before the synchrotron radiation reaches the objective lens, or the third synchrotron radiation that is different from the synchrotron radiation. , the same light-receiving surface′! 1: Interference fringes on the light-receiving surface or the OiJ light analysis detector due to the interference between the reflected light and the second or third emitted light described in 11. The optical device+ffi according to any one of claims 1 to 6, further comprising a detection means for detecting information such as a reversal of the surface of the irradiated object from a change or a change in the beat frequency.
JP57189761A 1982-10-27 1982-10-27 Optical device Granted JPS5979104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189761A JPS5979104A (en) 1982-10-27 1982-10-27 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189761A JPS5979104A (en) 1982-10-27 1982-10-27 Optical device

Publications (2)

Publication Number Publication Date
JPS5979104A true JPS5979104A (en) 1984-05-08
JPH0256604B2 JPH0256604B2 (en) 1990-11-30

Family

ID=16246731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189761A Granted JPS5979104A (en) 1982-10-27 1982-10-27 Optical device

Country Status (1)

Country Link
JP (1) JPS5979104A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169706A (en) * 1984-02-14 1985-09-03 Olympus Optical Co Ltd Surface-state measuring device
JPS6184508U (en) * 1984-11-06 1986-06-04
JPS629211A (en) * 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd Optical measuring instrument
JPS62172208A (en) * 1986-01-27 1987-07-29 Osaka Seimitsu Kikai Kk Method for optically measuring shape
JPS62238403A (en) * 1986-04-09 1987-10-19 Mitsubishi Electric Corp Apparatus for measuring surface shape
JPS63275323A (en) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk Diagnostic apparatus
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
US5283630A (en) * 1991-02-04 1994-02-01 Matsushita Electric Industrial Co., Ltd. Error correcting method for measuring object surface using three-dimension measuring apparatus
US5488230A (en) * 1992-07-15 1996-01-30 Nikon Corporation Double-beam light source apparatus, position detecting apparatus and aligning apparatus
WO2016050453A1 (en) * 2014-10-03 2016-04-07 Asml Netherlands B.V. Focus monitoring arrangement and inspection apparatus including such an arragnement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169706A (en) * 1984-02-14 1985-09-03 Olympus Optical Co Ltd Surface-state measuring device
JPH056643B2 (en) * 1984-02-14 1993-01-27 Olympus Optical Co
JPH044166Y2 (en) * 1984-11-06 1992-02-07
JPS6184508U (en) * 1984-11-06 1986-06-04
JPS629211A (en) * 1985-07-05 1987-01-17 Matsushita Electric Ind Co Ltd Optical measuring instrument
JPH0455243B2 (en) * 1985-07-05 1992-09-02 Matsushita Electric Ind Co Ltd
JPS62172208A (en) * 1986-01-27 1987-07-29 Osaka Seimitsu Kikai Kk Method for optically measuring shape
JPS62238403A (en) * 1986-04-09 1987-10-19 Mitsubishi Electric Corp Apparatus for measuring surface shape
JPS63275323A (en) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk Diagnostic apparatus
US5283630A (en) * 1991-02-04 1994-02-01 Matsushita Electric Industrial Co., Ltd. Error correcting method for measuring object surface using three-dimension measuring apparatus
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
US5488230A (en) * 1992-07-15 1996-01-30 Nikon Corporation Double-beam light source apparatus, position detecting apparatus and aligning apparatus
WO2016050453A1 (en) * 2014-10-03 2016-04-07 Asml Netherlands B.V. Focus monitoring arrangement and inspection apparatus including such an arragnement
TWI571709B (en) * 2014-10-03 2017-02-21 Asml荷蘭公司 Focus monitoring arrangement and inspection apparatus including such an arragnement
US9921489B2 (en) 2014-10-03 2018-03-20 Asml Netherlands B.V. Focus monitoring arrangement and inspection apparatus including such an arrangement

Also Published As

Publication number Publication date
JPH0256604B2 (en) 1990-11-30

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US7466427B2 (en) Vibration-resistant interferometer apparatus
JPH0455243B2 (en)
JPS5979104A (en) Optical device
JPS6347606A (en) Apparatus for measuring shape of non-spherical surface
JPH02161332A (en) Device and method for measuring radius of curvature
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JPS6024401B2 (en) How to measure the physical constants of a measured object
JPS60104206A (en) Optical measuring device
JPH095018A (en) Device for measuring moving quantity
JP2591143B2 (en) 3D shape measuring device
JPS60211304A (en) Measuring instrument for parallelism
JP2966950B2 (en) Sample displacement measuring device
JPH0255722B2 (en)
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPS6370110A (en) Distance measuring apparatus
JPH11325848A (en) Aspherical surface shape measurement device
JPH02259512A (en) Integrated interference measuring instrument
JPS59211811A (en) Surface roughness measuring apparatus
JPH08166209A (en) Polygon mirror evaluating device
JPS6217607A (en) Optical clinometer
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JPH0510602B2 (en)
JPS63223510A (en) Surface shape measuring instrument