JPH05340726A - Noncontact probe for three-dimensional shape measuring instrument - Google Patents

Noncontact probe for three-dimensional shape measuring instrument

Info

Publication number
JPH05340726A
JPH05340726A JP17171792A JP17171792A JPH05340726A JP H05340726 A JPH05340726 A JP H05340726A JP 17171792 A JP17171792 A JP 17171792A JP 17171792 A JP17171792 A JP 17171792A JP H05340726 A JPH05340726 A JP H05340726A
Authority
JP
Japan
Prior art keywords
light
optical axis
optical system
interference
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17171792A
Other languages
Japanese (ja)
Inventor
Haruo Ogawa
治男 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17171792A priority Critical patent/JPH05340726A/en
Publication of JPH05340726A publication Critical patent/JPH05340726A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To obtain a noncontact probe for three-dimensional shape measuring instruments which can measure the shape of a surface to be measured with high accuracy. CONSTITUTION:Laser light directed to an optical axis shifting section 2 from a laser light source 1 comes out from the section 2 after the light is shifted perpendicularly to its optical axis in the section 2 and is divided into measuring light 9a and reference light 10 by means of a light dividing means 3. The measuring light 9a is focused onto a surface 8 to be inspected through an objective optical system 4 and reflected measuring light 9b from the surface 8 is directed to an interference optical system 5 after advancing through above-mentioned optical path in the opposite direction and passing through the means 13 and emitted from the system 5 as interference light 11 in which the light 9b interferes with the reference light 10. A detecting section 6 detects the light quantity of the light 11 and a signal processing section 7 finds the shape of the surface 8 by processing the light quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自由曲面又は非球面の
レンズやミラーの形状等を高精度に測定する3次元形状
測定装置に関し、より詳しくは、光学的手段による非接
触式プローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus for measuring the shape of a free-form or aspherical lens or mirror with high accuracy, and more particularly to a non-contact probe using optical means. Is.

【0002】[0002]

【従来の技術】従来、光学的手段による非接触式プロー
ブを用いた光学装置としては、例えば、特公平2−11
084号公報に開示された装置が知られている。この従
来装置の非接触式プローブについて、図5により説明す
る。図において、放射光源12は測定光(周波数f1
と参照光(周波数f2 )との2つの周波数の光を発する
もので、ここから放射された光は第1の光分離手段13
にて分離される。即ち、周波数f1 の測定光は第1の光
分離手段13内を直進し、さらに第2の光分離手段18
を通過して、対物レンズ14により集光して被測定物体
面22で反射する。そして、この反射光は上記光路を逆
行して再び第1の光分離手段13に入射する。一方、周
波数f2 の参照光は第1の光分離手段13にて図の上方
向に分離された後、干渉光学系15にて反射し、再び第
1の光分離手段13に入射する。これらの光はいずれも
集光レンズ16にて光検出器17に集光する。そして、
光検出器17で発生したビート周波数の変動を検出し
て、信号処理手段24で処理し、前記被測定物体面22
の変位を測定する。
2. Description of the Related Art Conventionally, as an optical device using a non-contact type probe by optical means, for example, Japanese Patent Publication No. 2-11.
The device disclosed in Japanese Patent No. 084 is known. The non-contact type probe of this conventional device will be described with reference to FIG. In the figure, the radiation light source 12 is a measuring light (frequency f 1 )
And the reference light (frequency f 2 ) of two frequencies are emitted, and the light emitted from the first light separating means 13 is emitted.
Separated in. That is, the measuring light of frequency f 1 goes straight through the first light separating means 13 and further the second light separating means 18
Through the objective lens 14 and is reflected by the object surface 22 to be measured. Then, this reflected light travels backward in the above optical path and enters the first light separating means 13 again. On the other hand, the reference light having the frequency f 2 is separated by the first light separating means 13 in the upward direction of the figure, is then reflected by the interference optical system 15, and is incident on the first light separating means 13 again. All of these lights are condensed on the photodetector 17 by the condenser lens 16. And
The fluctuation of the beat frequency generated by the photodetector 17 is detected and processed by the signal processing means 24, and the measured object surface 22 is measured.
Measure the displacement of.

【0003】ここで、被測定物体面22は移動手段23
により支持され、これにより円筒座標系R−θ−Zにお
けるR方向への移動とθ方向への回転とが可能になって
いる(但し、前記測定光の光軸方向をZ軸、Z軸からの
距離をRとする)。また、被測定物体面22が焦点位置
からずれた場合には、第2の光分離手段18にて一部分
離した反射光を光学系19と光検出器20により検出し
焦点誤差信号を得る。この信号に従って移動台21を駆
動して対物レンズ14を移動し、対物レンズ14と被測
定物体面22との距離を常時一定に維持する。
Here, the object surface 22 to be measured is moved by the moving means 23.
It is possible to move in the R direction and rotate in the θ direction in the cylindrical coordinate system R-θ-Z (provided that the optical axis direction of the measurement light is from the Z axis and the Z axis). The distance is R). When the object surface 22 to be measured is displaced from the focus position, the optical system 19 and the photodetector 20 detect the reflected light partially separated by the second light separating means 18 to obtain a focus error signal. In accordance with this signal, the movable table 21 is driven to move the objective lens 14, and the distance between the objective lens 14 and the object surface 22 to be measured is always kept constant.

【0004】上記構成からなる従来装置においては、被
測定物体面22が移動すると、移動速度のZ軸成分VZ
によりドップラーシフトが生じ、反射光の周波数はf1
から f1 −(1−2VZ /C) (C:光速度) となる。この周波数の光と、第1の光分離手段13で分
離された周波数f2 の光とが、干渉光学系15にて干渉
し、その干渉光は集光レンズ16を介して光検出器17
上に集光してビート周波数 f1 +Δf−f2 (但し、Δf=−f1 ×2VZ
/C) が検出される。図示しない別の手段によりf1 −f2
知れば、Δfが求められ、これから信号処理手段24に
より被測定物体面22の変位を知ることができる。一
方、移動手段23をR方向に移動しθ方向に回転する
と、被測定物体面22の測定点の非接触式プローブの光
軸に対する傾きが変化する。これに対しては、対物レン
ズ14をプローブの光軸に垂直方向に移動して測定点に
垂直に光が入射するように配置する。このとき、測定点
の光軸方向の位置が変化するので、光検出器20により
焦点誤差信号を検出して対物レンズ14の光軸方向の移
動を行う。以上の動作により、非測定物をR方向の移動
とθ方向の回転をしたときの被測定物体面22の変位を
知ることができて、被測定物体面22の形状を求めるこ
とができる。
In the conventional apparatus having the above structure, when the object surface 22 to be measured moves, the Z-axis component V Z of the moving speed.
Causes a Doppler shift, and the frequency of the reflected light is f 1
Therefore, f 1 − (1-2V Z / C) (C: speed of light). The light of this frequency and the light of the frequency f 2 separated by the first light separating means 13 interfere with each other in the interference optical system 15, and the interference light passes through the condenser lens 16 and the photodetector 17
Focused on the beat frequency f 1 + Δf−f 2 (where Δf = −f 1 × 2V Z
/ C) is detected. If f 1 −f 2 is known by another means (not shown), Δf can be obtained, and from this, the displacement of the measured object surface 22 can be known by the signal processing means 24. On the other hand, when the moving means 23 is moved in the R direction and rotated in the θ direction, the inclination of the measurement point on the measured object surface 22 with respect to the optical axis of the non-contact probe changes. For this, the objective lens 14 is moved in the direction perpendicular to the optical axis of the probe so that the light is incident perpendicularly to the measurement point. At this time, since the position of the measurement point in the optical axis direction changes, the focus error signal is detected by the photodetector 20 and the objective lens 14 is moved in the optical axis direction. By the above operation, the displacement of the measured object surface 22 when the non-measured object is moved in the R direction and rotated in the θ direction can be known, and the shape of the measured object surface 22 can be obtained.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述の従来
の非接触式プローブでは、被測定物体面の傾きに応じて
測定光のみの光軸を移動させていたので、光軸を移動さ
せない参照光との間で、光軸移動にともなう光路長の変
化が起こり、従って、被測定物体面の変位情報に誤差が
生じて高精度な測定を行うことができないという問題点
があった。
However, in the above-mentioned conventional non-contact type probe, since the optical axis of only the measurement light is moved according to the inclination of the object surface to be measured, the reference light that does not move the optical axis is moved. There is a problem in that the optical path length changes due to the movement of the optical axis, and therefore an error occurs in the displacement information of the measured object surface, making it impossible to perform highly accurate measurement.

【0006】本発明は上記問題点に鑑みてなされたもの
で、測定面の形状を高精度に測定することのできる3次
元形状測定装置の非接触式プローブを提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-contact type probe of a three-dimensional shape measuring apparatus capable of measuring the shape of a measuring surface with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の3次元形状測定装置の非接触式プローブで
は、レーザー光源と、前記レーザー光源からの光束を参
照光と測定光との2光束に分離する光分離手段と、分離
された測定光を被検面へ集光する対物光学系と、被検面
からの反射測定光と前記参照光との光路を一致させて干
渉させる干渉光学系と、その干渉光を受光して光量を検
出する検出部と、検出部の信号より被検面の変位を検出
する信号処理部とからなる3次元形状測定装置の非接触
式プローブにおいて、前記レーザー光源と前記光分離手
段との間に配置され、前記光源からの光束の光軸を、そ
の光軸方向に対して垂直方向に移動させる光軸移動部を
具備することとした。
In order to achieve the above object, in the non-contact type probe of the three-dimensional shape measuring apparatus of the present invention, a laser light source and a light beam from the laser light source are used as reference light and measurement light. Light splitting means for splitting into a light flux, an objective optical system for condensing the separated measurement light on the surface to be inspected, and interference optics for making the optical paths of the measurement light reflected from the surface to be inspected and the reference light coincide with each other. A non-contact probe of a three-dimensional shape measuring apparatus comprising a system, a detection unit that receives the interference light from the detection unit to detect the amount of light, and a signal processing unit that detects the displacement of the surface to be inspected from the signal of the detection unit. An optical axis moving unit, which is arranged between the laser light source and the light separating means, moves the optical axis of the light beam from the light source in a direction perpendicular to the optical axis direction.

【0008】[0008]

【作用】上記構成からなる本発明の3次元形状測定装置
の非接触式プローブでは、測定光と参照光との光軸の移
動を同時に行う。
In the non-contact type probe of the three-dimensional shape measuring apparatus of the present invention having the above structure, the optical axes of the measuring light and the reference light are moved at the same time.

【0009】次に、本発明の作用を図1により説明す
る。図1は、本発明の3次元形状測定装置の非接触式プ
ローブの構成を示すブロック線図である。図において、
1はレーザー光源、2は光軸移動部、3は光分離手段で
ある。レーザー光源1から光軸移動部2に入射したレー
ザー光は、光軸移動部2によりその光軸方向に対して垂
直方向に移動して出射し、光分離手段3にて測定光9a
と参照光10とに分離される。分離された測定光9aは
対物光学系4により被検面8に集光、入射するが、この
とき被検面8と測定光9aとが常時垂直になるように光
軸移動部2及び対物光学系4を操作する。そのために
は、図示しない別の光学系で被検面8の傾きを検出する
か、あらかじめ計算にて被検面8の傾きを求める。
Next, the operation of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of a non-contact type probe of the three-dimensional shape measuring apparatus of the present invention. In the figure,
Reference numeral 1 is a laser light source, 2 is an optical axis moving unit, and 3 is a light separating means. The laser light incident on the optical axis moving unit 2 from the laser light source 1 is moved by the optical axis moving unit 2 in the direction perpendicular to the optical axis direction and emitted, and the measurement light 9 a is emitted by the light separating means 3.
And the reference light 10 are separated. The separated measurement light 9a is condensed and incident on the surface 8 to be measured by the objective optical system 4. At this time, the optical axis moving unit 2 and the objective optical system 2 are arranged so that the surface 8 to be measured and the measurement light 9a are always vertical. Operate system 4. For that purpose, the inclination of the surface 8 to be inspected is detected by another optical system (not shown), or the inclination of the surface 8 to be inspected is calculated in advance.

【0010】被検面8からの反射測定光9bは上述の光
路を逆行し、光分離手段3を通過して干渉光学系5に入
射して、前記参照光10と干渉を生じた干渉光11とな
って出射する。干渉光11の光量を検出器6で検出し、
信号処理部7で処理して被検面8の形状を求める。即
ち、被検面8と非接触式プローブとの相対的位置を、非
接触式プローブの光軸に対して垂直面内で移動させて、
被検面8の変位に応じた干渉光11の変化を読み取って
被検面8の変位を測定する。
The reflected measurement light 9b from the surface 8 to be inspected travels in the reverse direction of the above-mentioned optical path, passes through the light separating means 3 and enters the interference optical system 5, and interferes with the reference light 10 and the interference light 11 is generated. Will be emitted. The light amount of the interference light 11 is detected by the detector 6,
The signal processing unit 7 performs processing to obtain the shape of the surface 8 to be inspected. That is, by moving the relative position of the surface 8 to be inspected and the non-contact type probe in a plane perpendicular to the optical axis of the non-contact type probe,
The displacement of the test surface 8 is measured by reading the change in the interference light 11 according to the displacement of the test surface 8.

【0011】以下、添付図面を参照して本発明に係る3
次元形状測定装置の非接触式プローブのいくつかの実施
例を説明する。なお、図面の説明において同一の要素に
は同一符号を付し、重複する説明を省略する。
Hereinafter, a third embodiment of the present invention will be described with reference to the accompanying drawings.
Several embodiments of the non-contact type probe of the dimension measuring apparatus will be described. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0012】[0012]

【実施例1】まず、本発明の実施例1を説明する。図2
は本発明の実施例1の構成を示す図である。図示の通り
この実施例では、光軸移動部2は反射ミラー2aとこれ
を移動する移動ステージ2bとから構成され、光分離手
段としてはビームスプリッタ3aを用いている。そし
て、対物光学系4は測定光9aを集光するためのレンズ
4aとこれを光軸方向に移動自在に支持する移動ステー
ジ4bとからなっている。反射ミラー5aは、ビームス
プリッタ3aと対向して配置され、被検面8からの反射
測定光9bを反射するものである。また、検出器6は参
照光10と反射測定光9bとの干渉光を集光するレンズ
6aと受光素子6bとからなっている。但し、レンズ6
aは必ずしも必要ではなく、受光素子6bのみで干渉光
の検出が可能であれば省略してもよい。
First Embodiment First, a first embodiment of the present invention will be described. Figure 2
FIG. 1 is a diagram showing a configuration of Example 1 of the present invention. As shown in the figure, in this embodiment, the optical axis moving unit 2 is composed of a reflecting mirror 2a and a moving stage 2b for moving the reflecting mirror 2a, and a beam splitter 3a is used as a light separating means. The objective optical system 4 is composed of a lens 4a for collecting the measurement light 9a and a moving stage 4b for movably supporting the lens 4a in the optical axis direction. The reflection mirror 5a is arranged so as to face the beam splitter 3a and reflects the reflection measurement light 9b from the surface 8 to be inspected. Further, the detector 6 includes a lens 6a that collects the interference light of the reference light 10 and the reflected measurement light 9b, and a light receiving element 6b. However, lens 6
The a is not always necessary, and may be omitted if the interference light can be detected only by the light receiving element 6b.

【0013】次に、実施例1の作用を説明する。レーザ
ー光源1から出射された光束は、反射ミラー2aで反射
して、ビームスプリッタ3aに入射する。ここで、図示
しない別の光学系で被検面8の傾きを検出するか、あら
かじめ被検面8の傾きを計算して求めて、ビームスプリ
ッタ3aにより分離された測定光9aが被検面8に垂直
に入射するように前記反射ミラー2aを移動させる。反
射ミラー2aからの光束は、ビームスプリッタ3aによ
り、測定光9aと参照光10とに分離する。分離された
測定光9aは、レンズ4aにより被検面8に垂直入射す
る。なお、被検面8の変位に応じて、レンズ4aを光軸
方向に移動し、図示しない別の光学系で被検面8の位置
を焦点検出して、常にレンズ4aの焦点面と被検面8と
が一致するようにする。被検面8にて反射した反射測定
光9bは、入射光路と同一の光路を逆行し、ビームスプ
リッタ3a内を直進した後、反射ミラー5aで反射し
て、参照光10と同一光路となり干渉光となる。ビーム
スプリッタ3aからの干渉光は、レンズ6aに入射し、
受光素子6aにて受光される。受光素子6aからの光量
に応じた信号は、信号処理部7で処理され、被検面8を
移動ステージ(図示せず)により、非接触式プローブの
光軸に対して垂直面内で移動させれば、被検面8の変位
に応じた干渉光の変化を読み取り、被検面8の変位を測
定することができる。
Next, the operation of the first embodiment will be described. The light flux emitted from the laser light source 1 is reflected by the reflection mirror 2a and enters the beam splitter 3a. Here, the measurement light 9a separated by the beam splitter 3a is detected by the tilt of the surface 8 to be detected by another optical system (not shown) or is calculated in advance by calculating the tilt of the surface 8 to be measured. The reflection mirror 2a is moved so that the light is incident vertically on the reflection mirror 2a. The light beam from the reflection mirror 2a is split into the measurement light 9a and the reference light 10 by the beam splitter 3a. The separated measurement light 9a is vertically incident on the surface 8 to be inspected by the lens 4a. The lens 4a is moved in the optical axis direction according to the displacement of the surface to be inspected, and the position of the surface to be inspected 8 is focus-detected by another optical system (not shown) to constantly detect the focal plane of the lens 4a. Match with surface 8. The reflected measurement light 9b reflected by the surface 8 to be inspected travels in the same optical path as the incident optical path, travels straight through the beam splitter 3a, and then is reflected by the reflection mirror 5a to become the same optical path as the reference light 10 and become the interference light. Becomes The interference light from the beam splitter 3a enters the lens 6a,
The light is received by the light receiving element 6a. A signal according to the amount of light from the light receiving element 6a is processed by the signal processing unit 7, and the test surface 8 is moved by a moving stage (not shown) in a plane perpendicular to the optical axis of the non-contact probe. Then, the change of the interference light according to the displacement of the surface 8 to be inspected can be read and the displacement of the surface 8 to be inspected can be measured.

【0014】実施例1の固有の効果としては、部品の点
数が少なく安価に構成できるという点が挙げられる。
The unique effect of the first embodiment is that the number of parts is small and the structure can be constructed at low cost.

【0015】[0015]

【実施例2】次に、本発明の実施例2を説明する。図3
は本発明の実施例2の構成を示す図である。図示の通り
この実施例では、光軸移動部2は2枚のレンズからなる
アフォーカル光学系2cと、このアフォーカル光学系2
cをその光軸と垂直に移動させる移動ステージ2bとか
ら構成され、光分離手段としてはハーフミラー3bを用
いている。そして、対物光学系4は、測定光9aを集光
させるための光軸方向に移動可能なレンズ4aと、固定
されたレンズ4cとから構成されている。また、干渉光
学系は、前記ハーフミラー3bを透過した反射測定光9
bをさらに反射させる反射ミラー5aと、前記ハーフミ
ラー3bで分離した参照光10を分離するハーフミラー
5bと、このハーフミラー5bの反射光をさらに反射し
てもとの光路に戻すために、被測定物を搭載している移
動ステージ(図示せず)上に配置された反射ミラー5c
と、その反射参照光と前記反射ミラー5aで反射した反
射測定光を重ね合わせ、干渉させるハーフミラー5dと
からなる。
Second Embodiment Next, a second embodiment of the present invention will be described. Figure 3
FIG. 6 is a diagram showing a configuration of a second exemplary embodiment of the present invention. As shown, in this embodiment, the optical axis moving unit 2 includes an afocal optical system 2c composed of two lenses, and an afocal optical system 2c.
It is composed of a moving stage 2b for moving c vertically to the optical axis thereof, and a half mirror 3b is used as a light separating means. The objective optical system 4 is composed of a lens 4a that is movable in the optical axis direction for collecting the measurement light 9a, and a fixed lens 4c. Further, the interference optical system uses the reflected measurement light 9 that has passed through the half mirror 3b.
b for further reflecting b, a half mirror 5b for separating the reference light 10 separated by the half mirror 3b, and a reflected mirror 5a for reflecting the reflected light of the half mirror 5b back to the original optical path. A reflection mirror 5c arranged on a moving stage (not shown) carrying a measurement object.
And a half mirror 5d that superimposes the reflected reference light and the reflected measurement light reflected by the reflection mirror 5a to cause interference.

【0016】次に、実施例2の作用を説明する。レーザ
ー光源1から出射された光束は、アフォーカル光学系2
cに入射し、入射光と同じ角度の光束となって出射す
る。ここで、図示しない別の光学系で被検面8の傾きを
検出するか、あらかじめ被検面8の傾きを計算して求め
て、ハーフミラー3bにより分離された測定光9aが被
検面8に垂直に入射するように前記アフォーカル光学系
2cを移動させる。アフォーカル光学系2cからの光束
は、ハーフミラー3bにより、測定光9aと参照光10
とに分離する。分離された測定光9aは、レンズ4aな
らびにレンズ4cにより被検面8に垂直入射する。な
お、被検面8の変位に応じて、レンズ4aを光軸方向に
移動し、図示しない別の光学系で被検面8の位置を焦点
検出して、常にレンズ4a及び4cの焦点面と被検面8
とが一致するようにする。被検面8にて反射した反射測
定光9bは、入射光路と同一の光路を逆行し、再びハー
フミラー3bに戻り、さらに反射ミラー5aで反射す
る。一方、ハーフミラー3bで分離した参照光10は、
ハーフミラー5b及び反射ミラー5cで反射した後、ハ
ーフミラー5dで前記反射ミラー5aからの反射測定光
と干渉する。ハーフミラー5dからの干渉光は、レンズ
6aに入射し、受光素子6aにて受光される。受光素子
6aからの光量に応じた信号は、信号処理部7で処理さ
れ、被検面8を移動ステージ(図示せず)により、非接
触式プローブの光軸に対して垂直面内で移動させれば、
被検面8の変位に応じた干渉光の変化を読み取り、被検
面8の変位を測定することができる。
Next, the operation of the second embodiment will be described. The light beam emitted from the laser light source 1 is transmitted by the afocal optical system 2
It is incident on c and is emitted as a light beam having the same angle as the incident light. Here, the measurement light 9a separated by the half mirror 3b is detected by a different optical system (not shown) to detect the inclination of the surface 8 to be detected or by calculating the inclination of the surface 8 to be measured in advance. The afocal optical system 2c is moved so as to be vertically incident on the. The light flux from the afocal optical system 2c is transmitted by the half mirror 3b to the measurement light 9a and the reference light 10
And separate. The separated measurement light 9a is vertically incident on the surface 8 to be inspected by the lens 4a and the lens 4c. The lens 4a is moved in the optical axis direction in accordance with the displacement of the surface 8 to be inspected, and the position of the surface 8 to be inspected is detected by another optical system (not shown) so that the focal planes of the lenses 4a and 4c are constantly detected. Inspection surface 8
And match. The reflected measurement light 9b reflected on the surface 8 to be inspected travels in the same optical path as the incident optical path, returns to the half mirror 3b again, and is further reflected by the reflection mirror 5a. On the other hand, the reference light 10 separated by the half mirror 3b is
After being reflected by the half mirror 5b and the reflection mirror 5c, the half mirror 5d interferes with the measurement light reflected from the reflection mirror 5a. The interference light from the half mirror 5d enters the lens 6a and is received by the light receiving element 6a. A signal according to the amount of light from the light receiving element 6a is processed by the signal processing unit 7, and the test surface 8 is moved by a moving stage (not shown) in a plane perpendicular to the optical axis of the non-contact probe. If
The change of the interference light according to the displacement of the test surface 8 can be read and the displacement of the test surface 8 can be measured.

【0017】実施例2の固有の効果としては、被測定物
を搭載している移動ステージの移動にともなう変位をキ
ャンセルするため、より高精度に測定できるという点が
挙げられる。
The unique effect of the second embodiment is that the displacement caused by the movement of the moving stage on which the object to be measured is mounted is canceled, so that the measurement can be performed with higher accuracy.

【0018】[0018]

【実施例3】次に、本発明の実施例3を説明する。図4
は本発明の実施例3の構成を示す図である。図示の通り
この実施例では、光軸移動部2は光ファイバ2dとレン
ズ2eならびにこれらを移動する移動ステージ2bとか
ら構成され、光分離手段としてはビームスプリッタ3a
を用いている。そして、対物光学系4は、測定光9aを
集光させるための光軸方向に移動可能なレンズ4aと、
固定されたレンズ4cとから構成されている。また、干
渉光学系は、前記ビームスプリッタ3aを透過した反射
測定光9bをさらに反射させる反射ミラー5aと、前記
ハーフミラー3bで分離した参照光10をリレーするア
フォーカル光学系5eと、このアフォーカル光学系5e
からの参照光10を反射する反射ミラー5cと、その反
射参照光と前記反射ミラー5aで反射した反射測定光を
重ね合わせ、干渉させるビームスプリッタ5fとからな
る。
Third Embodiment Next, a third embodiment of the present invention will be described. Figure 4
FIG. 8 is a diagram showing a configuration of a third exemplary embodiment of the present invention. As shown in the figure, in this embodiment, the optical axis moving unit 2 is composed of an optical fiber 2d, a lens 2e, and a moving stage 2b for moving them, and a beam splitter 3a is used as a light separating means.
Is used. The objective optical system 4 includes a lens 4a that is movable in the optical axis direction to collect the measurement light 9a,
It is composed of a fixed lens 4c. The interference optical system further includes a reflection mirror 5a that further reflects the reflected measurement light 9b that has passed through the beam splitter 3a, an afocal optical system 5e that relays the reference light 10 separated by the half mirror 3b, and this afocal. Optical system 5e
It is composed of a reflection mirror 5c for reflecting the reference light 10 from the above, and a beam splitter 5f for superposing and interfering the reflection reference light and the reflection measurement light reflected by the reflection mirror 5a.

【0019】次に、実施例3の作用を説明する。レーザ
ー光源1から出射された光束は、光ファイバ2dとレン
ズ2eを介してビームスプリッタ3aに入射する。ここ
で、図示しない別の光学系で被検面8の傾きを検出する
か、あらかじめ被検面8の傾きを計算して求めて、ビー
ムスプリッタ3aにより分離された測定光9aが被検面
8に垂直に入射するように前記光ファイバ2dとレンズ
2eをを移動させる。光ファイバ2dとレンズ2eから
の光束は、ビームスプリッタ3aにより、測定光9aと
参照光10とに分離する。分離された測定光9aは、レ
ンズ4a及びレンズ4cにより被検面8に垂直入射す
る。なお、被検面8の変位に応じて、レンズ4aを光軸
方向に移動し、図示しない別の光学系で被検面8の位置
を焦点検出して、常にレンズ4a及び4cの焦点面と被
検面8とが一致するようにする。被検面8にて反射した
反射測定光9bは、入射光路と同一の光路を逆行し、ビ
ームスプリッタ3a内を直進し、さらに反射ミラー5a
で反射する。そして、ビームスプリッタ3aで分離した
参照光10は、アフォーカル光学系5e及び反射ミラー
5cを介し、ビームスプリッタ5fにて反射ミラー5a
からの反射測定光と干渉する。ビームスプリッタ5fか
らの干渉光は、レンズ6aに入射し、受光素子6aにて
受光される。受光素子6aからの光量に応じた信号は、
信号処理部7で処理され、被検面8を移動ステージ(図
示せず)により、非接触式プローブの光軸に対して垂直
面内で移動させれば、被検面8の変位に応じた干渉光の
変化を読み取り、被検面8の変位を測定することができ
る。
Next, the operation of the third embodiment will be described. The light flux emitted from the laser light source 1 enters the beam splitter 3a via the optical fiber 2d and the lens 2e. Here, the measurement light 9a separated by the beam splitter 3a is detected by the tilt of the surface 8 to be detected by another optical system (not shown) or is calculated in advance by calculating the tilt of the surface 8 to be measured. The optical fiber 2d and the lens 2e are moved so that the light is vertically incident on the lens. The light beams from the optical fiber 2d and the lens 2e are separated into the measurement light 9a and the reference light 10 by the beam splitter 3a. The separated measurement light 9a is vertically incident on the surface 8 to be inspected by the lenses 4a and 4c. The lens 4a is moved in the optical axis direction in accordance with the displacement of the surface 8 to be inspected, and the position of the surface 8 to be inspected is detected by another optical system (not shown) so that the focal planes of the lenses 4a and 4c are constantly detected. The surface to be inspected 8 is made to match. The reflected measurement light 9b reflected by the surface 8 to be inspected travels in the same optical path as the incident optical path, travels straight in the beam splitter 3a, and further, the reflection mirror 5a.
Reflect on. Then, the reference light 10 separated by the beam splitter 3a passes through the afocal optical system 5e and the reflection mirror 5c, and is reflected by the beam splitter 5f at the reflection mirror 5a.
Interferes with the measurement light reflected from. The interference light from the beam splitter 5f enters the lens 6a and is received by the light receiving element 6a. A signal according to the amount of light from the light receiving element 6a is
If the surface 8 to be inspected is processed by the signal processing unit 7 and moved in a plane vertical to the optical axis of the non-contact type probe by a moving stage (not shown), the surface 8 to be inspected is displaced. It is possible to read the change in the interference light and measure the displacement of the surface 8 to be inspected.

【0020】実施例3の固有の効果としては、光ファイ
バを用いることにより、非接触式プローブ本体とレーザ
ー光源とを分離したので、小型化を図ることができる
点、またレーザー光源1の熱を本体から遮断できるため
温度ドリフト等の誤差が小さくなり、より高精度に測定
できるという点が挙げられる。
As a unique effect of the third embodiment, since the non-contact type probe main body and the laser light source are separated by using the optical fiber, it is possible to reduce the size and heat of the laser light source 1. Since it can be cut off from the main body, errors such as temperature drift are reduced, and it is possible to measure with higher accuracy.

【0021】[0021]

【発明の効果】以上説明したように、本発明の3次元形
状測定装置の非接触式プローブによれば、光軸を移動し
ても測定光と参照光との光路長に差が生じることがない
ので、きわめて精度良く測定面の変位を測定することが
できる。
As described above, according to the non-contact type probe of the three-dimensional shape measuring apparatus of the present invention, even if the optical axis is moved, there is a difference in the optical path length between the measuring light and the reference light. Since it does not exist, the displacement of the measurement surface can be measured with extremely high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の3次元形状測定装置の非接触式プロー
ブの構成を示すブロック線図である。
FIG. 1 is a block diagram showing a configuration of a non-contact type probe of a three-dimensional shape measuring apparatus of the present invention.

【図2】本発明の実施例1の構成を示す図である。FIG. 2 is a diagram showing a configuration of a first embodiment of the present invention.

【図3】本発明の実施例2の構成を示す図である。FIG. 3 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図4】本発明の実施例3の構成を示す図である。FIG. 4 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図5】従来の3次元形状測定装置の非接触式プローブ
の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a non-contact type probe of a conventional three-dimensional shape measuring apparatus.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 光軸移動部 2a,5a,5c 反射ミラー 2b,4b 移動ステージ 2c,5e アフォーカル光学系 2d 光ファイバ 2e,4a,4c,6a レンズ 3 光分離手段 3a,5f ビームスプリッタ 3b,5b,5d ハーフミラー 4 対物光学系 5 干渉光学系 6 検出器 6b 受光素子 7 信号処理部 8 被検面 9a 測定光 9b 反射測定光 10 参照光 11 干渉光 12 放射光源 13 第1の光分離手段 14 対物レンズ 15 干渉光学系 16 集光レンズ 17 光検出器 18 第2の光分離手段 19 光学系 20 光検出器 21 移動台 22 非測定物体面 23 移動手段 24 信号処理手段 DESCRIPTION OF SYMBOLS 1 laser light source 2 optical axis moving parts 2a, 5a, 5c reflection mirrors 2b, 4b moving stages 2c, 5e afocal optical system 2d optical fibers 2e, 4a, 4c, 6a lens 3 light separating means 3a, 5f beam splitters 3b, 5b , 5d Half mirror 4 Objective optical system 5 Interference optical system 6 Detector 6b Light receiving element 7 Signal processing unit 8 Test surface 9a Measuring light 9b Reflected measuring light 10 Reference light 11 Interfering light 12 Radiation light source 13 First light separating means 14 Objective lens 15 Interference optical system 16 Condensing lens 17 Photodetector 18 Second light separating means 19 Optical system 20 Photodetector 21 Moving table 22 Non-measuring object plane 23 Moving means 24 Signal processing means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光源と、前記レーザー光源から
の光束を参照光と測定光との2光束に分離する光分離手
段と、分離された測定光を被検面へ集光する対物光学系
と、被検面からの反射測定光と前記参照光との光路を一
致させて干渉させる干渉光学系と、その干渉光を受光し
て光量を検出する検出部と、検出部の信号より被検面の
変位を検出する信号処理部とからなる3次元形状測定装
置の非接触式プローブにおいて、前記レーザー光源と前
記光分離手段との間に配置され、前記光源からの光束の
光軸を、その光軸方向に対して垂直方向に移動させる光
軸移動部を具備することを特徴とする3次元形状測定装
置の非接触式プローブ。
1. A laser light source, a light separating means for separating a light flux from the laser light source into two light fluxes of a reference light and a measurement light, and an objective optical system for condensing the separated measurement light on a surface to be inspected. An interference optical system that causes the measurement light reflected from the surface to be measured and the reference light to interfere with each other by an optical path, a detection unit that receives the interference light and detects the amount of light, and a surface to be measured from the signal of the detection unit. A non-contact type probe of a three-dimensional shape measuring apparatus comprising a signal processing unit for detecting the displacement of the light source, the optical axis of the light flux from the light source being arranged between the laser light source and the light separating means. A non-contact probe for a three-dimensional shape measuring apparatus, comprising an optical axis moving unit that moves in a direction perpendicular to the axial direction.
JP17171792A 1992-06-05 1992-06-05 Noncontact probe for three-dimensional shape measuring instrument Withdrawn JPH05340726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171792A JPH05340726A (en) 1992-06-05 1992-06-05 Noncontact probe for three-dimensional shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171792A JPH05340726A (en) 1992-06-05 1992-06-05 Noncontact probe for three-dimensional shape measuring instrument

Publications (1)

Publication Number Publication Date
JPH05340726A true JPH05340726A (en) 1993-12-21

Family

ID=15928371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171792A Withdrawn JPH05340726A (en) 1992-06-05 1992-06-05 Noncontact probe for three-dimensional shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH05340726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353708B2 (en) * 2007-11-19 2013-11-27 株式会社ニコン Interferometer
JP2016080390A (en) * 2014-10-10 2016-05-16 横河電機株式会社 Resonance frequency measuring system, and resonance frequency measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353708B2 (en) * 2007-11-19 2013-11-27 株式会社ニコン Interferometer
JP2016080390A (en) * 2014-10-10 2016-05-16 横河電機株式会社 Resonance frequency measuring system, and resonance frequency measuring method

Similar Documents

Publication Publication Date Title
EP2150770B1 (en) Optical distance sensor
JP3501605B2 (en) Interferometer and shape measuring device
US7466427B2 (en) Vibration-resistant interferometer apparatus
EP0208276A1 (en) Optical measuring device
KR920009800B1 (en) Curvature radius measuring method and device
JPS6347606A (en) Apparatus for measuring shape of non-spherical surface
JPS5979104A (en) Optical device
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2005140673A (en) Aspherical eccentricity measuring device and aspherical eccentricity measuring method
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
JPH0211084B2 (en)
JP2000205998A (en) Reflection eccentricity measuring apparatus
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP5149085B2 (en) Displacement meter
JP2005147703A (en) Device and method for measuring surface distance
JP2002250609A (en) Gap-measuring device, gap-measuring method, and manufacturing method of optical system
JPS6123902A (en) Interferometer for coordinate axis setting
JP2002267426A (en) Shape-measuring instrument and method
JP2591143B2 (en) 3D shape measuring device
JPH08304721A (en) Optical scanner
JP2002213928A (en) Instrument and method for measuring surface shape, and projection lens with optical element assembled therein of which the surface shape is measured using the instrument and the method
JP2636639B2 (en) Sample angle and position measurement device
JP2000018915A (en) Method and device for measuring eccentricity of optical components
JPH06294624A (en) Method and equipment for measuring microdisplacement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831