JPH11325848A - Aspherical surface shape measurement device - Google Patents

Aspherical surface shape measurement device

Info

Publication number
JPH11325848A
JPH11325848A JP10153807A JP15380798A JPH11325848A JP H11325848 A JPH11325848 A JP H11325848A JP 10153807 A JP10153807 A JP 10153807A JP 15380798 A JP15380798 A JP 15380798A JP H11325848 A JPH11325848 A JP H11325848A
Authority
JP
Japan
Prior art keywords
light
optical element
shape measuring
measurement
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10153807A
Other languages
Japanese (ja)
Inventor
Shigeru Nakayama
繁 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10153807A priority Critical patent/JPH11325848A/en
Publication of JPH11325848A publication Critical patent/JPH11325848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aspherical surface measurement device capable of highly accurately measuring the surface shape of a surface to be tested in an aspherical surface shape by extremely reducing stray light to a two-dimensional detector. SOLUTION: In this aspherical surface shape measurement device provided with a light division means 5a for dividing light L emitted from a light source 1 for using one of divided light as reference light, for; making the other light be incident on the surface 12 to be tested after converting it to a wave front corresponding to the surface 12 to be tested in the aspherical surface shape, through a wave front formation means 6 provided with a diffraction optical element 7; and for measuring the surface shape of the surface 12 by observing interference fringes formed by the interference of measurement light reflected on the surface 12 and the reference light, the wave front formation means 6 is formed so as to make the measurement light formed in the diffraction optical element 7, that is the diffracted light of an order used for measurement among the diffracted light of the various orders, be incident on the surface 12 after being temporarily converged and a diaphragm 11 is arranged near the converging position O of the measurement light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、ミラー等
の光学素子の面形状を測定する面形状測定装置に関し、
特にこれらの面形状が非球面である場合の測定に適した
非球面形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface shape measuring device for measuring the surface shape of an optical element such as a lens or a mirror.
In particular, the present invention relates to an aspherical surface shape measuring apparatus suitable for measurement when the surface shape is an aspherical surface.

【0002】[0002]

【従来の技術】近年、高精度の光学機器の需要に伴い、
その機器を構成するレンズやミラー等の光学素子は高精
度化する傾向にある。そのため、その光学素子の非球面
形状を測定する非球面形状測定装置にも、同じように、
高い精度が求められるようになっている。このような高
精度の非球面形状測定装置としては、フィゾー型干渉計
と呼ばれるものがある。フィゾー型干渉計は、参照面を
有するフィゾー部材と、フィゾー部材を透過する光を被
検面の理想形状(設計形状)に対応した波面に変換する
ヌル素子(波面形成手段)とを構成部材としてもつ。ま
た、ヌル素子としては、ゾーンプレート等の回折光学素
子を用いたものがある。
2. Description of the Related Art In recent years, with the demand for high-precision optical instruments,
Optical elements such as lenses and mirrors that constitute such equipment tend to be highly accurate. Therefore, the same applies to an aspherical shape measuring device that measures the aspherical shape of the optical element,
High precision is required. As such a highly accurate aspherical shape measuring apparatus, there is a so-called Fizeau interferometer. The Fizeau-type interferometer includes a Fizeau member having a reference surface, and a null element (wavefront forming means) for converting light transmitted through the Fizeau member into a wavefront corresponding to an ideal shape (design shape) of a surface to be measured. Have. As the null element, there is an element using a diffractive optical element such as a zone plate.

【0003】図9にて、非球面形状測定装置のヌル素子
の従来例を示す。ヌル素子6は、ゾーンプレート等の回
折面7a(格子形成面)を有する回折光学素子7と、球
面レンズ8とで形成されている。光源(不図示)から発
せられた後に、回折光学素子7に入射した光束は、回折
光学素子7を射出する際に、種々の次数の回折光とな
る。この回折光のうち、測定に用いられる回折次数の測
定光L1は、球面レンズ8を透過した後に、被検面12
に入射する。ここで、回折光学素子7及び球面レンズ8
は、測定光L1が被検面12の理想形状に対して同位相
で垂直入射するように設定されている。被検面12で反
射した測定光L1は、球面レンズ8、回折光学素子7の
順に透過した後に、光軸zに対して、平行な光束となっ
て、2次元検出器(不図示)へと導かれる。この測定光
1と、参照面(不図示)で反射する参照光との干渉に
よって形成される干渉縞を、2次元検出器で観察するこ
とにより、被検面12の面形状を測定する。
FIG. 9 shows a conventional example of a null element of an aspherical shape measuring device. The null element 6 is formed by a diffractive optical element 7 having a diffraction surface 7 a (grating forming surface) such as a zone plate and a spherical lens 8. Light emitted from a light source (not shown) and incident on the diffractive optical element 7 becomes diffracted light of various orders when exiting the diffractive optical element 7. Of the diffracted light, the measurement light L 1 of the diffraction order used for the measurement is transmitted through the spherical lens 8,
Incident on. Here, the diffractive optical element 7 and the spherical lens 8
The measurement light L 1 is set to normal incidence at the same phase relative to the ideal shape of the surface 12. The measurement light L 1 reflected by the test surface 12 is a spherical lens 8, after passing the order of the diffractive optical element 7 with respect to the optical axis z, become a parallel beam, two-dimensional detector to (not shown) It is led. This measurement light L 1, the interference fringes formed by interference between the reference beam reflected by the reference surface (not shown), by observing the two-dimensional detector measures the surface shape of the surface 12.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術による
と、被検面12で反射した回折光のうち、測定光L1
は異なる次数の回折光であっても、その入射高さによっ
ては、ヌル素子6を往復透過した後に、測定光L1と同
様、光軸zに対してほぼ平行な光線L2となるおそれが
ある。この光軸zに平行にもどる測定光L1以外の光線
2は、迷光と呼ばれ、測定光L1と共に2次元検出器に
入射する。この場合、非球面形状である被検面と理想非
球面形状との形状差を、正しく表すべき2次元検出器上
の干渉縞が、この迷光の影響により、それと異なる形状
の干渉縞となってしまう。すなわち、被検面の高精度な
面形状測定が困難となってしまう。したがって本発明
は、2次元検出器への迷光を極めて少なくして、非球面
形状の被検面の面形状を高精度に測定できる非球面測定
装置を提供することを課題とする。
According to the above prior art [0005] Of the diffracted light reflected by the test surface 12, even the measurement light L 1 order diffracted lights different from, depending on its incident height , a null element 6 after reciprocating transmitted, similarly to the measurement light L 1, it may become light L 2 substantially parallel to the optical axis z. Light L 2 other than the measurement light L 1 to return to parallel to the optical axis z is called a stray incident on the two-dimensional detector with the measurement light L 1. In this case, the interference fringes on the two-dimensional detector, which should accurately represent the difference between the shape of the aspherical surface to be measured and the ideal aspherical shape, are changed into interference fringes due to the influence of the stray light. I will. That is, it becomes difficult to measure the surface shape of the test surface with high accuracy. Therefore, an object of the present invention is to provide an aspherical surface measuring apparatus capable of measuring stray light to an aspherical surface with high accuracy while minimizing stray light to a two-dimensional detector.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、添付図面に
符した符号をカッコ内に付記すると、本発明は、光源
(1)から射出した光(L)を分割する光分割手段(5
a)を備え、分割された一方の光を参照光として用い、
他方の光を回折光学素子(7)を含む波面形成手段
(6)を介して非球面形状の被検面(12)に対応した
波面に変換した後に被検面(12)に入射させ、被検面
(12)で反射した測定光と参照光との干渉によって形
成される干渉縞を観察することにより被検面(12)の
面形状を測定する非球面形状測定装置において、回折光
学素子(7)で形成される測定光、すなわち種々の次数
の回折光のうちで測定に使用する次数の回折光が、一旦
集光してから被検面(12)に入射するように、波面形
成手段(6)を形成し、測定光の集光位置(O)の近傍
に絞り(11)を配置したことを特徴とする非球面形状
測定装置である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. That is, when the reference numerals in parentheses are added in parentheses, the present invention provides a light source (1) which emits light from a light source (1). Light splitting means (5) for splitting the split light (L)
a) using one of the divided lights as a reference light;
The other light is converted into a wavefront corresponding to the aspherical test surface (12) via the wavefront forming means (6) including the diffractive optical element (7), and then is incident on the test surface (12). In an aspherical shape measuring apparatus for measuring the surface shape of the test surface (12) by observing interference fringes formed by interference between the measurement light reflected by the test surface (12) and the reference light, a diffractive optical element ( Wavefront forming means such that the measurement light formed in step 7), that is, the diffracted light of the order used for measurement among the diffracted lights of various orders is once collected and then incident on the surface to be measured (12). An aspherical shape measuring apparatus characterized in that (6) is formed and an aperture (11) is arranged near the condensing position (O) of the measuring light.

【0006】その際、回折光学素子(7)が平面基板に
形成され、回折光学素子(7)の回折面(7a)が光分
割手段(5a)を兼ねることができる。また、回折面
(7a)は、平面基板(7)の射出面に形成されてお
り、平面基板(7)の入射面は射出面に対して非平行で
あっても良い。以上の構成において、波面形成手段
(6)は、回折光学素子(7)と絞り(11)との間に
配置された1又は複数枚のレンズ(8)を更に有するこ
とができる。また、波面形成手段(6)は、絞り(1
1)と被検面(12)との間に配置された1又は複数枚
のレンズ(9、10)を更に有することもできる。
At this time, the diffractive optical element (7) is formed on a flat substrate, and the diffractive surface (7a) of the diffractive optical element (7) can also serve as the light splitting means (5a). Further, the diffraction surface (7a) is formed on the emission surface of the flat substrate (7), and the incidence surface of the flat substrate (7) may be non-parallel to the emission surface. In the above configuration, the wavefront forming means (6) may further include one or more lenses (8) disposed between the diffractive optical element (7) and the stop (11). The wavefront forming means (6) is provided with a diaphragm (1).
It may further include one or more lenses (9, 10) arranged between 1) and the surface to be inspected (12).

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1及び図2にて、本発明による非球面形
状測定装置の第1実施例を示す。図1は、非球面形状測
定装置の概略を示す。光源ユニット1より射出した直線
偏光した光ビームLは、コリメータレンズ2を透過した
後に平行光になって、偏光ビームスプリッター3に入射
する。偏光ビームスプリッター3に入射する光ビームL
は、s偏光となるように調整されている。したがってs
偏光の光ビームLは、偏光ビームスプリッター3の光束
分割面で反射して、1/4波長板4に入射する。ここで
偏光ビームスプリッター3の光束分割面の入射平面(図
1の紙面である。)と平行な方向に電気ベクトルが振動
する偏光をp偏光とし、入射平面に直交する方向に電気
ベクトルが振動する偏光をs偏光とする。1/4波長板
4を透過した光ビームLは、フィゾー部材5の参照面5
aに入射する。参照面5aに入射した光ビームLのう
ち、一部は参照面5aを透過して測定光となり、他の部
分は参照面5aで反射して参照光となる。
Embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of an aspherical surface shape measuring apparatus according to the present invention. FIG. 1 shows an outline of an aspherical shape measuring device. The linearly polarized light beam L emitted from the light source unit 1 passes through the collimator lens 2, becomes parallel light, and enters the polarization beam splitter 3. Light beam L incident on polarization beam splitter 3
Is adjusted to be s-polarized light. Therefore s
The polarized light beam L is reflected by the light beam splitting surface of the polarizing beam splitter 3 and enters the quarter-wave plate 4. Here, the polarized light whose electric vector oscillates in a direction parallel to the incident plane (the paper surface in FIG. 1) of the light beam splitting surface of the polarization beam splitter 3 is p-polarized light, and the electric vector oscillates in a direction perpendicular to the incident plane. The polarization is s-polarization. The light beam L transmitted through the 波長 wavelength plate 4 is applied to the reference surface 5 of the Fizeau member 5.
a. A part of the light beam L incident on the reference surface 5a is transmitted through the reference surface 5a to be measurement light, and the other portion is reflected by the reference surface 5a to be reference light.

【0008】参照面5aを透過した測定光は、ヌル素子
6に入射する。ヌル素子6を透過した測定光は、一旦集
光点Oで集光した後に、被検面12に入射する。ここ
で、集光点Oの近傍には、絞り11が設置されており、
迷光となる回折光を遮断している。また、ヌル素子6を
透過した測定光は、被検面12の理想非球面形状に対し
て、同位相で垂直入射するように非球面波に変換されて
いる。被検面12で反射した測定光は、絞り11、ヌル
素子6、フィゾー部材5、1/4波長板4の順に通過し
た後、偏光ビームスプリッター3に入射する。ここで、
測定光は、1/4波長板4を往路と復路の2回通過して
いるため、その偏光面は90度回転し、s偏光からp偏
光に変換される。このp偏光の測定光は、偏光ビームス
プリッター3の光束分割面を透過する。偏光ビームスプ
リッター3を透過した測定光は、ビームエクスパンダー
13によってビーム径が変換された後、2次元画像検出
器14に入射する。
The measurement light transmitted through the reference surface 5a enters the null element 6. The measurement light transmitted through the null element 6 is once focused at the focusing point O, and then enters the surface 12 to be measured. Here, an aperture stop 11 is installed near the focal point O,
It blocks the stray light that is diffracted. The measurement light transmitted through the null element 6 is converted into an aspherical wave so that the light is perpendicularly incident on the ideal aspherical shape of the test surface 12 in the same phase. The measurement light reflected by the test surface 12 passes through the stop 11, the null element 6, the Fizeau member 5, and the quarter-wave plate 4 in this order, and then enters the polarization beam splitter 3. here,
Since the measurement light has passed through the quarter-wave plate 4 twice, that is, the forward path and the return path, the plane of polarization is rotated by 90 degrees and converted from s-polarized light to p-polarized light. The p-polarized measurement light passes through the light beam splitting surface of the polarization beam splitter 3. The measurement light transmitted through the polarization beam splitter 3 is incident on the two-dimensional image detector 14 after the beam diameter is changed by the beam expander 13.

【0009】一方、参照面5aで反射した参照光は、1
/4波長板4を透過した後に、測定光と同様にp偏光の
光となって、偏光ビームスプリッター3に入射する。偏
光ビームスプリッター3の光束分割面を透過した参照光
は、ビームエクスパンダー13によってビーム径が変換
された後、2次元画像検出器14に入射する。ここで、
測定光と参照光は、参照面5aからの光路中、互いに干
渉しながら2次元画像検出器14に入射する。2次元画
像検出器14では、この測定光と参照光の干渉による干
渉縞が観察される。この干渉縞を解析することにより、
測定光の被検面12への入射波面と、被検面12の形状
とのずれが計測され、被検面12の面形状を測定するこ
とができる。
On the other hand, the reference light reflected by the reference surface 5a is 1
After passing through the 波長 wavelength plate 4, it becomes p-polarized light similarly to the measurement light, and is incident on the polarization beam splitter 3. The reference light transmitted through the light beam splitting surface of the polarization beam splitter 3 is incident on the two-dimensional image detector 14 after the beam diameter is converted by the beam expander 13. here,
The measurement light and the reference light enter the two-dimensional image detector 14 while interfering with each other in the optical path from the reference surface 5a. In the two-dimensional image detector 14, interference fringes due to interference between the measurement light and the reference light are observed. By analyzing this interference fringe,
The deviation between the wavefront of the measurement light incident on the test surface 12 and the shape of the test surface 12 is measured, and the surface shape of the test surface 12 can be measured.

【0010】図2は、本第1実施例の非球面形状測定装
置のヌル素子6の部分を、拡大して詳しく示した図であ
る。ヌル素子6は、回折光学素子7と、球面レンズ8と
で形成されている。そして、回折光学素子7の射出面に
は、回折面7aが形成されている。回折光学素子7に入
射した測定光は、回折光学素子7を射出する際に、種々
の次数の回折光となる。この回折光のうち、測定に用い
られる回折次数の測定光L1は、球面レンズ8を透過し
て、絞り11近傍で集光した後に、被検面12に入射す
る。ここで、回折光学素子7及び球面レンズ8は、測定
光L1が被検面12の理想形状に対して同位相で垂直入
射するように設定されている。被検面12で反射した測
定光L1は、絞り11、球面レンズ8、回折光学素子7
の順に透過した後に、光軸zに対して、平行な光束とな
る。
FIG. 2 is an enlarged view showing a part of the null element 6 of the aspherical shape measuring apparatus of the first embodiment in detail. The null element 6 is formed by a diffractive optical element 7 and a spherical lens 8. A diffractive surface 7 a is formed on the exit surface of the diffractive optical element 7. The measurement light that has entered the diffractive optical element 7 becomes diffracted light of various orders when it exits the diffractive optical element 7. Of the diffracted light, the measurement light L 1 of the diffraction order used for measurement passes through the spherical lens 8, converges near the stop 11, and then enters the surface 12 to be measured. Here, the diffractive optical element 7 and the spherical lens 8, the measurement light L 1 is set to normal incidence at the same phase relative to the ideal shape of the surface 12. The measurement light L 1 reflected by the test surface 12, stop 11, a spherical lens 8, the diffractive optical element 7
, The light flux becomes parallel to the optical axis z.

【0011】一方、被検面12で反射した後にヌル素子
6を透過して、測定光L1と同様、光軸zに対して平行
となる迷光L2は、往路又は復路において絞り11で遮
断される。以上のように、回折光学素子7を透過する種
々の次数の回折光のうち、測定に使用する次数以外の回
折光は絞り11で遮断され、迷光は除去されるので、被
検面12の面形状を高精度に測定することができる。
On the other hand, stray light L 2 which is reflected on the surface 12 to be measured and then passes through the null element 6 and is parallel to the optical axis z, like the measurement light L 1 , is blocked by the stop 11 on the outward path or the return path. Is done. As described above, out of the diffracted lights of various orders transmitted through the diffractive optical element 7, the diffracted lights other than the order used for the measurement are blocked by the stop 11, and the stray light is removed. The shape can be measured with high accuracy.

【0012】次に図3にて、本発明による非球面形状測
定装置のヌル素子の第2実施例を示す。本第2実施例と
前記第1実施例との違いは、絞り11と被検面12との
間に第2レンズ9を設置した点である。そして、回折光
学素子7、球面レンズ8、第2レンズ9で、全体のヌル
素子6が形成されている。本第2実施例は、図2に示す
ようなヌル素子6等の光学素子の配置では、ヌル素子6
と被検面12との距離が長くなってしまう場合等に有効
である。すなわち、回折光学素子7と球面レンズ8との
構成だけで、ヌル素子6を透過した光束を、被検面12
に対応した最適な波面に変換するのが困難となる場合が
ある。これに対して、本第2実施例では、第2レンズ9
を配置しており、ヌル素子6を透過した光束が、被検面
12に最適な波面となるように設計することができる。
本第2実施例でも、集光点に絞り11が配置されてお
り、第1実施例と同様に、絞り11により迷光を遮断で
きる。
Next, FIG. 3 shows a second embodiment of the null element of the aspherical shape measuring apparatus according to the present invention. The difference between the second embodiment and the first embodiment is that a second lens 9 is provided between the diaphragm 11 and the surface 12 to be measured. The entire null element 6 is formed by the diffractive optical element 7, the spherical lens 8, and the second lens 9. In the second embodiment, the arrangement of the optical element such as the null element 6 shown in FIG.
This is effective when the distance between the object and the test surface 12 becomes long. That is, only the configuration of the diffractive optical element 7 and the spherical lens 8 allows the light flux transmitted through the null
It may be difficult to convert the wavefront to an optimal wavefront corresponding to On the other hand, in the second embodiment, the second lens 9
Can be designed so that the light flux transmitted through the null element 6 becomes an optimal wavefront for the surface 12 to be measured.
Also in the second embodiment, the stop 11 is disposed at the light condensing point, and stray light can be blocked by the stop 11 as in the first embodiment.

【0013】次に図4にて、本発明による非球面形状測
定装置のヌル素子の第3実施例を示す。被検面12が凹
面になっている前記第1実施例に対して、本第3実施例
は、被検面12が凸面になっている。この場合、ヌル素
子6を透過した測定光を、絞り11を通過した後に、被
検面12に垂直入射させるために、絞り11と被検面1
2との間に第2レンズ10を配置している。そして、回
折光学素子7、球面レンズ8、第2レンズ10で、全体
のヌル素子6が形成されている。本第3実施例でも、集
光点に絞り11が配置されており、第1実施例と同様
に、絞り11により迷光を遮断できる。
Next, FIG. 4 shows a third embodiment of the null element of the aspherical shape measuring apparatus according to the present invention. In contrast to the first embodiment in which the test surface 12 is concave, the third embodiment has a convex test surface 12. In this case, the stop 11 and the surface 1 to be measured are transmitted so that the measurement light transmitted through the null element 6 passes through the stop 11 and then enters the surface 12 to be measured perpendicularly.
2, the second lens 10 is arranged. The entire null element 6 is formed by the diffractive optical element 7, the spherical lens 8, and the second lens 10. Also in the third embodiment, the stop 11 is disposed at the condensing point, and the stray light can be blocked by the stop 11 as in the first embodiment.

【0014】次に、図5及び図6にて、本発明による非
球面形状測定装置の第4実施例を示す。図5は非球面形
状測定装置の概略を示し、図6は非球面形状測定装置の
ヌル素子の部分を拡大して詳しく示した図である。図5
に示すように、本第4実施例では、前記第1実施例にお
けるフィゾー部材5が設置されていない。そして図6に
示すように、ヌル素子6は、回折光学素子7と球面レン
ズ8とで形成されている。そして、回折光学素子7の射
出面には、参照面5aを兼ねた回折面7aが形成されて
いる。回折面7aを透過した光束は、種々の次数の回折
光となり、そのうちのある次数の回折光が測定光L1
なる。一方、参照面5aで反射した光束、すなわち回折
面7aの反射0次光が参照光となる。
Next, FIGS. 5 and 6 show a fourth embodiment of the aspherical shape measuring apparatus according to the present invention. FIG. 5 shows an outline of the aspherical shape measuring device, and FIG. 6 is an enlarged view showing a null element portion of the aspherical shape measuring device in detail. FIG.
As shown in FIG. 7, in the fourth embodiment, the Fizeau member 5 in the first embodiment is not provided. As shown in FIG. 6, the null element 6 is formed by a diffractive optical element 7 and a spherical lens 8. A diffractive surface 7a also serving as a reference surface 5a is formed on the exit surface of the diffractive optical element 7. The light beam which has passed through the diffractive surface 7a becomes the various orders of diffracted light, order diffracted light certain of its becomes measurement light L 1. On the other hand, the light beam reflected by the reference surface 5a, that is, the zero-order light reflected by the diffraction surface 7a becomes the reference light.

【0015】光源ユニット1より射出した直線偏光した
光ビームLは、前記第1実施例と同様に、1/4波長板
4に入射する。1/4波長板4を透過した光ビームL
は、ヌル素子6の参照面5aに入射する。参照面5aで
反射した参照光は、第1実施例と同様に、2次元画像検
出器14に入射する。一方、回折面7aを透過した測定
光L1は、第1実施例と同様に、球面レンズ8を透過し
て、絞り11近傍で集光した後に、被検面12に入射す
る。被検面12で反射した測定光L1は、絞り11、ヌ
ル素子6の順に透過した後に、光軸zに対して、平行な
光束となる。この測定光L1は、第1実施例と同様に、
2次元画像検出器14に入射する。2次元画像検出器1
4では、第1実施例と同様に、測定光L1と参照光の干
渉による干渉縞が観察されて、被検面12の面形状を測
定することができる。本第4実施例でも、集光点Oに絞
り11が配置されており、第1実施例と同様に、絞り1
1により迷光を遮断できる。また本第4実施例では、フ
ィゾー部材が設置されていないため、非球面形状測定装
置を単純な構成にすることができる。
The linearly polarized light beam L emitted from the light source unit 1 is incident on the quarter-wave plate 4 as in the first embodiment. Light beam L transmitted through quarter-wave plate 4
Are incident on the reference surface 5a of the null element 6. The reference light reflected on the reference surface 5a is incident on the two-dimensional image detector 14, as in the first embodiment. On the other hand, the diffractive surface 7a measurement light L 1 having passed through the, like the first embodiment, it is transmitted through the spherical lens 8, after condensed by the diaphragm 11 near incident on the test surface 12. The measurement light L 1 reflected by the test surface 12, aperture 11, after being transmitted in the order of the null element 6, with respect to the optical axis z, a parallel beam. The measurement light L 1 is similar to the first embodiment,
The light enters the two-dimensional image detector 14. Two-dimensional image detector 1
In 4, like the first embodiment, interference fringes due to the interference of the measurement light L 1 and the reference light is observed, it is possible to measure the surface shape of the surface 12. In the fourth embodiment as well, the stop 11 is arranged at the focal point O, and the stop 1
1 allows stray light to be blocked. In the fourth embodiment, since the Fizeau member is not provided, the aspherical shape measuring device can have a simple configuration.

【0016】次に、図7及び図8にて、本発明による非
球面形状測定装置の第5実施例を示す。図7は非球面形
状測定装置の概略を示し、図8は非球面形状測定装置の
ヌル素子の部分を拡大して詳しく示した図である。本第
5実施例では、前記第4実施例の回折光学素子7が楔形
状になっている。すなわち、回折光学素子7の射出面は
光軸zに対して垂直に配置され、回折光学素子7の入射
面は射出面に対して非平行となっている。そして、絞り
11と被検面12は、回折光学素子7の楔形状に対応し
た角度にて配置されている。このように回折光学素子7
を楔形状とすることで、回折光学素子7の入射面に入射
する光束のうち、入射面で反射する光束、いわゆる戻り
光L3を、入射光路と異なる光路に進めることができ
る。したがって、2次元画像検出器14上で観察される
測定光と参照光の干渉縞に対する、戻り光L3の影響を
除くことができる。
Next, FIGS. 7 and 8 show a fifth embodiment of the aspherical shape measuring apparatus according to the present invention. FIG. 7 shows an outline of the aspherical surface shape measuring device, and FIG. 8 is an enlarged view showing a null element portion of the aspherical surface shape measuring device in detail. In the fifth embodiment, the diffractive optical element 7 of the fourth embodiment has a wedge shape. That is, the exit surface of the diffractive optical element 7 is arranged perpendicular to the optical axis z, and the incident surface of the diffractive optical element 7 is not parallel to the exit surface. The stop 11 and the test surface 12 are arranged at an angle corresponding to the wedge shape of the diffractive optical element 7. Thus, the diffractive optical element 7
The by a wedge shape, of the light beam incident on the incident surface of the diffractive optical element 7, the light beam reflected by the incident surface, the so-called return light L 3, it is possible to proceed in different light path the incident light path. Therefore, to interference fringes of the measuring light and the reference light to be observed on the two-dimensional image detector 14, it is possible to eliminate the influence of the return light L 3.

【0017】更に、本第5実施例でも、集光点Oに絞り
11が配置されており、第1実施例と同様に、絞り11
により迷光を遮断できる。また本第5実施例では、フィ
ゾー部材が設置されていないため、非球面形状測定装置
を単純な構成にすることができる。なお、本第5実施例
では、第4実施例における回折光学素子7を楔形状とし
たが、第1〜3実施例における回折光学素子7を楔形状
としても良い。
Further, also in the fifth embodiment, the stop 11 is disposed at the light condensing point O, and the stop 11 is disposed similarly to the first embodiment.
Can block stray light. Further, in the fifth embodiment, since no Fizeau member is provided, the aspherical shape measuring device can have a simple configuration. In the fifth embodiment, the diffractive optical element 7 in the fourth embodiment has a wedge shape. However, the diffractive optical element 7 in the first to third embodiments may have a wedge shape.

【0018】[0018]

【発明の効果】以上のように本発明によれば、回折光学
素子からの測定光が一旦集光してから被検面に入射する
構成としており、更にその集光位置近傍に絞りを配置し
ているので、迷光が有効に除去されて、非球面形状の被
検面の面形状を高精度に測定できる非球面測定装置を提
供することができる。
As described above, according to the present invention, the measuring light from the diffractive optical element is once condensed and then incident on the surface to be measured, and a stop is arranged near the condensing position. Therefore, it is possible to provide an aspherical surface measuring apparatus capable of effectively removing stray light and measuring the surface shape of the aspherical surface to be measured with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による非球面形状測定装置
を示す図である。
FIG. 1 is a view showing an aspherical surface shape measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例による非球面形状測定装置
のヌル素子を示す拡大図である。
FIG. 2 is an enlarged view showing a null element of the aspherical shape measuring device according to the first embodiment of the present invention.

【図3】本発明の第2実施例による非球面形状測定装置
のヌル素子を示す図である。
FIG. 3 is a view showing a null element of an aspherical shape measuring apparatus according to a second embodiment of the present invention.

【図4】本発明の第3実施例による非球面形状測定装置
のヌル素子を示す図である。
FIG. 4 is a view showing a null element of an aspherical shape measuring apparatus according to a third embodiment of the present invention.

【図5】本発明の第4実施例による非球面形状測定装置
を示す図である。
FIG. 5 is a view illustrating an aspherical surface shape measuring apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第4実施例による非球面形状測定装置
のヌル素子を示す図である。
FIG. 6 is a view showing a null element of an aspherical shape measuring apparatus according to a fourth embodiment of the present invention.

【図7】本発明の第5実施例による非球面形状測定装置
を示す図である。
FIG. 7 is a view showing an aspherical surface shape measuring apparatus according to a fifth embodiment of the present invention.

【図8】本発明の第5実施例による非球面形状測定装置
のヌル素子を示す図である。
FIG. 8 is a view showing a null element of an aspherical surface shape measuring apparatus according to a fifth embodiment of the present invention.

【図9】非球面形状測定装置のヌル素子の従来例を示す
図である。
FIG. 9 is a diagram showing a conventional example of a null element of the aspherical shape measuring device.

【符号の説明】[Explanation of symbols]

1…光源ユニット 2…コリメータレンズ 3…偏光ビームスプリッター 4…1/4波長板 5…フィゾー部材 5a…参照面 6…ヌル素子 7…回折光学素子 7a…回折面 8…球面レンズ 9、10…第2レンズ 11…絞り 12…被検面 13…ビームエクスパンダー 14…2次元画像検出器 DESCRIPTION OF SYMBOLS 1 ... Light source unit 2 ... Collimator lens 3 ... Polarization beam splitter 4 ... 1/4 wavelength plate 5 ... Fizeau member 5a ... Reference surface 6 ... Null element 7 ... Diffractive optical element 7a ... Diffraction surface 8 ... Spherical lens 9, 10 ... First 2 lens 11 ... stop 12 ... test surface 13 ... beam expander 14 ... two-dimensional image detector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源から射出した光を分割する光分割手段
を備え、分割された一方の光を参照光として用い、他方
の光を回折光学素子を含む波面形成手段を介して非球面
形状の被検面に対応した波面に変換した後に該被検面に
入射させ、該被検面で反射した測定光と前記参照光との
干渉によって形成される干渉縞を観察することにより前
記被検面の面形状を測定する非球面形状測定装置におい
て、 前記回折光学素子で形成される測定光、すなわち種々の
次数の回折光のうちで測定に使用する次数の回折光が、
一旦集光してから前記被検面に入射するように、前記波
面形成手段を形成し、 前記測定光の集光位置の近傍に絞りを配置したことを特
徴とする非球面形状測定装置。
A light splitting means for splitting light emitted from a light source, using one of the split lights as a reference light, and using the other light as an aspherical shape through a wavefront forming means including a diffractive optical element. After being converted into a wavefront corresponding to the test surface, the wavefront is incident on the test surface, and interference fringes formed by interference between the measurement light reflected by the test surface and the reference light are observed, whereby the test surface is measured. In an aspherical shape measuring apparatus for measuring the surface shape of, the measurement light formed by the diffractive optical element, that is, the diffracted light of the order used for measurement among the diffracted lights of various orders,
An aspherical shape measuring apparatus, wherein the wavefront forming means is formed so as to be focused once and then incident on the surface to be measured, and a stop is arranged near a condensing position of the measuring light.
【請求項2】請求項1記載の非球面形状測定装置におい
て、 前記回折光学素子が平面基板に形成され、該回折光学素
子の回折面が前記光分割手段を兼ねていることを特徴と
する非球面形状測定装置。
2. A non-spherical shape measuring apparatus according to claim 1, wherein said diffractive optical element is formed on a flat substrate, and a diffractive surface of said diffractive optical element also functions as said light dividing means. Spherical shape measuring device.
【請求項3】請求項2記載の非球面形状測定装置におい
て、 前記回折面は、前記平面基板の射出面に形成されてお
り、該平面基板の入射面は前記射出面に対して非平行で
あることを特徴とする非球面形状測定装置。
3. The aspherical shape measuring apparatus according to claim 2, wherein the diffraction surface is formed on an emission surface of the flat substrate, and the incidence surface of the flat substrate is non-parallel to the emission surface. An aspherical shape measuring device, characterized in that:
【請求項4】前記波面形成手段は、前記回折光学素子と
前記絞りとの間に配置された1又は複数枚のレンズを更
に有することを特徴とする請求項1、2又は3記載の非
球面形状測定装置。
4. The aspheric surface according to claim 1, wherein said wavefront forming means further comprises one or more lenses disposed between said diffractive optical element and said stop. Shape measuring device.
【請求項5】前記波面形成手段は、前記絞りと前記被検
面との間に配置された1又は複数枚のレンズを更に有す
ることを特徴とする請求項1〜4のいずれか1項記載の
非球面形状測定装置。
5. The apparatus according to claim 1, wherein said wavefront forming means further comprises one or more lenses disposed between said stop and said surface to be inspected. Aspherical shape measuring device.
JP10153807A 1998-05-19 1998-05-19 Aspherical surface shape measurement device Pending JPH11325848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10153807A JPH11325848A (en) 1998-05-19 1998-05-19 Aspherical surface shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10153807A JPH11325848A (en) 1998-05-19 1998-05-19 Aspherical surface shape measurement device

Publications (1)

Publication Number Publication Date
JPH11325848A true JPH11325848A (en) 1999-11-26

Family

ID=15570553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10153807A Pending JPH11325848A (en) 1998-05-19 1998-05-19 Aspherical surface shape measurement device

Country Status (1)

Country Link
JP (1) JPH11325848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046938A (en) * 2005-08-08 2007-02-22 Mitsutoyo Corp Interferometer
JP2008145419A (en) * 2006-10-02 2008-06-26 Asml Holding Nv Diffractive null corrector using spatial light modulator
CN107525463A (en) * 2016-06-17 2017-12-29 株式会社三丰 The interference of light determines device and interference of light assay method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046938A (en) * 2005-08-08 2007-02-22 Mitsutoyo Corp Interferometer
JP2008145419A (en) * 2006-10-02 2008-06-26 Asml Holding Nv Diffractive null corrector using spatial light modulator
CN107525463A (en) * 2016-06-17 2017-12-29 株式会社三丰 The interference of light determines device and interference of light assay method
CN107525463B (en) * 2016-06-17 2020-10-16 株式会社三丰 Optical interference measuring device and optical interference measuring method

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
JPH02259508A (en) Integrated interference measuring instrument
JPH073344B2 (en) Encoder
JP2000097616A (en) Interferometer
US7466427B2 (en) Vibration-resistant interferometer apparatus
WO1997045698A1 (en) Interferometer for measuring thickness variations of semiconductor wafers
JP2004184309A (en) Interferometer
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP4667965B2 (en) Light beam measuring device
JPS5979104A (en) Optical device
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
JPH10160582A (en) Interferometer for measuring transmitted wave front
JPH11325848A (en) Aspherical surface shape measurement device
JP2000097622A (en) Interferometer
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JP3461566B2 (en) Interferometer for measuring cone shape
JPS5890110A (en) Interferometer
JP2966950B2 (en) Sample displacement measuring device
JPH02259512A (en) Integrated interference measuring instrument
JP2000097657A (en) Interferometer
JP2000097650A (en) Device for measuring shape of aspheric surface
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP2000097617A (en) Interferometer