JPH044166Y2 - - Google Patents

Info

Publication number
JPH044166Y2
JPH044166Y2 JP1984167395U JP16739584U JPH044166Y2 JP H044166 Y2 JPH044166 Y2 JP H044166Y2 JP 1984167395 U JP1984167395 U JP 1984167395U JP 16739584 U JP16739584 U JP 16739584U JP H044166 Y2 JPH044166 Y2 JP H044166Y2
Authority
JP
Japan
Prior art keywords
light
laser
measured
cross
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984167395U
Other languages
Japanese (ja)
Other versions
JPS6184508U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984167395U priority Critical patent/JPH044166Y2/ja
Publication of JPS6184508U publication Critical patent/JPS6184508U/ja
Application granted granted Critical
Publication of JPH044166Y2 publication Critical patent/JPH044166Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【考案の詳細な説明】 a 考案の目的 (産業上の利用分野) 本考案に係る微細形状測定器は、鏡面仕上を施
した金属表面の表面粗さ測定等、各種高精度の測
定に使用される。
[Detailed explanation of the invention] a. Purpose of the invention (industrial application field) The micro-shape measuring instrument according to the invention is used for various high-precision measurements such as measuring the surface roughness of mirror-finished metal surfaces. Ru.

(従来の技術) 金属表面の表面粗さ等、各種精密形状測定を行
なうために、光梃子式、電気式の微細形状測定
器、或は比較的精度の粗いものとしてはミクロケ
ータ、ダイヤルゲージ等が使用されている。
(Prior art) In order to perform various precision shape measurements such as the surface roughness of metal surfaces, optical lever type or electric type fine shape measuring instruments, or devices with relatively low precision such as micrometers and dial gauges are used. It is used.

このうち、電気式の微細形状測定器について説
明する。電気式の微細形状測定器は、第1図に示
すように、被測定面1の凹凸に追従して昇降する
触針2の途中に固定した鉄芯3と、この鉄芯3を
囲んで設けたコイル4とにより差動トランスを構
成したもので、上下対となつた互いに平行なばね
5,5により支承された触針2が被測定面1の凹
凸に従つて昇降すると、コイル4の出力電圧が触
針2の変位量に比例して変化する。このため、こ
の電圧変化分から被測定面1の凹凸形状を知るこ
とができる。6は測定圧調整用のばねである。
Among these, an electric micro-shape measuring device will be explained. As shown in Fig. 1, the electric micro-shape measuring device has an iron core 3 fixed in the middle of a stylus 2 that moves up and down following the irregularities of the surface to be measured 1, and a structure surrounding the iron core 3. When the stylus 2, which is supported by an upper and lower pair of parallel springs 5 and 5, rises and falls according to the unevenness of the surface to be measured 1, the output of the coil 4 changes. The voltage changes in proportion to the amount of displacement of the stylus 2. Therefore, the uneven shape of the surface to be measured 1 can be known from this voltage change. 6 is a spring for adjusting measurement pressure.

このような従来の微細形状測定器は測定時に触
針を被測定物表面に接触させたまま移動させるた
め、被測定物の表面を傷付けてしまう。このた
め、触針等の測定子を被測定面に接触させること
なく被測定面の形状を測定することができる、レ
ーザ光を用いた光学式の微細形状測定器が各種知
られている。次に、この光学式の微細形状測定器
の原理について簡単に説明する。
Such conventional micro-shape measuring instruments move the stylus while keeping it in contact with the surface of the object to be measured during measurement, thereby damaging the surface of the object to be measured. For this reason, various types of optical micro-shape measuring instruments using laser light are known that can measure the shape of a surface to be measured without bringing a probe such as a stylus into contact with the surface to be measured. Next, the principle of this optical micro-shape measuring instrument will be briefly explained.

第2〜4図は、光学式の微細形状測定器の原理
の第1例を示している。この原理は、昭和58年度
精機学会秋季大会学術講演会論文集の第391〜392
頁及び工業技術院機械技術研究所発行の機械研ニ
ユース1983年No.9の第1〜2頁に記載されたもの
である。レーザダイオード7から送り出されたレ
ーザ光は、第2図に示したコリメータレンズ8、
偏光ビームスプリツタ9、4分の1波長板10、
対物レンズ11を通つて被測定面1に投射され、
更にこのレーザ光はこの被測定面1で反射して再
び対物レンズ11、4分の1波長板10を通り、
偏光ビームスプリツタ9で反射してハーフミラー
12に送られる。このハーフミラー12で反射し
たレーザ光は第一の臨界角プリズム13を通つて
第一、第二のフオトダイオード14,16に送ら
れ、ハーフミラー12を透過したレーザ光は第二
の臨界角プリズム15を通つて同じく第一、第二
のフオトダイオード14,16に送られる。測定
ヘツドに固定の対物レンズ11と被測定面1との
距離が変化すると、この被測定面で反射してから
第一、第二の臨界角プリズム13,15内に進入
するレーザ光の入射角度が変化し、その結果第
一、第二のフオトダイオード14,16に達する
光の強さが変化するため、第一、第二のフオトダ
イオート14,16の出力差の変化を検出すれば
被測定面の凹凸を知ることができる。臨界角プリ
ズムの原理を示す第3図により更に説明すると、
被測定面がB位置にあつた場合、被測定面で反射
したレーザ光は同図に実線で示すような経路で第
一、第二のフオトダイオード14,16に入り、
両フオトダイオードから同じ大きさの出力が出る
(電位差0)。被測定面がA位置にまで近付くと、
反射レーザ光は同図に鎖線で示すような経路で臨
界角プリズム13,15に入る。この状態に於い
てはレーザ光の一部がプリズム内で反射せずにそ
のまま透過してしまうため、第一、第二のフオト
ダイオード14,16に入るレーザ光が弱くなる
が、この弱くなる度合は第二のフオトダイオード
16に比べて第一のフオトダイオード14の方が
大きくなるため、両ダイオード14,16の出力
に差が出る。反対に被測定面がC位置にまで遠ざ
かると、反射レーザ光は同図に破線で示すような
経路で臨界角プリズム13,15に入り、上述し
たA位置の場合と逆の電位差が第一、第二のフオ
トダイオード14,16の間に生じる。被測定面
の変位量と出力電位差Vとの間には第4図に示す
ような関係があるため、この電位差Vから被測定
面の微細な形状を求めることができる。なお、第
2図に於いて臨界角プリズムを第一、第二の2個
用意し、第一、第二のフオトダイオード14,1
6を2組設けたのは、被測定面1の傾斜に基く誤
差をキヤンセルするためである。
2 to 4 show a first example of the principle of an optical micro-shape measuring device. This principle is described in Proceedings of the 1986 Precision Machinery Society Autumn Conference Academic Lectures, Nos. 391-392.
Page 1 and pages 1 to 2 of Kikaiken News No. 9, 1983, published by the Institute of Mechanical Technology, Agency of Industrial Science and Technology. The laser beam sent out from the laser diode 7 passes through the collimator lens 8 shown in FIG.
polarizing beam splitter 9, quarter wavelength plate 10,
is projected onto the surface to be measured 1 through the objective lens 11,
Furthermore, this laser beam is reflected by this surface to be measured 1 and passes through the objective lens 11 and the quarter wavelength plate 10 again.
It is reflected by the polarizing beam splitter 9 and sent to the half mirror 12. The laser beam reflected by the half mirror 12 is sent to the first and second photodiodes 14 and 16 through the first critical angle prism 13, and the laser beam transmitted through the half mirror 12 is transmitted to the second critical angle prism 13. 15 to the first and second photodiodes 14 and 16. When the distance between the objective lens 11 fixed to the measurement head and the surface to be measured 1 changes, the incident angle of the laser beam that is reflected from the surface to be measured and enters the first and second critical angle prisms 13 and 15 changes. changes, and as a result, the intensity of the light reaching the first and second photodiodes 14 and 16 changes, so if a change in the output difference between the first and second photodiodes 14 and 16 is detected, the You can see the unevenness of the measurement surface. To further explain the principle of the critical angle prism with reference to Figure 3,
When the surface to be measured is at position B, the laser beam reflected from the surface to be measured enters the first and second photodiodes 14 and 16 along the path shown by the solid line in the figure.
Both photodiodes output the same magnitude (potential difference 0). When the surface to be measured approaches position A,
The reflected laser light enters the critical angle prisms 13 and 15 through a path as shown by the chain line in the figure. In this state, a portion of the laser light passes through the prism without being reflected, so the laser light entering the first and second photodiodes 14 and 16 becomes weaker, but the degree of this weakening is is larger in the first photodiode 14 than in the second photodiode 16, so there is a difference in the outputs of both diodes 14 and 16. On the other hand, when the surface to be measured moves away to position C, the reflected laser light enters the critical angle prisms 13 and 15 along the path shown by the broken line in the figure, and the potential difference opposite to that at position A described above becomes first, occurs between the second photodiodes 14,16. Since there is a relationship as shown in FIG. 4 between the amount of displacement of the surface to be measured and the output potential difference V, the fine shape of the surface to be measured can be determined from this potential difference V. In addition, in FIG. 2, two critical angle prisms, first and second, are prepared, and first and second photodiodes 14, 1
The reason why two sets of 6 are provided is to cancel errors caused by the inclination of the surface 1 to be measured.

又、第5図は光学式の微細形状測定器の別の原
理を示している。この原理は非点収差法と呼ばれ
昭和59年度精機学会春季大会学術講演会論文集第
393〜394頁に記載されたもので、光束を蒲鉾型の
シリンドリカルレンズ19により集束させると、
このレンズからの距離に応じて光束の断面が直線
状、縦長の楕円形、円形、横長の楕円形に連続的
に変化するのを利用して4分割のフオトダイオー
ドにより光束の断面変化を求め、この断面変化に
基づいて被測定面の微細な形状を測定する。
Further, FIG. 5 shows another principle of the optical micro-shape measuring device. This principle is called the astigmatism method, and is published in the Proceedings of the 1981 Spring Conference of the Japan Society of Precision Machinery Engineers.
It is described on pages 393-394, and when the light beam is focused by a semicircular cylindrical lens 19,
Using the fact that the cross section of the light flux changes continuously into a straight line, a vertically elongated ellipse, a circle, and a horizontally elongated ellipse depending on the distance from this lens, the cross-sectional change of the light flux is determined using a four-part photodiode. The minute shape of the surface to be measured is measured based on this cross-sectional change.

レーザ光利用の測定器の原理としてはこの他に
も、昭和58年度精機学会春季大会学術講演会論文
集第523〜526頁に記載のもの、同年同学会秋季大
会学術講演会論文集第413〜414頁に記載のもの等
がある。いずれの原理に基づいて製作された微細
形状測定器に於いても、接触子等を被測定面に接
触させることなくこの被測定面の微細な形状を測
定することができる。
Other principles of measuring instruments that use laser light include those described in the Proceedings of the 1981 Spring Conference of the Japan Society of Precision Machinery Engineers, pages 523 to 526, and the Proceedings of the Academic Conference of the Japan Society of Precision Machinery Autumn Conference, pages 413 to 526 of the same year. These include those listed on page 414. A fine shape measuring device manufactured based on either principle can measure the fine shape of a surface to be measured without bringing a contactor or the like into contact with the surface to be measured.

(考案が解決しようとする問題点) ところが、上述のような従来の光学式の微細形
状測定器に於いては、次に述べるような不都合を
生じる。
(Problems to be Solved by the Invention) However, in the conventional optical micro-shape measuring instrument as described above, the following disadvantages occur.

即ち、被測定面を照射するためレーザダイオー
ド7から投射されるレーザ光の光束の断面形は円
形ではなく、第6図に示すような楕円形となる。
このような断面が楕円形の光束に於ける光の強さ
は中央部が強く周辺部に向けて次第に弱くなるよ
うなガウス分布状となる。即ち、第6図のA−A
線で示す短径方向は第7図に示すような尖つた強
度分布になり、同じくB−B線で示す長径方向は
第8図に示すような比較的緩やかな分布となる。
That is, the cross-sectional shape of the beam of laser light projected from the laser diode 7 to irradiate the surface to be measured is not circular but elliptical as shown in FIG.
The intensity of light in such a light beam having an elliptical cross section has a Gaussian distribution in which it is strong in the center and gradually becomes weaker toward the periphery. That is, A-A in FIG.
The short axis direction shown by the line has a sharp intensity distribution as shown in FIG. 7, and the long axis direction also shown by the line B-B has a relatively gentle distribution as shown in FIG.

ところで、被測定面にレーザ光を投射する場
合、レーザ光の断面は楕円形でなく円形であるの
が好ましい。このため、従来は末広がり状のレー
ザ光を平行光線に変えるためレーザダイオード7
の直後に設けるコリメータレンズ8の大きさを工
夫し、楕円形断面のレーザ光のうち、第6図に斜
格子で示すように中央の円形部分のみを通過さ
せ、コリメータレンズ8の後方に送られる光束の
断面が円形となるようにしている。このようにコ
リメータレンズ8により断面が楕円形の光束の一
部を採り出すようにすると、第6図のB−B線方
向の光の強度分布は、第8図に斜格子で示すよう
に、両端で光の強度が急激に低下する非ガウス分
布状となる。但し、この場合に於いても第6図の
A−A線方向の光の強度分布は第7図に示すよう
なガウス分布状となる。
By the way, when projecting a laser beam onto a surface to be measured, it is preferable that the cross section of the laser beam is not elliptical but circular. For this reason, in the past, a laser diode 7 was used to convert the flared laser beam into a parallel beam.
The size of the collimator lens 8, which is installed immediately after the laser beam, is designed to allow only the central circular part of the laser beam with an elliptical cross section to pass through, as shown by the oblique lattice in Figure 6, and is sent to the rear of the collimator lens 8. The cross section of the light beam is made to be circular. When a part of the light beam with an elliptical cross section is extracted by the collimator lens 8 in this way, the intensity distribution of the light in the direction of line B-B in FIG. 6 becomes as shown by the diagonal lattice in FIG. 8. A non-Gaussian distribution is formed in which the light intensity rapidly decreases at both ends. However, even in this case, the intensity distribution of light in the direction of line A--A in FIG. 6 becomes a Gaussian distribution as shown in FIG. 7.

このような強度分布を有する光束は対物レンズ
11で絞り込むことで直径を小さくして被測定面
1を照射するが、強度分布が第8図に斜格子で示
したような非ガウス分布状の場合、対物レンズ1
1を通過する際に生じる光の回折に基づき、光束
の断面が第9図に示すように変化してしまう。即
ち、光束の断面に本来の円形部分17の他、三日
月状の干渉部分18,18が生じてしまう。この
干渉部分18,18の光の強度は、第10図に示
すように円形部分17の光の強度に比べて弱い
が、被測定面の微細な凹凸を測定する場合、この
干渉部分18,18の存在が測定結果に悪影響を
与えるおそれがある。更に、コリメータレンズ8
を通過するレーザ光は、レーザダイオード7から
投射されるレーザ光のうちの一部にしか過ぎない
ため、被測定面1に投射されるレーザ光の強度が
弱くなり、被測定面1の反射率が低い場合は正確
な測定を行ない難くなる。
A light beam having such an intensity distribution is narrowed down by the objective lens 11 to reduce its diameter and irradiate the surface to be measured 1. However, when the intensity distribution is a non-Gaussian distribution as shown by the oblique lattice in FIG. , objective lens 1
Due to the diffraction of light that occurs when passing through the light beam 1, the cross section of the light beam changes as shown in FIG. That is, in addition to the original circular portion 17, crescent-shaped interference portions 18, 18 are generated in the cross section of the light beam. The intensity of the light from the interference portions 18, 18 is weaker than the intensity of the light from the circular portion 17, as shown in FIG. The presence of these substances may adversely affect the measurement results. Furthermore, the collimator lens 8
Since the laser light passing through is only a part of the laser light projected from the laser diode 7, the intensity of the laser light projected onto the surface to be measured 1 becomes weaker, and the reflectance of the surface to be measured 1 decreases. If it is low, it will be difficult to make accurate measurements.

本考案はこのような干渉部分の存在により測定
に悪影響を与えることがなく、しかもレーザダイ
オードから投射されるレーザ光を有効に利用でき
る微細形状測定器を提供することを目的としてい
る。
It is an object of the present invention to provide a micro-shape measuring instrument that does not adversely affect measurement due to the presence of such interference portions and can effectively utilize the laser light projected from the laser diode.

b 考案の構成 本考案の微細形状測定器は、レーザ光を投射す
るレーザダイオードと、このレーザ光を被測定面
に投射するために絞り込む対物レンズとの間に、
レーザ光の断面を円形に変換する光路を設けるこ
とにより、対物レンズにより絞り込まれたレーザ
光の光束に第9図に示したような干渉部分18,
18が存在しないようにしている。
b. Structure of the invention The micro-shape measuring device of the invention has a device between a laser diode that projects a laser beam and an objective lens that narrows down the laser beam to project it onto a surface to be measured.
By providing an optical path that converts the cross section of the laser beam into a circular one, an interference portion 18 as shown in FIG.
18 does not exist.

このように光束の断面を楕円形から円形に変換
する光路は、シリンドリカルレンズ或はプリズム
により、又は両者を組合せることにより構成され
るもので、レーザ光の光束を楕円形断面の長軸方
向に圧縮することにより、或は短軸方向に引き伸
ばすことにより、このレーザ光の光束の断面形状
を円形に変換する。
The optical path that converts the cross section of the light beam from an ellipse to a circular shape in this way is constructed by a cylindrical lens, a prism, or a combination of the two, and the light beam of the laser beam is directed in the long axis direction of the elliptical cross section. By compressing or stretching in the minor axis direction, the cross-sectional shape of the beam of this laser beam is converted into a circular shape.

まず、断面形変換用の光路をシリンドリカルレ
ンズにより構成した場合について第11図により
説明する。このシリンドリカルレンズによる光路
は、凹レンズ状のシリンドリカルレンズ20と凸
レンズ状のシリンドリカルレンズ21とを直列に
配置したものである。この光路により光束の断面
形を楕円から円に変換する場合、短径方向を引き
伸ばすことも、長径方向を圧縮することもできる
が、まず短径方向を引き伸ばす場合について説明
する。断面楕円形の光束をその短径方向に引き伸
ばす場合は、断面楕円形の光束を凹レンズ状のシ
リンドリカルレンズ20の側から投射する。この
際、楕円の長軸方向とシリンドリカルレンズの配
設方向とを一致させておく。このように凹レンズ
状のシリンドリカルレンズ20の側から投射され
た光束はこのレンズ20を通過することにより、
短径方向に末広がり状に拡散される。楕円の長径
方向は拡散されずレーザダイオードから投射され
た拡散或は平行状態のままシリンドリカルレンズ
20を通過するため、このシリンドリカルレンズ
20を通過後の光束は一定距離だけ後方に於いて
断面が円形となる。光束の断面形は、この一定距
離よりも後方に於いては、長軸が上記一定距離よ
りも前側に於ける場合と直角方向に向う楕円形と
なつてしまう。そこで、光束の断面形が丁度円形
となる上記一定距離位置に凸レンズ状のシリンド
リカルレンズ21を、上記凹レンズ状のシリンド
リカルレンズ20と平行に配設し、凹レンズ状シ
リンドリカルレンズ20を通過後拡散する角度を
一方向のみ大きくした光束の拡散角を全方向に亘
り一致させるように構成している。このため、凸
レンズ状シリンドリカルレンズ21を通過後の光
束の断面はいずれの部分でも円形となる。この断
面円形の光束は、第2図に示した微細形状測定器
に於いてはコリメータレンズ8を通し平行光束に
変換してから偏光ビームスプリツタ9に投射し、
更に対物レンズ11で絞つてから被測定面1に投
射する。1対のシリンドリカルレンズ20,21
を通過することにより断面を円形に変換されたレ
ーザ光の光束は、従来のように光束のうちの一部
を採り出したものではないので、光強度分布はい
ずれの方向に於いても第7図に示したようなガウ
ス分布状となる。このため、この光束を対物レン
ズ11により絞つた場合に、回折に伴つて第9図
に示すような干渉部分18,18が生じることは
ない。
First, a case where the optical path for cross-sectional shape conversion is constructed by a cylindrical lens will be explained with reference to FIG. 11. The optical path formed by this cylindrical lens includes a concave cylindrical lens 20 and a convex cylindrical lens 21 arranged in series. When converting the cross-sectional shape of a light beam from an ellipse to a circle using this optical path, the short axis direction can be stretched or the long axis direction can be compressed, but first, the case of stretching the short axis direction will be explained. When a light beam having an elliptical cross section is stretched in the short axis direction, the light beam having an elliptical cross section is projected from the side of the cylindrical lens 20 having a concave lens shape. At this time, the long axis direction of the ellipse and the arrangement direction of the cylindrical lenses are made to coincide. In this way, the light beam projected from the side of the concave cylindrical lens 20 passes through this lens 20, so that
It is spread out in the direction of the minor diameter. Since the long axis direction of the ellipse is not diffused and passes through the cylindrical lens 20 in the diffused or parallel state projected from the laser diode, the light beam after passing through the cylindrical lens 20 has a circular cross section at a certain distance behind. Become. The cross-sectional shape of the light beam becomes an elliptical shape behind the certain distance, with the long axis facing in a direction perpendicular to that in front of the certain distance. Therefore, a convex cylindrical lens 21 is arranged parallel to the concave cylindrical lens 20 at the certain distance position where the cross-sectional shape of the light beam is exactly circular, and the angle at which the light beam is diffused after passing through the concave cylindrical lens 20 is adjusted. It is configured so that the diffusion angle of the light flux, which is increased in only one direction, is made to be the same in all directions. Therefore, the cross section of the light beam after passing through the convex cylindrical lens 21 is circular in any part. In the micro-shape measuring instrument shown in FIG. 2, this light beam with a circular cross section is converted into a parallel light beam through a collimator lens 8, and then projected onto a polarizing beam splitter 9.
The light is further focused by an objective lens 11 and then projected onto the surface to be measured 1. A pair of cylindrical lenses 20, 21
The beam of laser light whose cross section has been converted into a circular shape by passing through the The result is a Gaussian distribution as shown in the figure. Therefore, when this light beam is condensed by the objective lens 11, interference parts 18, 18 as shown in FIG. 9 will not occur due to diffraction.

上述の説明は、光束の断面形を短径方向に引き
伸ばすことにより円形に変換する例について説明
したが、同様の構成により断面を長径方向に圧縮
して円形に変換するようにもできる。即ち、断面
を長径方向に圧縮する場合、断面楕円形の光束を
凸レンズ状のシリンドリカルレンズ21の側から
投射して光束を長径方向に亘つて収束させ、この
光束の断面形が円となる部分に凹レンズ状のシリ
ンドリカルレンズ21を配置して断面が円形の光
束を得る。
In the above description, an example has been described in which the cross-sectional shape of the light beam is converted into a circular shape by stretching it in the short axis direction, but it is also possible to convert the cross section into a circular shape by compressing the cross section in the long axis direction using a similar configuration. That is, when compressing the cross section in the long axis direction, a light beam having an elliptical cross section is projected from the side of the cylindrical lens 21 having a convex lens shape to converge the light beam in the long axis direction. A concave cylindrical lens 21 is arranged to obtain a light beam having a circular cross section.

又、光束の断面形を楕円から円に変換すること
は、上述のようなシリンドリカルレンズによる
他、プリズムによつても行なうことができる。即
ち、第12〜13図に示すように、三角柱状のプ
リズム22を通過させることにより、楕円形断面
を有する光束を短径方向に引き伸ばし、或は長径
方向に圧縮して光束の断面を円形とすることがで
きる。1個のプリズムを通過させることにより、
光軸の向きが変わるが、微細形状測定器に組込む
場合に特に不都合を生じるものではなく、光軸の
向きをそのままの向きとすることも2個のプリズ
ムを組合わせることにより容易に行なえる。
Further, the cross-sectional shape of the light beam can be converted from an ellipse to a circle by using a prism, in addition to the above-mentioned cylindrical lens. That is, as shown in FIGS. 12 and 13, by passing a light beam having an elliptical cross section through a triangular prism 22, the light beam having an elliptical cross section is stretched in the short axis direction or compressed in the long axis direction, so that the cross section of the light beam becomes circular. can do. By passing through one prism,
Although the direction of the optical axis changes, this does not cause any particular inconvenience when it is incorporated into a fine shape measuring instrument, and the direction of the optical axis can be easily maintained as it is by combining two prisms.

更に、プリズムとシリンドリカルレンズとを組
合せることにより、断面が楕円形の光束を断面円
形の光束とする光路を構成することもできる。
Furthermore, by combining a prism and a cylindrical lens, it is also possible to configure an optical path that turns a light beam with an elliptical cross section into a light beam with a circular cross section.

光路をいずれの手段で構成した場合も、レーザ
ダイオードから投射される断面が楕円形の光束は
全部被測定面1を照射するのに利用され、しかも
対物レンズを通過する前に断面が円形で光強度分
布がいずれの方向に於いてもガウス分布状となる
光束となるため、対物レンズ通過後のレーザ光の
強度は十分に強く、しかも第9図に示すような干
渉部分が生じることもない。
No matter which way the optical path is configured, the entire beam of light with an elliptical cross section projected from the laser diode is used to illuminate the surface to be measured 1, and before passing through the objective lens, the light beam with a circular cross section is Since the light beam has a Gaussian intensity distribution in any direction, the intensity of the laser beam after passing through the objective lens is sufficiently strong, and there is no interference as shown in FIG. 9.

c 考案の効果 本考案の微細形状測定器は以上に述べた通り構
成されるため、被測定面の微細な凹凸を干渉によ
る影響を受けることなく正確に測定できしかも被
測定面に投射されるレーザ光の強度が大きいた
め、従来よりも反射率の小さい被測定面の測定も
行なえるようになる。
c. Effects of the invention Since the micro-shape measuring device of the present invention is configured as described above, it is possible to accurately measure minute irregularities on the surface to be measured without being affected by interference, and the laser beam projected onto the surface to be measured can be used. Since the intensity of the light is high, it becomes possible to measure surfaces to be measured with lower reflectance than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は接触式の微細形状測定器の1例を示す
略縦断側面図、第2図は光学式の微細形状測定器
の原理の第1例を示す略側面図、第3図は臨界角
プリズムの原理を示す略側面図、第4図は臨界角
プリズムにより生じる電位差と変位量との関係を
示す線図、第5図は光学式微細形状測定器の原理
の第2例を示す略側面図、第6図はレーザダイオ
ードから投射される光束の断面を示す図、第7図
はこの光束の短径方向の光強度分布を示す線図、
第8図は同じく長径方向の光強度分布を示す線
図、第9図は長径方向に亘り生じる干渉による光
束を示す断面図、第10図はこの長径方向の光強
度分布を示す線図、第11図はシリンドリカルレ
ンズを用いた断面形変換用の光路を示す斜視図、
第12図はプリズムを用いた光路の斜視図、第1
3図は同じく平面図である。 1……被測定面、2……触針、3……鉄芯、4
……コイル、5,6……ばね、7……レーザダイ
オード、8……コリメータレンズ、9……偏光ビ
ームスプリツタ、10……4分の1波長板、11
……対物レンズ、12……ハーフミラー、13…
…第一の臨界角プリズム、14……第一のフオト
ダイオード、15……第二の臨界角プリズム、1
6……第二のフオトダイオード、17……円形部
分、18……干渉部分、19,20,21……シ
リンドリカルレンズ、22……プリズム。
Fig. 1 is a schematic vertical side view showing an example of a contact type micro-shape measuring device, Fig. 2 is a schematic side view showing the first example of the principle of an optical micro-shape measuring device, and Fig. 3 is a critical angle Figure 4 is a schematic side view showing the principle of a prism, Figure 4 is a diagram showing the relationship between the potential difference and displacement generated by a critical angle prism, and Figure 5 is a schematic side view showing a second example of the principle of an optical micro-shape measuring instrument. 6 is a diagram showing a cross section of a light beam projected from a laser diode, and FIG. 7 is a diagram showing a light intensity distribution of this light beam in the short axis direction.
Figure 8 is a diagram showing the light intensity distribution in the major axis direction, Figure 9 is a cross-sectional view showing the light flux due to interference occurring in the major axis direction, and Figure 10 is a diagram showing the light intensity distribution in the major axis direction. Figure 11 is a perspective view showing the optical path for cross-sectional shape conversion using a cylindrical lens;
Figure 12 is a perspective view of the optical path using a prism,
Figure 3 is also a plan view. 1... Surface to be measured, 2... Stylus, 3... Iron core, 4
... Coil, 5, 6 ... Spring, 7 ... Laser diode, 8 ... Collimator lens, 9 ... Polarizing beam splitter, 10 ... Quarter wavelength plate, 11
...Objective lens, 12...Half mirror, 13...
...first critical angle prism, 14...first photodiode, 15...second critical angle prism, 1
6... Second photodiode, 17... Circular portion, 18... Interference portion, 19, 20, 21... Cylindrical lens, 22... Prism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 投光手段と受光手段とより成り、投光手段は、
レーザダイオード7の出すレーザ光をコリメータ
レンズ8、偏光ビームスプリツタ9、4分の1波
長板10、対物レンズ11に順次通し、試料台に
載せた被測定物の被測定面1に対物レンズ11の
焦点を結ばせるものであり、受光手段は、被測定
面から反射し対物レンズ11、4分の1波長板1
0を通つたレーザ光を偏光ブームスプリツタ9で
反射させて臨界角プリズム13,15に臨界角で
入射させ、この臨界角プリズムから出るレーザ光
の光軸に直交し且つ入射光が平行から拡散/収束
するようにずれるのに応じて各々への入射光量の
比率が変化する方向に2箇のフオトダイオード1
4,16を隣接配置したものである微細形状測定
器において、シリンドリカルレンズ19,20,
21とプリズム22との少なくとも一方を有し
て、レーザダイオード7の出す断面楕円形のレー
ザ光の断面を、光の強度分布が何れの方向にもガ
ウス分布状と成る円形にする手段を、偏光ビーム
スプリツタ9の前に設けたことを特徴とする微細
形状測定器。
It consists of a light projecting means and a light receiving means, and the light projecting means is
The laser light emitted by the laser diode 7 is passed sequentially through a collimator lens 8, a polarizing beam splitter 9, a quarter wavelength plate 10, and an objective lens 11, and the objective lens 11 is applied to the measurement surface 1 of the object placed on the sample stage. The light receiving means reflects the light from the surface to be measured, and includes an objective lens 11 and a quarter wavelength plate 1.
The laser beam that has passed through 0 is reflected by the polarizing boom splitter 9 and is incident on the critical angle prisms 13 and 15 at a critical angle, so that the laser beam is perpendicular to the optical axis of the laser beam coming out of the critical angle prism and the incident light is changed from parallel to diffused. / Two photodiodes 1 in the direction in which the ratio of the amount of light incident on each changes as it shifts to converge.
In a micro-shape measuring instrument in which cylindrical lenses 19, 20,
21 and a prism 22 to make the cross section of the elliptical laser beam emitted by the laser diode 7 circular so that the intensity distribution of the light is Gaussian in either direction. A fine shape measuring instrument characterized by being provided in front of a beam splitter 9.
JP1984167395U 1984-11-06 1984-11-06 Expired JPH044166Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984167395U JPH044166Y2 (en) 1984-11-06 1984-11-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984167395U JPH044166Y2 (en) 1984-11-06 1984-11-06

Publications (2)

Publication Number Publication Date
JPS6184508U JPS6184508U (en) 1986-06-04
JPH044166Y2 true JPH044166Y2 (en) 1992-02-07

Family

ID=30725189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984167395U Expired JPH044166Y2 (en) 1984-11-06 1984-11-06

Country Status (1)

Country Link
JP (1) JPH044166Y2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860205A (en) * 1981-10-05 1983-04-09 Mitsutoyo Mfg Co Ltd Optical size measuring device
JPS58122410A (en) * 1982-01-13 1983-07-21 Fujitsu Ltd Surface shape measuring method
JPS5979104A (en) * 1982-10-27 1984-05-08 Matsushita Electric Ind Co Ltd Optical device
JPS5990007A (en) * 1982-11-16 1984-05-24 Olympus Optical Co Ltd Optical size measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860205A (en) * 1981-10-05 1983-04-09 Mitsutoyo Mfg Co Ltd Optical size measuring device
JPS58122410A (en) * 1982-01-13 1983-07-21 Fujitsu Ltd Surface shape measuring method
JPS5979104A (en) * 1982-10-27 1984-05-08 Matsushita Electric Ind Co Ltd Optical device
JPS5990007A (en) * 1982-11-16 1984-05-24 Olympus Optical Co Ltd Optical size measuring device

Also Published As

Publication number Publication date
JPS6184508U (en) 1986-06-04

Similar Documents

Publication Publication Date Title
GB2144537A (en) Profile measuring instrument
JPS6379004A (en) Light probe for measuring shape
JP3492012B2 (en) Displacement information detection device
US4764014A (en) Interferometric measuring methods for surfaces
JPH0379642B2 (en)
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
US5011287A (en) Interferometer object position measuring system and device
JP2533514B2 (en) Depth / thickness measuring device
JPH044166Y2 (en)
JPH044167Y2 (en)
US4105335A (en) Interferometric optical phase discrimination apparatus
JPH05203431A (en) Surface shape measuring instrument
JP2000186912A (en) Method and device for measuring minute displacements
JPH044966Y2 (en)
JP2966950B2 (en) Sample displacement measuring device
JPS6370110A (en) Distance measuring apparatus
JPH07294231A (en) Optical surface roughness sensor
JP3461566B2 (en) Interferometer for measuring cone shape
JP3392898B2 (en) Lattice interference displacement measuring device
JPH0238808A (en) Photosensor
JPH0471453B2 (en)
JPH0512753Y2 (en)
SU1744452A1 (en) Interferometer for inspection of reflecting surface planeness
JP2001249010A (en) Method and device for measuring surface shape and thickness of plate shape work
JPH11325848A (en) Aspherical surface shape measurement device