JPS58122410A - Surface shape measuring method - Google Patents

Surface shape measuring method

Info

Publication number
JPS58122410A
JPS58122410A JP383082A JP383082A JPS58122410A JP S58122410 A JPS58122410 A JP S58122410A JP 383082 A JP383082 A JP 383082A JP 383082 A JP383082 A JP 383082A JP S58122410 A JPS58122410 A JP S58122410A
Authority
JP
Japan
Prior art keywords
shape
light
disk
signal
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP383082A
Other languages
Japanese (ja)
Inventor
Akira Minami
彰 南
Shigeru Arai
茂 荒井
Itaru Shibata
格 柴田
Mitsuru Hamada
浜田 満
Koichi Ogawa
小川 紘一
Mineo Moribe
峰生 守部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP383082A priority Critical patent/JPS58122410A/en
Publication of JPS58122410A publication Critical patent/JPS58122410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To converge laser light to a body surface and to utilize it as a signal which shows the shape of the body surface by irradiating a moving body with the laser light and detecting and converting its reflected light into an electric signal, and using it as a control signal. CONSTITUTION:Light from a laser light source 1 is passed through a lens 2, beam splitter 3, etc., and then reflected by a disk 8 to illuminate a photodetection surface 7 after changing in route by 90 deg. through the splitter 3. The photo- detection surface 7 is divided into four surfaces (a), (b), (c), and (d); when a point 9 coincide with a reflecting surface 8', the shape of the incident light is circular, but if it deviates to over or under the reflecting surface 8', the shape is elliptic having a long axis in a direction ac or bd. The driving system consisting of a differential amplifier 10, compensating circuit 11, etc., drives a driving motor 15 equipped with an objective lens 5 to make a convergent point 9 concident with the disk surface 8'. Meanwhile, the output of a power amplifier 12 is utilized as a signal for showing the surface shape.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は物体表面の形状を非接触的に検知する方法KI
lするもので、l#に回転中の円盤のようなの 移動中の物体の表面の凹凸をIIIl1定するtfK迩
した物体表面形状の検知方法klIするものである0−
)技術の背景 光ディスク、磁気ディスクなど円盤状の基体表面κ1鎌
媒体を被着し、基体を回転させなから配録・再生を行う
装置に於ては、回転状態κ於ける円平面の凹凸の形状が
記録特性κ影皆を及ほす0従りて此等の装置に使用する
円盤平向の粗さ1m知することは、ディスク製装置を絢
造する上で麺非とも会費なことである0  。
Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to a method KI for non-contactly detecting the shape of an object surface.
A method for detecting the surface shape of a moving object, such as a rotating disk, is determined.
)Technical background In devices such as optical disks and magnetic disks, in which a κ1 sickle medium is attached to the surface of a disc-shaped substrate and recording and playback is performed without rotating the substrate, the irregularities of the circular plane in the rotating state κ are The shape influences the recording characteristics.Therefore, knowing the flat surface roughness of the disk used in this type of device (1m) is a huge cost in building a disk manufacturing device. 0.

このようにg!#動中の物体を対象とする場合、非接触
型の検知法が求められ、従来は静竃容皺型の検知法が主
に用いられている● と (C)  従来Mt蛎錠間勉点 m配静電容1al!の方法は、解1&曳をよける為には
検知感曳を−性忙しなければならず、沖1定僅の細軸性
を保つ為に#ill&面積をあまシ小さくできない。従
って被検体の比較的広込範目(数mm平方根膚)の平均
値を検知し得るにすぎず、より微小な範囲の凹凸を検知
する為には全く異る方式のものが求められてbる・ (dl  発明の目的 本発mは、より微細な解像度を有する非接触型の表面形
状測定法を提供することである〇(eJ  発中の構成 本発#4Fi移動中の被検体にレーザ光を照射し、その
反射光を受光するととKようて得た電気411号を用い
てstI紀レーザ光を被検体R−に収束させると共にそ
の制麹用出力伯号を被検体表面の形状を表わす信号とし
て利用することを物像としている・(fl  発明の実
施例 纂1図は本発明の基本的なsJ!!施形態を例示するも
のである。−に於いて、8は円盤状の被検体(以下単に
円板という)であp、その表118’の凹凸形状が測定
される。
Like this! # When targeting a moving object, a non-contact detection method is required, and conventionally, a static cylinder wrinkle type detection method has been mainly used. m distribution capacitance 1al! In this method, in order to avoid Solution 1 and 1, the detection sensitivity must be increased, and in order to maintain the thin axis property of Oki 1, #ill and area cannot be made too small. Therefore, it is only possible to detect the average value of a relatively wide range of the subject (several mm square root skin), and a completely different method is required to detect irregularities in a smaller range. (dl Purpose of the Invention The purpose of the present invention is to provide a non-contact surface profile measurement method with finer resolution. When the light is irradiated and the reflected light is received, the stI laser beam is focused on the object R- using the electric power No. 411 obtained in this way, and the output number for the malting is used to determine the shape of the surface of the object. 8 is a disc-shaped The uneven shape of the surface 118' of the object (hereinafter simply referred to as a disk) is measured.

半導体レーザなどの光#1から故山ζワタレーザ光はレ
ンズ2によりて平行光−となり、ビームスプリッタ3、
場光板4、対物レンズ5を通【2て円板8に&射さ9る
。*記平行光縁はレンズ5によりて廃9に収束し、点9
は円板表面8′上にあるが、その事情は後に説明される
0 円板表面8′からの反射光は対物レンズ5、偏光板4を
再び通過した後、ビームス1リツタ3によりて進路を9
0度転じ、シリンドリカルレンズ6を経て受光Nt17
VC入射する0 受光Nli+7は第2図に示されるよう6ca、b、c
The laser light from the semiconductor laser #1 becomes parallel light through the lens 2, and the beam splitter 3,
The field passes through the light plate 4 and the objective lens 5 and is emitted onto the disk 8. *The parallel light edge is converged on point 9 by lens 5, and becomes point 9.
is on the disc surface 8', the circumstances of which will be explained later.0 After the reflected light from the disc surface 8' passes through the objective lens 5 and the polarizing plate 4 again, it is routed by the beam 1 ritter 3. 9
Turned to 0 degrees, received light through cylindrical lens 6 Nt17
The 0 received light Nli+7 entering the VC is 6ca, b, c as shown in Figure 2.
.

dの4面に分割されており、点9は反射[II]8′に
一致している場合KFi、第2図(a) ic示すよう
に入射光の形、状は円形となるが、A9が円4IitR
面の上方または下方にすねると、前記光学的の動きKよ
りて受光面7への入射光の形状Fi編2図(bl K不
すよう6cm−c方向またはb−d方向に長軸を待り長
円形となる〇 ここでa、  b、  c、 d各面の受光首を電気信
号に変換しえ出力を夫々V as V be V C*
 V dとすすると、(Va+Vc)−(Vb+Va)
!る信号を作成し、差動アンプlO1補償回路11、パ
ワーアンプ12から成る駆動系によりて、対物レンズ5
がi増さねたボイスコイルモータ15を14mL、収束
点9を円板表面8′に一!にさせる@補償回路11Fi
ボイスコイルモータ15が高い周波数に対して低下する
応答特性を持うので、そわを補償する為のものである・ 円板が回転し、その表面の凹凸によって表面の位置が上
下しても、上述のサーボ系が作動してレーザ光の収束点
はその変動に追随するものであるから、パワーアンプ1
2の出力を円板表面8′の表面形状を表わす信号として
利用することができるO 例えば、パワーアンプ12の出力電圧をフィルタ回路1
3を通してオッシロスコープ14に入力するととにより
て円板表面8′に対応すゐ形状を直視することができる
◎フィルタ回路13は傷償回路11によりて与えられ走
特性を再補償する為のもので、償償回路11が高域強−
特性であるこトカら、ローパスフィルタであることが通
常である0 1*、上記のように直視的に利用する他、過当なスライ
スレベルを設定して、仕上精腿の良否判定に使用するこ
ともできる◎ 以上の説明は回転円板を対象としているが、基本的KF
i本発明は光軸に対しほぼ垂直方向に柊動する物体の表
面形状の測定Kjするものであることは明らかである。
If the point 9 coincides with the reflection [II] 8', then the shape of the incident light is circular, as shown in Figure 2 (a) ic, but A9 is 4IitR
When sliding upward or downward on the surface, the optical movement K causes the shape of the light incident on the light receiving surface 7 to change with the long axis in the 6cm-c direction or the b-d direction. It becomes an oval shape〇Here, the light receiving head of each surface a, b, c, d is converted into an electric signal and the output is V as V be V C*
If V d is (Va+Vc)-(Vb+Va)
! A driving system consisting of a differential amplifier lO1 compensation circuit 11 and a power amplifier 12 generates a signal that
However, the voice coil motor 15 was increased to 14 mL, and the convergence point 9 was placed on the disk surface 8'! @Compensation circuit 11Fi
Since the voice coil motor 15 has a response characteristic that decreases with respect to high frequencies, this is to compensate for the stiffness. Even if the disk rotates and the surface position moves up and down due to the unevenness of its surface, the above-mentioned Since the servo system operates and the convergence point of the laser beam follows the fluctuation, the power amplifier 1
For example, the output voltage of the power amplifier 12 can be used as a signal representing the surface shape of the disk surface 8'.
3 to the oscilloscope 14, the shape corresponding to the disk surface 8' can be directly observed. The filter circuit 13 is provided by the damage compensation circuit 11 and is for recompensating the travel characteristics. The compensation circuit 11 has a strong high frequency range.
Due to its characteristics, it is usually a low-pass filter.In addition to being used directly as shown above, it can also be used to determine the quality of finished thighs by setting an excessive slice level. Yes ◎ The above explanation is for a rotating disk, but the basic KF
It is clear that the present invention is for measuring the surface shape Kj of an object moving in a direction substantially perpendicular to the optical axis.

また、本発甲がレーザ光収束点の寸法と同程度の解像度
を有することも目明であろう・ 使用するレーザ光に対し比較的透明な板状物体が検査対
象であわば、本発#4Iriその厚みの測定或は厚みの
変化の測定に利用することもできる◎この場合、第3図
に示すようKまずレーザ光の収束点を一方の表ii]8
’に一致させて表面8′の位tK関する情輸を得たのち
、他方の表面81上にレーザ光を収束させて表ik8 
#に関する′vI権を得、両者の差をとって二つの面の
距離部ち厚みを求めるもので111ゐ。
It is also evident that the present invention has a resolution comparable to the dimensions of the laser beam convergence point. 4Iri can also be used to measure its thickness or change in thickness ◎ In this case, as shown in Figure 3, the convergence point of the laser beam is first set on one table ii] 8
After obtaining information about the position tK of the surface 8', the laser beam is focused on the other surface 81, and the table ik8 is
111, which obtains the 'vI rights regarding #, and calculates the thickness of the distance between the two surfaces by taking the difference between the two.

この方法は移動物体に対しては厳密にけ適用し得ないが
、比較的移動速(のゆるやかな物体が対象であれば静止
体くおける測定誤差の組曲にとどめることも可能である
◇ 上述の光学系及び電気系を!!4図に示すように2系統
使用することによりて板状物体の厚みに関する測定を行
うことができる◎ 一4図に示されるように、一方の表面B’に対して1〜
7の光学系、10〜120電気系を用意し、他方の表面
811LC対しても同一の機能を備えた光学系1′〜7
′、電気系10′〜12′を用意すゐ。
Although this method cannot be strictly applied to moving objects, if the object is a relatively slow moving object, it is possible to limit the measurement error to a combination of the measurement errors for a stationary object.◇ The thickness of a plate-like object can be measured by using two systems, an optical system and an electrical system, as shown in Figure 4. Te1~
7 optical systems and 10 to 120 electrical systems are prepared, and optical systems 1' to 7 have the same function for the other surface 811LC.
', prepare electrical systems 10' to 12'.

二つの表面8’a8’に対しレーザ光の収束点が夫々の
表面に位置するような制御が行われると、同一時刻に対
しては円板の同一位置のlI皇両面に関する位置情報が
提供されることに&す、これを利用して板厚の変化を高
い解像度で迅速K fAll定することができる・ 一1因の場合のように厚みの変化を直視する為KFi、
二つの@号は同位相であるから、一方の個によって合成
し、オッシロスコープに入力すわばよい。
When the two surfaces 8'a8' are controlled so that the convergence point of the laser beam is located on each surface, positional information regarding both sides of the disk at the same position at the same time is provided. In particular, by using this, changes in plate thickness can be quickly determined with high resolution.
Since the two @ signals are in the same phase, it is only necessary to combine them using one of them and input it to the oscilloscope.

tな、二つの表面の変化を並べて*6111したい場合
は2現象オツシロスコー1の利用によって目的を達する
ことができる。
If you want to compare *6111 changes on two surfaces side by side, you can achieve your goal by using the two-phenomenon oscilloscope 1.

以上の説明では直視手段としてオッシロスコープを利用
してbるが、こtlFiX−yレコーダに置き換えても
同じ効果が得られる。
In the above explanation, an oscilloscope is used as a direct viewing means, but the same effect can be obtained even if this is replaced with a tlFiX-y recorder.

(gl  発明の効果 不発#4によれば移動中の物体を対績としてその表面の
形状測定を迅速がっ高解*ltに実施することができる
(gl According to the effect of the invention #4, it is possible to quickly and accurately measure the shape of a moving object's surface.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 (13移動する僅検体にレーザ光を照射し、その反射光
を受光することによって得た電気信号を用いて、1II
Wk2レーザ光が前記被検体の一うの表面上に収束する
ように光学系を制御し、#W11I御用出刃傷gをm1
1に2被償体表命の形状を表わす信号として利用するこ
とを特徴とする移動物体の表面形状1M11足h @。 (2)  1紀レーザ光を被験体の一方の表面に収束さ
せる動作と、該表(2)にはは平行に存在する他方の表
面に収束させる自作を交互に行うことを特徴とする特1
1FF訪求の範囲一1項記載の表面形状測定方法0 (3)  #紀仮慎体の二つの表面に対し夫々独立に設
けた+!ff配光学的及び電気的平膜によって得九二つ
の出力佃号を比較し、lII紀二つの!lI向の相対的
位置を検知することを特徴とする請求 1項記載の表面形状測定方法0
[Claims] (13.1II.
The optical system is controlled so that the Wk2 laser beam is focused on one surface of the object, and the #W11I official blade wound g is m1.
1 to 2 Surface shape of a moving object characterized by being used as a signal representing the shape of the subject's surface life 1M11 feet h @. (2) Feature 1 characterized by alternately performing the operation of converging the primary laser beam on one surface of the subject and the self-made operation of converging it on the other surface that exists in parallel in Table (2).
Scope of 1FF visit - Surface shape measurement method described in item 1 0 (3) # +! Compare the two power outputs obtained by ff distribution optical and electrical flat membranes, and compare the two outputs obtained by the II century! Surface shape measuring method 0 according to claim 1, characterized in that the relative position in the lI direction is detected.
JP383082A 1982-01-13 1982-01-13 Surface shape measuring method Pending JPS58122410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP383082A JPS58122410A (en) 1982-01-13 1982-01-13 Surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP383082A JPS58122410A (en) 1982-01-13 1982-01-13 Surface shape measuring method

Publications (1)

Publication Number Publication Date
JPS58122410A true JPS58122410A (en) 1983-07-21

Family

ID=11568112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP383082A Pending JPS58122410A (en) 1982-01-13 1982-01-13 Surface shape measuring method

Country Status (1)

Country Link
JP (1) JPS58122410A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184508U (en) * 1984-11-06 1986-06-04
JPS62237306A (en) * 1986-04-08 1987-10-17 Kobe Steel Ltd Surface shape measuring instrument
EP0308466A1 (en) * 1987-03-24 1989-03-29 Commw Scient Ind Res Org Distance measuring device.
US5033856A (en) * 1984-07-05 1991-07-23 Canon Kabushiki Kaisha Three-dimensional shape measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033856A (en) * 1984-07-05 1991-07-23 Canon Kabushiki Kaisha Three-dimensional shape measuring apparatus
JPS6184508U (en) * 1984-11-06 1986-06-04
JPH044166Y2 (en) * 1984-11-06 1992-02-07
JPS62237306A (en) * 1986-04-08 1987-10-17 Kobe Steel Ltd Surface shape measuring instrument
EP0308466A1 (en) * 1987-03-24 1989-03-29 Commw Scient Ind Res Org Distance measuring device.

Similar Documents

Publication Publication Date Title
US7505143B2 (en) Dynamic reference plane compensation
JPS58122410A (en) Surface shape measuring method
US7057740B2 (en) System and method for calibrating a hard disc drive magnetic head flying height tester by optical interference techniques
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
US20040257582A1 (en) Dual-beam interferometer for ultra-smooth surface topographical measurements
KR100615736B1 (en) Method and arrangement for removing noise and measurements of head-media spacing modulation for digital recording
JPH10500524A (en) Optical focusing adjustment device
US6847459B2 (en) Method and apparatus for dynamically measuring the full flying state of a slider
US6349079B1 (en) System and method for detecting a head positioning error within a computer memory device
JPS61277006A (en) Apparatus for inspecting recording disc
US6462349B1 (en) Measuring spacing between two surfaces via evanescent coupling
US20090109825A1 (en) Optical scanning device
JPH0955051A (en) Method and device for measuring floating characteristic of magnetic head
CN100435224C (en) Optical disk vertical deviation detecting method
US20060126476A1 (en) Dynamic fringe phase detection for measurement of very small spacing
JPH06235617A (en) Phase shifter for laser doppler vibration sensor as measuring apparatus for change in floating amount between magnetic disc and slider
Staudenmann et al. A new laser interferometer system for investigation of the dynamics at the head/disk interface
JP2869589B2 (en) Method for measuring condensed beam diameter using magneto-optical signal and method for inspecting optical system of optical disk apparatus using the method
JPS60246068A (en) Measurement device for minute gap
JPH06103541A (en) Method and device for measuring floating amt. fluctuation between magnetic disk and slider
JPS6371608A (en) Eccentricity measuring instrument
JPS60210733A (en) Inspecting device for optical axis of lens
JPH01155223A (en) Method for measuring optical anisotropy of transparent disk
JPH056510A (en) Method and device for adjusting positioning composite type magnetic head in its fitting position
JPS59218667A (en) Floating variance measuring method of magnetic head