JPH07294231A - Optical surface roughness sensor - Google Patents

Optical surface roughness sensor

Info

Publication number
JPH07294231A
JPH07294231A JP10761494A JP10761494A JPH07294231A JP H07294231 A JPH07294231 A JP H07294231A JP 10761494 A JP10761494 A JP 10761494A JP 10761494 A JP10761494 A JP 10761494A JP H07294231 A JPH07294231 A JP H07294231A
Authority
JP
Japan
Prior art keywords
light
lens
objective lens
numerical aperture
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10761494A
Other languages
Japanese (ja)
Inventor
Teruyuki Tamaki
輝幸 玉木
Masahiro Daimon
正博 大門
Takao Tawaraguchi
隆雄 俵口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10761494A priority Critical patent/JPH07294231A/en
Publication of JPH07294231A publication Critical patent/JPH07294231A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To select a measuring range and a resolving power simply and optionally by providing a mechanism for adjusting an effective numerical aperture of an objective lens to condense a measuring light onto a to-be-measured object. CONSTITUTION:A collimator lens 2 collimates a laser light 50 from a semiconductor laser 1 to parallel lights, while an objective lens 6 condenses a laser light 52 to a surface 31 of a steel plate 30. The diameter of beams of the laser light, 51 collimated to parallel lights is adjusted by an aperture 3 between the collimator lens 2 and the objective lens 6. In other words, an effective numerical aperture of the lens 6 condensing the laser light 52 onto the surface 31 of the steel plate 30 is optionally changed, so that, a measuring range and a resolving power are simply and optionally selected to measure a projection and a recess of tone surface 31 of the steel plate 30. When the effective diameter of the aperture 3 is phi3mm or larger, the effective numerical aperture of the lens 6 becomes an actual numerical aperture of the lens 6. and the measuring range and resolving power are nearly fixed. However, when the effective diameter of the aperture 3 is not larger than phi3mm, the effective numerical aperture of the lens 6 is determined by the effective diameter of the aperture 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光計測分野に係わり、
表面粗度や表面形状を非接触で測定する光学式表面粗度
計に関する。
The present invention relates to the field of optical measurement,
The present invention relates to an optical surface roughness meter for measuring surface roughness and surface shape in a non-contact manner.

【0002】[0002]

【従来の技術】被測定対象の表面形状や表面粗度を非接
触で測定するには、特開平4−65615号公報に開示
されているように、被測定対象の表面と平行な方向に被
測定対象を移動させながら、焦点誤差検出光学系を用い
て、被測定対象の表面の凹凸による反射または散乱位置
の変化を測定する。焦点誤差検出光学系では、被測定対
象の表面に計測光をほぼ集光させ、被測定対象の表面で
反射または散乱された光の収束発散状態を検出すること
により、被測定対象の表面位置を測定する。焦点誤差検
出光学系としては、ナイフエッジ法やフーコー法などが
知られている。
2. Description of the Related Art In order to measure the surface shape and surface roughness of an object to be measured in a non-contact manner, as disclosed in Japanese Patent Laid-Open No. 4-65615, an object to be measured is measured in a direction parallel to the surface. While moving the measurement object, the focus error detection optical system is used to measure the change in the reflection or scattering position due to the unevenness of the surface of the measurement object. In the focus error detection optical system, the measurement light is almost focused on the surface of the object to be measured, and the convergence / divergence state of the light reflected or scattered by the surface of the object to be measured is detected to determine the surface position of the object to be measured. taking measurement. Knife edge method, Foucault method, and the like are known as focus error detection optical systems.

【0003】ナイフエッジ法について、図4を参照にし
て具体的に説明する。点Bは対物レンズ6の焦点位置で
ある。図4(a)に示すように、点Bからの光60は、
対物レンズ6によって平行光61になり、さらに集光レ
ンズ7によって収束光62となった後、光軸上に頂点が
位置するように配置されたナイフエッジ20により、収
束光62のナイフエッジ20と同じ側の半分64は遮断
され、収束光62のナイフエッジ20と反対側の半分6
3は2分割光検出器21の中心に集光される。2分割光
検出器21は、集光レンズ7の焦点位置に配置され、2
分割光検出器21の中心は光軸上に位置している。この
とき、2分割光検出器21の中心を境にした2つの受光
部22a、および22bからの出力の差動信号はゼロと
なる。ここで、図4において、15は差動増幅器であ
る。
The knife edge method will be specifically described with reference to FIG. Point B is the focal position of the objective lens 6. As shown in FIG. 4A, the light 60 from the point B is
After the parallel light 61 is converted into the parallel light 61 by the objective lens 6 and further converted into the convergent light 62 by the condenser lens 7, the knife edge 20 of the converged light 62 is converted into the knife edge 20 by the knife edge 20 arranged so that the apex is located on the optical axis. Half 64 on the same side is blocked and half 6 on the opposite side of knife edge 20 of convergent light 62
3 is focused on the center of the 2-split photodetector 21. The two-part photodetector 21 is arranged at the focal position of the condenser lens 7,
The center of the split photodetector 21 is located on the optical axis. At this time, the differential signals output from the two light receiving portions 22a and 22b with the center of the two-divided photodetector 21 as a boundary become zero. Here, in FIG. 4, reference numeral 15 is a differential amplifier.

【0004】ところが、図4(b)に示すように、対物
レンズ6の焦点位置より対物レンズ6に近い位置である
点Aから光60’が発せられる場合、光60’は対物レ
ンズ6を透過した後発散光61’となるため、さらに集
光レンズ7を透過した後の収束光62’の集光位置(ビ
ームウェスト位置)は、点Bからの光の場合に比べて集
光レンズ7から遠くなる。このため、収束光62’のナ
イフエッジ20と反対側の半分63’により、2分割光
検出器21のナイフエッジ20と反対側の受光部22a
におもに光が照射されることになる。すなわち、2分割
光検出器21の2つの受光部22a、および22bから
の出力の差動信号はプラスとなる。逆に、図4(c)に
示すように、対物レンズ6の焦点位置より対物レンズ6
から遠い位置である点Cから光60”が発せられる場
合、光60”は対物レンズ6を透過した後収束光61”
となるため、さらに集光レンズ7を透過した後の収束光
62”の集光位置(ビームウェスト位置)は、点Bから
の光の場合に比べて集光レンズ7に近くなる。このた
め、収束光62”のナイフエッジ20と反対側の半分6
3”により、2分割光検出器21のナイフエッジ20と
同じ側の受光部22bにおもに光が照射されることにな
る。すなわち、2分割光検出器21の2つの受光部22
a、および22bからの出力の差動信号はマイナスとな
る。
However, as shown in FIG. 4B, when light 60 ′ is emitted from point A, which is a position closer to the objective lens 6 than the focal position of the objective lens 6, the light 60 ′ passes through the objective lens 6. Since it becomes the divergent light 61 ′ after that, the converging position (beam waist position) of the convergent light 62 ′ after further passing through the condensing lens 7 is farther from the condensing lens 7 than in the case of the light from the point B. Become. Therefore, the half 63 ′ of the converged light 62 ′ on the side opposite to the knife edge 20 causes the light receiving portion 22 a of the two-split photodetector 21 on the side opposite to the knife edge 20.
The light is mainly emitted. That is, the differential signals output from the two light receiving portions 22a and 22b of the two-divided photodetector 21 are positive. On the contrary, as shown in FIG. 4C, the objective lens 6 is moved from the focus position of the objective lens 6.
When the light 60 ″ is emitted from the point C, which is a position far from the light, the light 60 ″ passes through the objective lens 6 and then converges light 61 ″.
Therefore, the converging position (beam waist position) of the converged light 62 ″ after passing through the condensing lens 7 is closer to the condensing lens 7 than that of the light from the point B. Half 6 of the convergent light 62 "on the opposite side of the knife edge 20
By 3 ″, light is mainly irradiated to the light receiving portion 22b on the same side as the knife edge 20 of the two-divided photodetector 21. That is, the two light receiving portions 22 of the two-divided photodetector 21.
The differential signals output from a and 22b are negative.

【0005】したがって、この差動信号により光の出射
点の位置を検知することができる。ナイフエッジ法は、
このように光の収束発散状態を検出することにより、光
の出射位置を検出する方法である。一方、フーコー法
は、ナイフエッジの代わりに分割プリズムを用いた方法
で、2分割光検出器の位置が異なるが、基本的な原理は
ナイフエッジ法と同じである。
Therefore, the position of the light emission point can be detected by this differential signal. The knife edge method is
In this way, the light emission position is detected by detecting the convergent / divergent state of light. On the other hand, the Foucault method uses a split prism instead of the knife edge, and the position of the two-split photodetector is different, but the basic principle is the same as the knife edge method.

【0006】ナイフエッジ法を利用して表面の凹凸を測
定する方法の一例を、図5に示す。レーザ1から発せら
れるレーザ光50は、コリメートレンズ2で円形の平行
光51にされた後、偏光ビームスプリッタ4に入射す
る。このとき、レーザ光50、51は直線偏光で、その
偏光方向は反射面と平行(p偏光)、つまり紙面と平行
となるようにレーザ1の向きは設定されているので、偏
光ビームスプリッタ4に入射したレーザ光51は偏光ビ
ームスプリッタ4を透過し、さらにλ/4板5と対物レ
ンズ6を透過し、被測定対象30の表面31にほぼ集光
される。ほぼ集光されたレーザ光53は被測定対象30
の表面31で反射または散乱され、再び対物レンズ6と
λ/4板5を透過する。λ/4板5の光学軸は、レーザ
光51の偏光方向に対して45゜になるように設定して
おくと、λ/4板5を2回透過したレーザ光54の偏光
方向はλ/4板5を一度も透過していないレーザ光51
に対して90゜回転し、反射面と垂直(s偏光)、つま
り紙面と垂直になる。偏光がs偏光となり、さらに再度
偏光ビームスプリッタ4に入射したレーザ光54は今度
は偏光ビームスプリッタ4で反射され、集光レンズ7で
収束光55となった後、光軸上に頂点が位置するように
配置された直角ナイフエッジミラー8で2方向に反射さ
れ、それぞれの反射光56、および57はそれぞれの2
分割光検出器11、および12の中心に集光され、それ
ぞれの2分割光検出器11、および12の受光部13
a、13b、および受光部14a、14bに受光され
る。それぞれの2分割光検出器11、および12は直角
ナイフエッジミラー8でそれぞれ折り返された集光レン
ズ7の焦点位置に配置され、それぞれの2分割光検出器
11、および12の中心は直角ナイフエッジミラー8で
それぞれ折り返された光軸上に位置している。直角ナイ
フエッジミラー8で反射されたそれぞれの反射光56、
および57は両者とも、前記図4の収束光62のナイフ
エッジ20と反対側の半分63に相当することになる。
すなわち、反射光56に対しては、直角ナイフエッジミ
ラー8の頂点より左側のミラー部分10が遮蔽として働
き、逆に反射光57に対しては、直角ナイフエッジミラ
ー8の頂点より右側のミラー部分9が遮蔽として働くこ
とになる。したがって、それぞれの2分割光検出器1
1、および12の受光部13a、13b、および受光部
14a、14bに受光される光量は、光が反射または散
乱される位置、つまり被測定対象30の表面31の位置
にしたがって変化するので、それぞれの2分割光検出器
11、および12の同じ位置関係にある受光部13a、
14aからの出力70aと受光部13b、14bからの
出力70bの差動信号により、前記図4の差動信号と同
様に、出射位置を検知することができる。このとき、2
つの2分割光検出器11、および12からの出力の差動
信号は、前記図4の出力差動信号の2倍になる。
FIG. 5 shows an example of a method for measuring surface irregularities using the knife edge method. The laser light 50 emitted from the laser 1 is converted into circular parallel light 51 by the collimator lens 2, and then enters the polarization beam splitter 4. At this time, the laser beams 50 and 51 are linearly polarized light, and the direction of the laser 1 is set so that the polarization direction is parallel to the reflection surface (p-polarized light), that is, parallel to the paper surface. The incident laser beam 51 passes through the polarization beam splitter 4, further passes through the λ / 4 plate 5 and the objective lens 6, and is substantially focused on the surface 31 of the measurement target 30. The substantially condensed laser beam 53 is the measurement target 30.
The light is reflected or scattered by the surface 31 and is transmitted again through the objective lens 6 and the λ / 4 plate 5. When the optical axis of the λ / 4 plate 5 is set to be 45 ° with respect to the polarization direction of the laser light 51, the polarization direction of the laser light 54 transmitted through the λ / 4 plate 5 twice is λ / 4 Laser light 51 that has never transmitted through plate 5
It is rotated by 90 ° with respect to and perpendicular to the reflection surface (s-polarized light), that is, perpendicular to the paper surface. The polarized light becomes s-polarized light, and the laser light 54 that has entered the polarizing beam splitter 4 again is reflected by the polarizing beam splitter 4 this time, becomes convergent light 55 by the condenser lens 7, and then the apex is located on the optical axis. Are reflected in two directions by the right-angled knife-edge mirror 8 arranged in such a manner that the respective reflected lights 56 and 57 are reflected in the respective two directions.
The light receiving portions 13 of the two-divided photodetectors 11 and 12 are condensed at the centers of the divided photodetectors 11 and 12, respectively.
The light is received by a and 13b and the light receiving portions 14a and 14b. Each of the two-divided photodetectors 11 and 12 is arranged at the focal position of the condenser lens 7 folded back by the right-angle knife edge mirror 8, and the center of each of the two-divided photodetectors 11 and 12 is a right-angle knife edge. The mirrors 8 are located on the respective optical axes that are folded back. Each reflected light 56 reflected by the right angle knife edge mirror 8,
Both 57 and 57 correspond to the half 63 of the convergent light 62 in FIG. 4 opposite to the knife edge 20.
That is, for the reflected light 56, the mirror portion 10 on the left side of the apex of the right-angle knife edge mirror 8 acts as a shield, and conversely for the reflected light 57, the mirror portion on the right side of the apex of the right-angle knife edge mirror 8. 9 will act as a shield. Therefore, each two-split photodetector 1
The amount of light received by the light receiving portions 13a and 13b and the light receiving portions 14a and 14b of 1 and 12 changes according to the position where the light is reflected or scattered, that is, the position of the surface 31 of the measured object 30, respectively. Of the two-divided photodetectors 11 and 12 having the same positional relationship,
The emission position can be detected by the differential signal between the output 70a from 14a and the output 70b from the light receiving portions 13b and 14b, similarly to the differential signal in FIG. At this time, 2
The differential signal output from each of the two split photodetectors 11 and 12 is twice the output differential signal of FIG.

【0007】一方、被測定対象30は、レーザ光51と
垂直な方向に動く移動ステージ32上に固定され、駆動
装置33によりレーザ光51と垂直な方向に移動する。
このとき、被測定対象30の表面31上に集光されるレ
ーザ光53の反射または散乱される位置は、被測定対象
30の表面31の凹凸に対応して光軸方向に変位するの
で、この変位に伴い、前記図4の原理に従ってそれぞれ
の2分割光検出器11、および12の同じ位置関係にあ
る受光部13a、14aからの出力70aと受光部13
b、14bからの出力70bの差動信号71が変化し、
被測定対象30の表面31の凹凸を求めることができ
る。
On the other hand, the object 30 to be measured is fixed on a moving stage 32 which moves in a direction perpendicular to the laser light 51, and is moved in a direction perpendicular to the laser light 51 by a driving device 33.
At this time, the position at which the laser light 53 focused on the surface 31 of the object to be measured 30 is reflected or scattered is displaced in the optical axis direction in accordance with the unevenness of the surface 31 of the object to be measured 30. In accordance with the displacement, according to the principle of FIG. 4, the outputs 70a from the light receiving portions 13a and 14a and the light receiving portion 13 of the two-divided photodetectors 11 and 12 having the same positional relationship.
The differential signal 71 of the output 70b from b and 14b changes,
The unevenness of the surface 31 of the measured object 30 can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記の
従来の光学式表面粗度計においては、測定範囲と分解能
が固定されているという問題点があった。すなわち、測
定範囲が広いが低分解能であるものと、測定範囲は狭い
が高分解能のものを、一つの装置で満たすことができ
ず、それぞれの仕様を満たす装置が必要であった。
However, the above-mentioned conventional optical surface roughness meter has a problem that the measurement range and the resolution are fixed. That is, a device having a wide measurement range but a low resolution and a device having a narrow measurement range but a high resolution cannot be satisfied by a single device, and a device satisfying the respective specifications is required.

【0009】本発明は上記事情に基づいてなされたもの
であり、測定範囲および分解能を簡単にかつ任意に選択
することが可能である光学式表面粗度計を提供すること
を目的とするものである。
The present invention has been made under the above circumstances, and an object thereof is to provide an optical surface roughness meter capable of easily and arbitrarily selecting a measurement range and resolution. is there.

【0010】[0010]

【課題を解決するための手段】本発明に関わる光学式表
面粗度計は、上記課題を解決するために、焦点誤差検出
光学系を用いた表面粗度や表面形状を非接触で測定する
光学式表面粗度計において、計測光を被測定対象に集光
するための対物レンズの実効的な開口数(N.A.)を
調整する機構を備えたことを特徴とするものであり、特
に、焦点誤差検出光学系として、ナイフエッジ法または
フーコー法を用いた光学系であること、計測光を被測定
対象に集光するための対物レンズの実効的な開口数
(N.A.)を調整する機構として、計測光のビーム径
を調整する機構であることを特徴とするものである。
In order to solve the above-mentioned problems, an optical surface roughness meter according to the present invention is an optical system for measuring a surface roughness and a surface shape using a focus error detection optical system in a non-contact manner. The surface roughness meter is characterized by including a mechanism for adjusting the effective numerical aperture (NA) of the objective lens for condensing the measurement light on the object to be measured. , An optical system using the knife edge method or the Foucault method as the focus error detection optical system, and the effective numerical aperture (NA) of the objective lens for condensing the measurement light on the object to be measured. The adjusting mechanism is a mechanism for adjusting the beam diameter of the measurement light.

【0011】[0011]

【作用】前記のナイフエッジ法またはフーコー法を用い
た焦点誤差検出光学系において、測定範囲および分解能
は、被測定対象に計測光を集光する対物レンズの開口数
(N.A.)で決まることが、Japanese Journal of
Applied Physics, Vol.26 (1987) Supplement 26
-4 pp183-186 に示されている。このことは定性的に
は、次のように説明できる。開口数の大きい対物レンズ
で集光される光の焦点深度は小さいために、光の出射位
置、つまり光が反射または散乱される位置が焦点位置か
ら少しでもずれると、計測光の発散収束条件が大きく変
化することになるので、測定範囲が狭くなり、その結果
分解能は高くなることになる。一方、開口数の小さい対
物レンズで集光される光の焦点深度は大きいために、光
の出射位置、つまり光が反射または散乱される位置が焦
点位置から少しぐらいずれても、計測光の発散収束条件
はあまり変化しないので、測定範囲が広くなり、その結
果分解能は低くなることになる。このとき、2分割光検
出器が集光レンズの焦点位置に配置され、収差の影響を
無視することができるならば、集光レンズの開口数は、
測定範囲および分解能に影響を与えないというのが特徴
である。
In the focus error detection optical system using the knife edge method or the Foucault method, the measurement range and resolution are determined by the numerical aperture (NA) of the objective lens that collects the measurement light on the object to be measured. Japanese Journal of
Applied Physics, Vol.26 (1987) Supplement 26
-4 pp183-186. This can be qualitatively explained as follows. Since the depth of focus of light condensed by an objective lens with a large numerical aperture is small, if the emission position of the light, that is, the position where the light is reflected or scattered, deviates from the focus position even a little, the divergence and convergence condition of the measurement light becomes Because of the large changes, the measurement range is narrowed, resulting in higher resolution. On the other hand, since the depth of focus of light collected by an objective lens with a small numerical aperture is large, the divergence of measurement light will occur even if the light emission position, that is, the position where the light is reflected or scattered, deviates slightly from the focus position. Since the convergence condition does not change so much, the measurement range becomes wider, resulting in a lower resolution. At this time, if the two-division photodetector is arranged at the focal position of the condenser lens and the influence of aberration can be ignored, the numerical aperture of the condenser lens is
The feature is that it does not affect the measurement range and resolution.

【0012】本発明においては、この特徴を利用し、被
測定対象に計測光を集光する対物レンズの実効的な開口
数を変えることで、測定範囲および分解能をある範囲内
で任意に選択することができるようにしたものである。
レンズの開口数は、レンズの有効径と焦点距離で決まる
が、光学系としての開口数、つまりレンズの実効的な開
口数は、レンズに入射する光のビーム径がレンズの有効
径より大きい場合には、レンズの開口数と等しくなる
が、レンズに入射する光のビーム径がレンズの有効径よ
り小さい場合には、光のビーム径とレンズの焦点距離で
決まることになる。つまり、光のビーム径をレンズの有
効径より小さくなるまで絞るか、またはレンズの焦点距
離を変えることにより、光学系としての開口数、つまり
レンズの実効的な開口数を変えることができる。したが
って、前記のナイフエッジ法またはフーコー法を用いた
焦点誤差検出光学系において、一つの方法としては、対
物レンズに入射する計測光のビーム径を調整する機構を
設け、計測光のビーム径を調整して、光学系としての開
口数、つまり対物レンズの実効的な開口数を任意に変え
ることによって、測定範囲および分解能を簡単にかつ任
意に選択することができる。また、もう一つの方法とし
ては、焦点距離が異なり実効的な開口数が異なる対物レ
ンズを入れ換える機構を設け、これらの対物レンズを入
れ換えて、光学系としての開口数を任意に変えることに
よっても、測定範囲および分解能を簡単にかつ任意に選
択することができる。
In the present invention, by utilizing this characteristic, the effective numerical aperture of the objective lens for condensing the measurement light on the object to be measured is changed to arbitrarily select the measurement range and the resolution within a certain range. It was made possible.
The numerical aperture of a lens is determined by the effective diameter of the lens and the focal length, but the numerical aperture of the optical system, that is, the effective numerical aperture of the lens is when the beam diameter of the light entering the lens is larger than the effective diameter of the lens. Is equal to the numerical aperture of the lens, but when the beam diameter of the light incident on the lens is smaller than the effective diameter of the lens, it is determined by the beam diameter of the light and the focal length of the lens. That is, the numerical aperture of the optical system, that is, the effective numerical aperture of the lens can be changed by narrowing the beam diameter of light to be smaller than the effective diameter of the lens or changing the focal length of the lens. Therefore, in the focus error detection optical system using the knife edge method or the Foucault method, one method is to provide a mechanism for adjusting the beam diameter of the measurement light incident on the objective lens and adjust the beam diameter of the measurement light. Then, the measurement range and resolution can be easily and arbitrarily selected by arbitrarily changing the numerical aperture of the optical system, that is, the effective numerical aperture of the objective lens. Further, as another method, by providing a mechanism for exchanging objective lenses having different focal lengths and different effective numerical apertures, and exchanging these objective lenses, the numerical aperture as an optical system can be arbitrarily changed. The measurement range and resolution can be easily and arbitrarily selected.

【0013】[0013]

【実施例】以下、本発明の実施例について図を参照しな
がら説明する。図1は、本発明におけるナイフエッジ法
を用いた光学式表面粗度計の一実施例を示す模式図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of an optical surface roughness meter using the knife edge method according to the present invention.

【0014】出力30mW、波長830nmの半導体レ
ーザ1より発せられる発散レーザ光50は、半導体レー
ザ1から20mm離れた位置に置かれた、焦点距離20
mm、有効径φ5mmのコリメートレンズ2でビーム径
φ5mmの円形の平行レーザ光51にされた後、有効径
が可変であるアパーチャー3を通過することにより、さ
らにビーム径が任意の大きさに変えられた平行レーザ光
52になり、10mm×10mm×10mmの偏光ビー
ムスプリッタ4に入射する。半導体レーザ1は、He−
Neレーザ等のレーザでもよく、計測に必要な光量が得
られればよい。また、波長も1〜2μm程度以下のもの
であれば、特に問題はない。レーザ光50、51、52
は直線偏光で、その偏光方向は反射面と平行(p偏
光)、つまり紙面と平行となるように半導体レーザ1の
向きは設定されているので、偏光ビームスプリッタ4に
入射したレーザ光52は偏光ビームスプリッタ4を透過
し、さらにλ/4板5と焦点距離10mm、有効径3m
mの対物レンズ6を透過し、被測定対象である鋼板30
の表面31にほぼ集光される。被測定対象は鋼板のよう
に粗面であるものでも、アルミミラーのように鏡面であ
るものでもよい。ほぼ集光されたレーザ光53は被測定
対象である鋼板30の表面31で反射または散乱され、
再び対物レンズ6とλ/4板5を透過する。λ/4板5
の光学軸は、レーザ光52の偏光方向に対して45゜に
なるように設定しておくと、λ/4板5を2回透過した
レーザ光54の偏光方向はλ/4板5を一度も透過して
いないレーザ光52に対して90゜回転し、反射面と垂
直(s偏光)、つまり紙面と垂直になる。偏光がs偏光
となり、さらに再度偏光ビームスプリッタ4に入射した
レーザ光54は今度は偏光ビームスプリッタ4で反射さ
れ、焦点距離100mm、有効径10mmの集光レンズ
7で収束光55となった後、光軸上に頂点が位置するよ
うに配置された、各反射面がそれぞれ10mm×14.
1mmの直角ナイフエッジミラー8で2方向に反射さ
れ、それぞれの反射光56、および57はそれぞれの2
分割光検出器11、および12の中心に集光され、それ
ぞれの2分割光検出器11、および12の受光部13
a、13b、および受光部14a、14bに受光され
る。2分割光検出器11、および12の感度は波長83
0nm付近で0.5mA/mWで、受光部13a、13
b、および受光部14a、14bの大きさはそれぞれ約
0.3mm×1.2mmで、受光部13aと13b、お
よび受光部14aと14bの間には10μmのデッドゾ
ーンがある。それぞれの2分割光検出器11、および1
2は直角ナイフエッジミラー8でそれぞれ折り返された
集光レンズ7の焦点位置に配置され、それぞれの2分割
光検出器11、および12の中心は直角ナイフエッジミ
ラー8でそれぞれ折り返された光軸上に位置している。
したがって、それぞれの2分割光検出器11、および1
2の受光部13a、13b、および受光部14a、14
bに受光される光量は、光が反射または散乱される位
置、つまり被測定対象である鋼板30の表面31の位置
にしたがって変化するので、それぞれの2分割光検出器
11、および12の同じ位置関係にある受光部13a、
14aからの出力70aと受光部13b、14bからの
出力70bを差動増幅器15で差動増幅した差動信号7
1により、被測定対象である鋼板30の表面31の位置
を検知することができる。
A divergent laser beam 50 emitted from the semiconductor laser 1 having an output of 30 mW and a wavelength of 830 nm is placed at a position 20 mm away from the semiconductor laser 1 and has a focal length of 20.
mm, a collimator lens 2 having an effective diameter of 5 mm is converted into a circular parallel laser beam 51 having a beam diameter of 5 mm, and then passed through an aperture 3 having a variable effective diameter, whereby the beam diameter is further changed to an arbitrary size. The parallel laser light 52 becomes parallel laser light 52 and is incident on the polarization beam splitter 4 of 10 mm × 10 mm × 10 mm. The semiconductor laser 1 is He-
A laser such as a Ne laser may be used as long as the amount of light required for measurement is obtained. Further, there is no particular problem as long as the wavelength is about 1 to 2 μm or less. Laser light 50, 51, 52
Is a linearly polarized light, and the direction of the semiconductor laser 1 is set so that its polarization direction is parallel to the reflection surface (p-polarized light), that is, parallel to the paper surface. Therefore, the laser beam 52 incident on the polarization beam splitter 4 is polarized. Transmits through the beam splitter 4, and further has a λ / 4 plate 5 with a focal length of 10 mm and an effective diameter of 3 m.
steel plate 30 which is an object to be measured and which is transmitted through the objective lens 6 of m.
Almost collected on the surface 31 of the. The object to be measured may be a rough surface such as a steel plate or a mirror surface such as an aluminum mirror. The substantially condensed laser light 53 is reflected or scattered by the surface 31 of the steel plate 30 as the measurement target,
It again passes through the objective lens 6 and the λ / 4 plate 5. λ / 4 plate 5
The optical axis of is set to be 45 ° with respect to the polarization direction of the laser light 52, and the polarization direction of the laser light 54 that has been transmitted through the λ / 4 plate 5 twice passes through the λ / 4 plate 5 once. Is rotated by 90 ° with respect to the laser beam 52 which is not transmitted, and becomes perpendicular to the reflection surface (s-polarized light), that is, perpendicular to the paper surface. The polarized light becomes s-polarized light, and the laser light 54 that has entered the polarizing beam splitter 4 again is reflected by the polarizing beam splitter 4 this time and becomes convergent light 55 by the condenser lens 7 having a focal length of 100 mm and an effective diameter of 10 mm. Each reflecting surface arranged so that its apex is located on the optical axis is 10 mm × 14.
The reflected light 56 and 57 are reflected by the 1 mm right-angle knife edge mirror 8 in two directions.
The light receiving portions 13 of the two-divided photodetectors 11 and 12 are condensed at the centers of the divided photodetectors 11 and 12, respectively.
The light is received by a and 13b and the light receiving portions 14a and 14b. The sensitivity of the two-division photodetectors 11 and 12 has a wavelength of 83
0.5 mA / mW near 0 nm, the light receiving parts 13a, 13
The size of each of b and the light receiving portions 14a and 14b is about 0.3 mm × 1.2 mm, and there is a dead zone of 10 μm between the light receiving portions 13a and 13b and the light receiving portions 14a and 14b. Each two-split photodetector 11, and 1
2 is arranged at the focal position of the condenser lens 7 folded back by the right-angle knife edge mirror 8, and the centers of the respective two-divided photodetectors 11 and 12 are on the optical axis folded back by the right-angle knife edge mirror 8. Is located in.
Therefore, each two-split photodetector 11 and 1
2 light receiving portions 13a and 13b, and light receiving portions 14a and 14
The amount of light received by b changes according to the position where the light is reflected or scattered, that is, the position of the surface 31 of the steel plate 30 that is the measurement target, so the same position of each of the two-division photodetectors 11 and 12 is used. The light receiving portion 13a which is related,
The differential signal 7 obtained by differentially amplifying the output 70a from 14a and the outputs 70b from the light receiving portions 13b and 14b by the differential amplifier 15
1 makes it possible to detect the position of the surface 31 of the steel plate 30 to be measured.

【0015】一方、被測定対象である鋼板30は、レー
ザ光52と垂直な方向に動く移動ステージ32上に固定
され、駆動装置33によりレーザ光52と垂直な方向に
移動する。このとき、被測定対象30の表面31上に集
光されるレーザ光53の反射または散乱される位置は、
被測定対象30の表面31の凹凸に対応して光軸方向に
変位するので、この変位に伴い、それぞれの2分割光検
出器11、および12の同じ位置関係にある受光部13
a、14aからの出力70aと受光部13b、14bか
らの出力70bの差動信号が変化し、被測定対象である
鋼板30の表面31の凹凸を求めることができる。
On the other hand, the steel plate 30 to be measured is fixed on a moving stage 32 which moves in a direction perpendicular to the laser light 52, and is moved in a direction perpendicular to the laser light 52 by a driving device 33. At this time, the position where the laser beam 53 focused on the surface 31 of the measurement target 30 is reflected or scattered is
Since it is displaced in the optical axis direction corresponding to the unevenness of the surface 31 of the object 30 to be measured, the two-divided photodetectors 11 and 12 having the same positional relationship with each other are accompanied by this displacement.
The differential signals of the outputs 70a from a and 14a and the outputs 70b from the light receiving parts 13b and 14b change, and the unevenness of the surface 31 of the steel plate 30 to be measured can be obtained.

【0016】このときに、半導体レーザ1からのレーザ
光50を円形の平行光にコリメートするコリメートレン
ズ2と、被測定対象である鋼板30の表面31にレーザ
光52を集光する対物レンズ6の間の、円形の平行光に
コリメートされたレーザ光51のビーム径を調整するた
めのアパーチャー3により、レーザ光51のビーム径を
調整して、被測定対象である鋼板30の表面31にレー
ザ光52を集光する対物レンズ6の実効的な開口数を任
意に変えることによって、測定範囲および分解能を簡単
にかつ任意に選択して、被測定対象である鋼板30の表
面31の凹凸を測定する。アパーチャー3の有効径がφ
3mm以上のときは、対物レンズの実効的な開口数は、
対物レンズの実際の開口数になり、測定範囲および分解
能はほとんど固定されるが、アパーチャー3の有効径が
φ3mm以下のときは、対物レンズの実効的な開口数
は、アパーチャー3の有効径で決められることになる。
例えば、アパーチャー3の有効径がφ3mm以上の場
合、対物レンズの焦点距離は10mmなので対物レンズ
の実効的な開口数は0.15となり、レーザ光53が反
射または散乱される位置、つまり被測定対象である鋼板
30の表面31の位置の変位に対する、2分割光検出器
11、および12からの差動信号71は、焦点位置に対
して±50μmの範囲で単調増加を示し、図2の曲線9
0のようになる。また、アパーチャー3の有効径がφ1
mmの場合、対物レンズの焦点距離は10mmなので対
物レンズの実効的な開口数は0.05となり、レーザ光
53が反射または散乱される位置、つまり被測定対象で
ある鋼板30の表面31の位置の変位に対する、2分割
光検出器11、および12からの差動信号71は、焦点
位置に対して±150μmの範囲で単調増加を示し、図
2の曲線91のようになる。したがって、被測定対象で
ある鋼板30の表面31の凹凸の大きさに合わせた測定
範囲および分解能になるように、アパーチャー3の有効
径を調整して測定することにより、感度のよい測定をす
ることができる。
At this time, the collimator lens 2 for collimating the laser light 50 from the semiconductor laser 1 into a circular parallel light and the objective lens 6 for condensing the laser light 52 on the surface 31 of the steel plate 30 to be measured. The beam diameter of the laser light 51 is adjusted by the aperture 3 for adjusting the beam diameter of the laser light 51 that is collimated into circular parallel light, and the laser light is applied to the surface 31 of the steel plate 30 to be measured. By arbitrarily changing the effective numerical aperture of the objective lens 6 that focuses the light 52, the measurement range and resolution can be easily and arbitrarily selected, and the unevenness of the surface 31 of the steel plate 30 to be measured is measured. . The effective diameter of aperture 3 is φ
When it is 3 mm or more, the effective numerical aperture of the objective lens is
It is the actual numerical aperture of the objective lens, and the measurement range and resolution are almost fixed, but when the effective diameter of the aperture 3 is 3 mm or less, the effective numerical aperture of the objective lens is determined by the effective diameter of the aperture 3. Will be done.
For example, when the effective diameter of the aperture 3 is φ3 mm or more, the focal length of the objective lens is 10 mm, the effective numerical aperture of the objective lens is 0.15, and the position where the laser light 53 is reflected or scattered, that is, the object to be measured. The differential signal 71 from the two-divided photodetectors 11 and 12 with respect to the displacement of the position of the surface 31 of the steel plate 30 that is shown in FIG.
It becomes like 0. Also, the effective diameter of the aperture 3 is φ1.
In the case of mm, since the focal length of the objective lens is 10 mm, the effective numerical aperture of the objective lens is 0.05, and the position where the laser beam 53 is reflected or scattered, that is, the position of the surface 31 of the steel plate 30 to be measured. The differential signal 71 from the two-divided photodetectors 11 and 12 with respect to the displacement of 1 shows a monotonic increase in the range of ± 150 μm with respect to the focal position, and becomes like a curve 91 in FIG. Therefore, the effective diameter of the aperture 3 is adjusted and measured so that the measurement range and the resolution match the size of the unevenness of the surface 31 of the steel plate 30 that is the object to be measured, and thereby measurement with high sensitivity is performed. You can

【0017】また、アパーチャー3の代わりに対物レン
ズを入れ換えるレボルバを設け、焦点距離が異なり実効
的な開口数が異なる対物レンズを入れ換えて、光学系と
しての開口数を任意に変えることによっても、測定範囲
および分解能を簡単にかつ任意に選択することができる
ので、感度のよい測定をすることができる。
Further, by providing a revolver for replacing the objective lens instead of the aperture 3 and replacing objective lenses having different focal lengths and different effective numerical apertures, the numerical aperture of the optical system can be arbitrarily changed. Since the range and the resolution can be easily and arbitrarily selected, the measurement can be performed with high sensitivity.

【0018】図3は、本発明におけるもう一つの方法で
あるフーコー法を用いた光学式表面粗度計の一実施例を
示す模式図である。半導体レーザ1、コリメートレンズ
2、アパーチャー3、偏光ビームスプリッタ4、λ/4
板5、対物レンズ6、集光レンズ7、2分割光検出器1
1、および12、2分割光検出器11の受光部13a、
および13b、2分割光検出器12の受光部14a、お
よび14b、差動増幅器15、被測定対象30、被測定
対象30の表面31、移動ステージ32、駆動装置3
3、レーザ光50、51、52、53、54、および5
5、2分割光検出器11の受光部13aと2分割光検出
器12の受光部14aからの出力信号70a、2分割光
検出器11の受光部13bと2分割光検出器12の受光
部14bからの出力信号70b、出力信号70aと出力
信号70bの差動信号71は、図1に示すナイフエッジ
法を用いた光学式表面粗度計と同様であるが、2分割光
検出器11、および12の位置はプリズム16でそれぞ
れ曲げられた集光レンズ7の焦点に配置され、それぞれ
の2分割光検出器11、および12の中心がプリズム1
6でそれぞれ曲げられた光軸上に位置している。図3に
示すフーコー法を用いた光学式表面粗度計では、集光レ
ンズ7を透過した収束光55は、図1に示すナイフエッ
ジ法を用いた光学式表面粗度計の直角ナイフエッジプリ
ズム8の代わりに、光軸上に頂点が位置するように配置
されたプリズム16を透過して2方向に分離され、それ
ぞれの透過光58、および59はそれぞれの2分割光検
出器11、および12の中心に集光される。以下、ナイ
フエッジ法を用いた光学式表面粗度計と同様にして、被
測定対象である鋼板30の表面31の凹凸を測定し、開
口数調整機構により、感度のよい測定をすることができ
る。
FIG. 3 is a schematic view showing an embodiment of an optical surface roughness meter using the Foucault method which is another method of the present invention. Semiconductor laser 1, collimator lens 2, aperture 3, polarization beam splitter 4, λ / 4
Plate 5, Objective Lens 6, Condenser Lens 7, Split Photo Detector 1
1, and 12, the light receiving portion 13a of the two-division photodetector 11,
And 13b, the light receiving portions 14a and 14b of the two-divided photodetector 12, the differential amplifier 15, the measured object 30, the surface 31 of the measured object 30, the moving stage 32, the driving device 3
3, laser light 50, 51, 52, 53, 54, and 5
5, output signal 70a from the light receiving section 13a of the two-split photodetector 11 and the light receiving section 14a of the two-split photodetector 12 and the light receiving section 13b of the two-split photodetector 11 and the light receiving section 14b of the two-split photodetector 12. The output signal 70b from the above and the differential signal 71 between the output signal 70a and the output signal 70b are the same as those of the optical surface roughness meter using the knife edge method shown in FIG. The position of 12 is arranged at the focal point of the condenser lens 7 bent by the prism 16, and the center of each of the two-divided photodetectors 11 and 12 is the prism 1.
6 are located on the respective bent optical axes. In the optical surface roughness meter using the Foucault method shown in FIG. 3, the convergent light 55 transmitted through the condenser lens 7 is the right-angled knife edge prism of the optical surface roughness meter using the knife edge method shown in FIG. Instead of 8, the light is transmitted through a prism 16 arranged so that its apex is located on the optical axis and is separated into two directions, and respective transmitted lights 58 and 59 are divided into respective two-divided photodetectors 11 and 12. Is focused on the center of. Hereinafter, similarly to the optical surface roughness meter using the knife edge method, the unevenness of the surface 31 of the steel plate 30 to be measured can be measured, and a highly sensitive measurement can be performed by the numerical aperture adjusting mechanism. .

【0019】[0019]

【発明の効果】本発明によれば、実効的な開口数を調整
する機構により、測定範囲および分解能を簡単にかつ任
意に選択することが可能になる。
According to the present invention, the mechanism for adjusting the effective numerical aperture makes it possible to easily and arbitrarily select the measurement range and resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関するナイフエッジ法を用いた光学式
表面粗度計の一実施例を示す模式図である。
FIG. 1 is a schematic view showing an example of an optical surface roughness meter using a knife edge method according to the present invention.

【図2】本発明の一実施例において、被測定対象30の
表面31の位置の変位に対する、2分割光検出器11、
および12からの差動信号71を示す図である。
FIG. 2 is a diagram showing an embodiment of the present invention in which the two-division photodetector 11 with respect to the displacement of the position of the surface 31 of the measured object 30
FIG. 5 shows the differential signal 71 from 12 and 12.

【図3】本発明に関するフーコー法を用いた光学式表面
粗度計の一実施例を示す模式図である。
FIG. 3 is a schematic view showing an example of an optical surface roughness meter using the Foucault method according to the present invention.

【図4】ナイフエッジ法による焦点誤差検出法を説明す
る図である。
FIG. 4 is a diagram illustrating a focus error detection method by a knife edge method.

【図5】従来の光学式表面粗度計の一実施例を示す模式
図である。
FIG. 5 is a schematic diagram showing an example of a conventional optical surface roughness meter.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 コリメートレンズ 3 アパーチャー 4 偏光ビームスプリッタ 5 λ/4板 6 対物レンズ 7 集光レンズ 8 直角ナイフエッジミラー 9、10 直角ナイフエッジミラー8のミラー部分 11、12 2分割光検出器 13a、13b 2分割光検出器11の受光部 14a、14b 2分割光検出器12の受光部 15 差動増幅器 16 プリズム 20 ナイフエッジ 21 2分割光検出器 22a 2分割光検出器21のナイフエッジと反対側
の受光部 22b 2分割光検出器21のナイフエッジと同じ側
の受光部 30 被測定対象 31 被測定対象30の表面 32 移動ステージ 33 駆動装置 50、51、52、53、54、55、56、57、5
8、59 レーザ光 60、60’、60” 発散光 61 平行光 61’ 平行光に近い発散光 61” 平行光に近い収束光 62、62’、62” 収束光 63 レーザ光62のナイフエッジと反対側の半分 63’ レーザ光62’のナイフエッジと反対側の半
分 63” レーザ光62”のナイフエッジと反対側の半
分 64 レーザ光62のナイフエッジと同じ側の半分 64’ レーザ光62’のナイフエッジと同じ側の半
分 64” レーザ光62”のナイフエッジと同じ側の半
分 70a 2分割光検出器11の受光部13aと、2分
割光検出器12の受光部14aからの出力信号 70b 2分割光検出器11の受光部13bと、2分
割光検出器12の受光部14bからの出力信号 71 出力信号70aと出力信号70bの差動信号 90 アパーチャー3の有効径がφ3mm以上の場合
の、被測定対象30の表面31の位置の変位に対する、
2分割光検出器11、および12からの差動信号71 91 アパーチャー3の有効径がφ1mmの場合の、
被測定対象30の表面31の位置の変位に対する、2分
割光検出器11、および12からの差動信号71 A 対物レンズ6の焦点位置より対物レンズ6に近い
位置 B 対物レンズ6の焦点位置 C 対物レンズ6の焦点位置より対物レンズ6から遠
い位置
1 Semiconductor Laser 2 Collimating Lens 3 Aperture 4 Polarizing Beam Splitter 5 λ / 4 Plate 6 Objective Lens 7 Condensing Lens 8 Right Angle Knife Edge Mirror 9, 10 Mirror of Right Angle Knife Edge Mirror 11, 12 Split Photo Detector 13a, 13b Light-receiving part 14a of 2-split photodetector 11 and 14b Light-receiving part of 2-split photodetector 15 Differential amplifier 16 Prism 20 Knife edge 21 2-split photodetector 22a Opposite side of 2-split photodetector 21 Light receiving part 22b of the two-sided photodetector 21 on the same side as the knife edge 30 object to be measured 31 surface of object 30 to be measured 32 moving stage 33 drive device 50, 51, 52, 53, 54, 55, 56, 57, 5
8, 59 laser light 60, 60 ', 60 "diverging light 61 parallel light 61' diverging light close to parallel light 61" convergent light near parallel light 62, 62 ', 62 "convergent light 63 knife edge of laser light 62 Half of the other side 63 'Half of the knife edge of the laser light 62' and half of the opposite side 63 "Half of the knife edge of the laser light 62" and half of the opposite side 64 Half of the same side of the knife edge of the laser light 62 'Laser light 62' Half on the same side as the knife edge of 64 ″ Half on the same side as the knife edge of the laser light 62 ″ 70a Output signal from the light receiving section 13a of the two-split photodetector 11 and the light receiving section 14a of the two-split photodetector 12 70b Output signal 71 from the light receiving part 13b of the two-part photodetector 11 and the light receiving part 14b of the two-part photodetector 12 Differential signal between the output signal 70a and the output signal 70b 90 Effective diameter of the aperture 3 is φ With respect to the displacement of the position of the surface 31 of the measured object 30 in the case of 3 mm or more,
When the effective diameter of the differential signal 71 91 aperture 3 from the two-division photodetectors 11 and 12 is φ1 mm,
Differential signal 71 from the two-division photodetectors 11 and 12 with respect to the displacement of the position of the surface 31 of the object 30 to be measured A A position closer to the objective lens 6 than the focus position of the objective lens B B Focus position C of the objective lens 6 Position farther from the objective lens 6 than the focus position of the objective lens 6.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 俵口 隆雄 神奈川県相模原市淵野辺5丁目10番1号 新日本製鐵株式会社エレクトロニクス研究 所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Tawaraguchi 5-10-1 Fuchinobe, Sagamihara City, Kanagawa Electronics Research Laboratory, Nippon Steel Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焦点誤差検出光学系を用いた表面粗度や
表面形状を非接触で測定する光学式表面粗度計におい
て、計測光を被測定対象に集光するための対物レンズの
実効的な開口数(N.A.)を調整する機構を備えたこ
とを特徴とする光学式表面粗度計。
1. An optical surface roughness meter for measuring a surface roughness and a surface shape in a non-contact manner using a focus error detection optical system, wherein an effective objective lens for condensing measurement light on an object to be measured. An optical surface roughness meter having a mechanism for adjusting a large numerical aperture (NA).
【請求項2】 前記焦点誤差検出光学系として、ナイフ
エッジ法またはフーコー法を用いた光学系であることを
特徴とする、請求項1記載の光学式表面粗度計。
2. The optical surface roughness meter according to claim 1, wherein the focus error detection optical system is an optical system using a knife edge method or a Foucault method.
【請求項3】 前記計測光を被測定対象に集光するため
の対物レンズの実効的な開口数(N.A.)を調整する
機構として、計測光のビーム径を調整する機構であるこ
とを特徴とする、請求項1または請求項2記載の光学式
表面粗度計。
3. A mechanism for adjusting a beam diameter of the measurement light as a mechanism for adjusting an effective numerical aperture (NA) of an objective lens for condensing the measurement light on an object to be measured. The optical surface roughness meter according to claim 1 or 2, characterized in that.
JP10761494A 1994-04-22 1994-04-22 Optical surface roughness sensor Withdrawn JPH07294231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761494A JPH07294231A (en) 1994-04-22 1994-04-22 Optical surface roughness sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761494A JPH07294231A (en) 1994-04-22 1994-04-22 Optical surface roughness sensor

Publications (1)

Publication Number Publication Date
JPH07294231A true JPH07294231A (en) 1995-11-10

Family

ID=14463645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761494A Withdrawn JPH07294231A (en) 1994-04-22 1994-04-22 Optical surface roughness sensor

Country Status (1)

Country Link
JP (1) JPH07294231A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
EP1901028A1 (en) * 2005-07-06 2008-03-19 Japan Science and Technology Agency Three dimensional position observation method and apparatus
JP2009258022A (en) * 2008-04-18 2009-11-05 Sony Corp Displacement detecting device
JP2010091343A (en) * 2008-10-06 2010-04-22 Hitachi High-Technologies Corp Apparatus for inspecting microprojection
US8514410B2 (en) 2010-08-30 2013-08-20 Kabushiki Kaisha Toshiba Displacement detection device and method
JP2018105847A (en) * 2016-11-10 2018-07-05 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Coordinate measurement device having optical sensor and method corresponding to the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
JP4580579B2 (en) * 2001-04-06 2010-11-17 株式会社ナノテックス Surface shape measuring method and surface shape measuring apparatus
EP1901028A1 (en) * 2005-07-06 2008-03-19 Japan Science and Technology Agency Three dimensional position observation method and apparatus
EP1901028A4 (en) * 2005-07-06 2014-06-04 Japan Science & Tech Agency Three dimensional position observation method and apparatus
JP2009258022A (en) * 2008-04-18 2009-11-05 Sony Corp Displacement detecting device
JP2010091343A (en) * 2008-10-06 2010-04-22 Hitachi High-Technologies Corp Apparatus for inspecting microprojection
US8514410B2 (en) 2010-08-30 2013-08-20 Kabushiki Kaisha Toshiba Displacement detection device and method
JP2018105847A (en) * 2016-11-10 2018-07-05 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Coordinate measurement device having optical sensor and method corresponding to the same

Similar Documents

Publication Publication Date Title
JP3308230B2 (en) Maintaining device and method for maintaining target separation distance between object of main optical system and optical output stage
NL7904579A (en) OPTICAL IMAGING SYSTEM INCLUDING AN OPTO-ELECTRONIC DETECTION SYSTEM FOR DETERMINING A DEROGATION BETWEEN THE IMAGE SCREEN AND A SECOND PLACE TO BE IMAGES ON.
JPS618744A (en) Focus error detector of optical disc device
JPH063125A (en) Optical type displacement meter
JPH04273208A (en) Focal-point detecting device using total- reflection-type attenuating spectroscopy
JPH07294231A (en) Optical surface roughness sensor
JP2002005617A (en) Optical measurement device
JPH07182666A (en) Light pickup system
JP2808713B2 (en) Optical micro displacement measuring device
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device
JPH0743835B2 (en) Focus error detector
JPH11325848A (en) Aspherical surface shape measurement device
JPS60211304A (en) Measuring instrument for parallelism
JP2686323B2 (en) Focus error detection device
JPH0778894B2 (en) Optical pickup device
JPH08145625A (en) Optical displacement measuring apparatus
US5905254A (en) Compact sized optical pickup system
JPH0968408A (en) Optical displacement sensor
JPH0829664A (en) Method for detecting position of measured object
JPH07174552A (en) Apparatus for detecting focal point
JPH1196582A (en) Objective lens adjusting method and adjusting device for optical head
JPH03252513A (en) Parabolic antenna surface measuring instrument
JPH0560557A (en) Optical method and device for measuring micro displacement
JPH0294118A (en) Focus error detector
JPS63153442A (en) Measuring instrument for optical characteristic of beam splitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703