JP2011112493A - Double refraction measuring device of non-planar-shaped sample - Google Patents

Double refraction measuring device of non-planar-shaped sample Download PDF

Info

Publication number
JP2011112493A
JP2011112493A JP2009268855A JP2009268855A JP2011112493A JP 2011112493 A JP2011112493 A JP 2011112493A JP 2009268855 A JP2009268855 A JP 2009268855A JP 2009268855 A JP2009268855 A JP 2009268855A JP 2011112493 A JP2011112493 A JP 2011112493A
Authority
JP
Japan
Prior art keywords
sample
measurement sample
light beam
detector
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268855A
Other languages
Japanese (ja)
Other versions
JP5433118B2 (en
Inventor
Jun Eto
順 衞藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO CO Ltd
Original Assignee
ETO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETO CO Ltd filed Critical ETO CO Ltd
Priority to JP2009268855A priority Critical patent/JP5433118B2/en
Publication of JP2011112493A publication Critical patent/JP2011112493A/en
Application granted granted Critical
Publication of JP5433118B2 publication Critical patent/JP5433118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double refraction measuring device capable of measuring a double refraction characteristic of a measuring sample having a non-planar shape such as a lens. <P>SOLUTION: A light beam emitted from a light source 2 is allowed to enter a desired position on a measuring sample 7 having a non-planar shape via a polarizer 3. Since each position and angle of an analyzer 16 and a detector 17 can be changed corresponding to an emission angle of the light beam B from the measuring sample 7, even if the light beam is greatly refracted by the measuring sample 7, the light beam B transmitted through the measuring sample 7 can be allowed to enter properly the detector 17 through the analyzer 16, to thereby measure the double refraction characteristic of the measuring sample 7 having the non-planar shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は測定試料の複屈折特性を測定する複屈折測定装置、特に非平面形状の測定試料の複屈折特性を測定可能な非平面形状試料の複屈折測定装置に関する。   The present invention relates to a birefringence measuring apparatus for measuring birefringence characteristics of a measurement sample, and more particularly to a non-planar shape birefringence measurement apparatus capable of measuring the birefringence characteristics of a non-planar measurement sample.

光弾性変調法、回転検光子法、液晶位相変調法、クロスニコル等を用いて測定試料の複屈折特性を測定する複屈折測定装置は、従来より多数開発されている(例えば、特許文献1)。   A large number of birefringence measuring apparatuses that measure the birefringence characteristics of a measurement sample using a photoelastic modulation method, a rotation analyzer method, a liquid crystal phase modulation method, crossed Nicols, and the like have been developed in the past (for example, Patent Document 1). .

特表2002−504673号公報Japanese translation of PCT publication No. 2002-504673

しかしながら、一般に従来の複屈折測定装置においては、測定試料を透過した光ビームを検知器で受光する装置構成となっているため、測定試料が例えばレンズのような非平面形状であると、試料の入射角度と出射角度によっては光ビームが大きく屈折してしまい、検知器に入射できないことから、非平面形状の測定試料の複屈折特性の測定は不可能であるという問題があった。   However, in general, a conventional birefringence measurement apparatus has a device configuration in which a light beam transmitted through a measurement sample is received by a detector. Therefore, if the measurement sample has a non-planar shape such as a lens, Depending on the incident angle and the outgoing angle, the light beam is greatly refracted and cannot be incident on the detector, which makes it impossible to measure the birefringence characteristics of a non-planar measurement sample.

本発明は、このような従来の事情に鑑みてなされたもので、本発明の目的の一つは、非平面形状の測定試料の複屈折特性を測定可能な非平面形状試料の複屈折測定装置を提供することにある。   The present invention has been made in view of such a conventional situation, and one of the objects of the present invention is a non-planar sample birefringence measuring apparatus capable of measuring the birefringence characteristics of a non-planar measurement sample. Is to provide.

本発明のさらに他の目的は、以下の説明から明らかになろう。   Still other objects of the present invention will become apparent from the following description.

本発明による非平面形状試料の複屈折測定装置は、
非平面形状の測定試料の複屈折特性を測定する非平面形状試料の複屈折測定装置であって、
光ビームを発する光源と、
前記光源からの光ビームを偏光とする偏光子と、
前記測定試料をセットされ、該測定試料の所望位置に前記偏光子を経由した光ビームが入射するように該測定試料の位置を変化させることができる試料ステージと、
前記測定試料への入射光ビームおよび前記試料ステージにセットされた前記測定試料に対し位置を可変、かつ傾斜角度を可変に支持された検光子と、
前記測定試料への入射光ビームおよび前記試料ステージにセットされた前記測定試料に対し位置を可変、かつ傾斜角度を可変に支持されており、前記測定試料から出射された光ビームを前記検光子を介して入射されると、該光を信号に変換する検知器とを有してなるものである。
An apparatus for measuring birefringence of a non-planar sample according to the present invention comprises:
A non-planar shape sample birefringence measuring device for measuring the birefringence characteristics of a non-planar shape measurement sample,
A light source that emits a light beam;
A polarizer that polarizes a light beam from the light source;
A sample stage in which the measurement sample is set, and the position of the measurement sample can be changed so that the light beam that has passed through the polarizer enters the desired position of the measurement sample;
An analyzer that is supported by a variable position and a variable tilt angle with respect to the incident light beam on the measurement sample and the measurement sample set on the sample stage;
The position of the incident light beam to the measurement sample and the measurement sample set on the sample stage is supported with a variable position and a variable tilt angle. The light beam emitted from the measurement sample is passed through the analyzer. And a detector for converting the light into a signal.

本発明においては、測定試料からの光ビームの出射角度に応じて、測定試料に対し検光子および検知器の位置および角度を変化することにより、測定試料によって光ビームが大きく屈折しても、測定試料を透過した光ビームを検知器に適正に入射させることができるので、非平面形状の測定試料の複屈折特性をも測定することができる。   In the present invention, by changing the position and angle of the analyzer and detector with respect to the measurement sample according to the emission angle of the light beam from the measurement sample, even if the light beam is largely refracted by the measurement sample, Since the light beam transmitted through the sample can be appropriately incident on the detector, the birefringence characteristics of the non-planar measurement sample can also be measured.

本発明の非平面形状試料の複屈折測定装置は、非平面形状の測定試料の複屈折特性を測定できる等の優れた効果を得られるものである。   The non-planar sample birefringence measuring apparatus of the present invention can provide excellent effects such as the ability to measure the birefringence characteristics of a non-planar sample.

本発明による非平面形状試料の複屈折測定装置の実施例1の構成を簡略化して斜視図風に示した概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic block diagram which simplified and showed the structure of Example 1 of the birefringence measuring apparatus of the non-planar shape sample by this invention in the perspective view style. 前記実施例1において、測定試料に対する変調光ビームの入射位置が変えられたとき、検光子および検知器の位置および角度がそれに追従する様子を示す説明図である(測定試料は凸レンズとされている)。In the said Example 1, when the incident position of the modulated light beam with respect to a measurement sample is changed, it is explanatory drawing which shows a mode that the position and angle of an analyzer and a detector track it (the measurement sample is made into the convex lens). ). 前記実施例1において、検知器の出力に基づき複屈折特性の演算並びに検光子および検知器の位置および角度の制御を行う部分のブロック図である。In the said Example 1, it is a block diagram of the part which calculates a birefringence characteristic based on the output of a detector, and controls the position and angle of an analyzer and a detector. 前記実施例1において、測定試料が凹レンズである場合の、測定試料に対する変調光ビームの入射位置が変えられたとき、検光子および検知器の位置および角度がそれに追従する様子を示す説明図である。In the said Example 1, when a measurement sample is a concave lens, when the incident position of the modulated light beam with respect to a measurement sample is changed, it is explanatory drawing which shows a mode that the position and angle of an analyzer and a detector track to it. . 本発明による非平面形状試料の複屈折測定装置の実施例2の構成を簡略化して斜視図風に示した概略構成図である。It is the schematic block diagram which simplified the structure of Example 2 of the birefringence measuring apparatus of the non-planar shape sample by this invention, and was shown in the perspective view style.

以下、本発明を図面に示す実施例に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1〜4は、本発明による非平面形状試料の複屈折測定装置の実施例1を示しており、本実施例は光弾性変調器(PEM)を使用して偏光を変調する光弾性変調法を用いた複屈折測定装置に本発明を適用した例である。   1 to 4 show a first embodiment of a birefringence measuring apparatus for a non-planar sample according to the present invention, which is a photoelastic modulation method that modulates polarization using a photoelastic modulator (PEM). This is an example in which the present invention is applied to a birefringence measuring apparatus using a slab.

筺体1(部分的にのみ示している)内には次のような構成が収容されている。レーザー光源等の光源2から鉛直方向下向きに発せられた光ビームは偏光子3に入射され、直線偏光とされた後、光弾性変調器(PEM)4に入射されるようになっている。前記光弾性変調器4から出力された変調された円偏光である変調光ビームAは、試料ステージ5のホルダ6(図1では図示を省略、図2,4参照)にセットされた透明な測定試料7に入射されるようになっている。   The following structure is accommodated in the housing 1 (shown only partially). A light beam emitted vertically downward from a light source 2 such as a laser light source is incident on a polarizer 3 to be linearly polarized and then incident on a photoelastic modulator (PEM) 4. The modulated light beam A, which is a modulated circularly polarized light output from the photoelastic modulator 4, is a transparent measurement set on the holder 6 of the sample stage 5 (not shown in FIG. 1, see FIGS. 2 and 4). It enters the sample 7.

前記試料ステージ5は、XY移動装置8と回転装置9とを有している。前記XY移動装置8は、水平面(光源2から発せられる光ビームに対し垂直な面)上の互いに直交する2方向であるX方向およびY方向の移動を実現できるようになっている。すなわち、前記XY移動装置8は、Y方向に移動可能なY方向移動部10と、このY方向移動部10をY方向に駆動するY方向駆動装置11と、前記Y方向移動部10上に搭載されており、X方向に移動可能なX方向移動部12と、このX方向移動部12をX方向に駆動するX方向駆動装置13とを有している。前記回転装置9は、X方向移動部12上に搭載されており、鉛直方向に延びる回転軸14a周りに回転可能な回転台14と、この回転台14を回転駆動させる回転駆動装置15とを有してなる。前記ホルダ6は回転台14に取り付けられていて、測定試料7を支持するようになっている。このような構成を有することにより、前記試料ステージ5は、ホルダ6に支持された測定試料7をX方向およびY方向に移動できるとともに、鉛直な回転軸14a周りに回転させることができるようになっている。   The sample stage 5 has an XY moving device 8 and a rotating device 9. The XY moving device 8 can realize movement in the X direction and the Y direction which are two directions orthogonal to each other on a horizontal plane (a plane perpendicular to the light beam emitted from the light source 2). That is, the XY moving device 8 is mounted on the Y direction moving unit 10 that can move in the Y direction, a Y direction driving device 11 that drives the Y direction moving unit 10 in the Y direction, and the Y direction moving unit 10. The X direction moving unit 12 is movable in the X direction, and the X direction driving device 13 drives the X direction moving unit 12 in the X direction. The rotating device 9 is mounted on the X-direction moving unit 12, and has a rotating table 14 that can rotate around a rotating shaft 14a extending in the vertical direction, and a rotation driving device 15 that rotates the rotating table 14. Do it. The holder 6 is attached to a turntable 14 and supports the measurement sample 7. By having such a configuration, the sample stage 5 can move the measurement sample 7 supported by the holder 6 in the X direction and the Y direction, and can rotate around the vertical rotation axis 14a. ing.

前記測定試料7から出射された楕円偏光ビームBは、検光子16を介して検知器17に入射されるようになっている。前記検光子16および検知器17は、X方向に移動可能とされた受光部支持部18に、Y方向に延びる回転軸周りに一体的に回動可能に支持されている。前記受光部支持部18は受光部位置駆動装置19によりX方向に駆動されるようになっている。前記検光子16および検知器17は、受光部角度駆動装置20により、受光部支持部18に対し、Y方向に延びる回転軸周りに一体的に回転駆動されるようになっている。このような構成により、検光子16および検知器17は、測定試料7に入射される変調光ビームAおよびホルダ6に支持されることにより試料ステージ5にセットされた測定試料7に対し位置を可変、かつ傾斜角度を可変であって、受光部位置駆動装置19により所望の位置に移動できるとともに受光部角度駆動装置20により所望の角度に傾斜できるようになっている。   The elliptically polarized beam B emitted from the measurement sample 7 is incident on the detector 17 via the analyzer 16. The analyzer 16 and the detector 17 are supported by a light receiving unit support 18 which is movable in the X direction so as to be integrally rotatable around a rotation axis extending in the Y direction. The light receiving portion support portion 18 is driven in the X direction by a light receiving portion position driving device 19. The analyzer 16 and the detector 17 are integrally rotated around a rotation axis extending in the Y direction with respect to the light receiving portion support portion 18 by the light receiving portion angle driving device 20. With such a configuration, the analyzer 16 and the detector 17 are variable in position with respect to the measurement sample 7 set on the sample stage 5 by being supported by the modulated light beam A incident on the measurement sample 7 and the holder 6. In addition, the tilt angle is variable, and it can be moved to a desired position by the light receiving unit position driving device 19 and can be tilted to a desired angle by the light receiving unit angle driving device 20.

前記検知器17は、検光子16を介して入射された光を電気信号に変換する。図3に示されるように、前記検知器17の出力は、ロックインアンプ21を介しておよび演算回路24を介して、コンピュータ22に入力されるようになっている。前記コンピュータ22は、ロックインアンプ21および演算回路24を介して入力される検知器17の出力から測定試料7の複屈折特性および透過率を演算する複屈折特性および透過率演算処理装置として機能する(この機能は従来装置と同様である)のに加えて、検知器17の出力から受光部位置駆動装置19および受光部角度駆動装置20を介して検光子16および検知器17の位置および角度を制御する受光部制御装置としても機能できるようになっている。   The detector 17 converts light incident through the analyzer 16 into an electrical signal. As shown in FIG. 3, the output of the detector 17 is input to the computer 22 via the lock-in amplifier 21 and via the arithmetic circuit 24. The computer 22 functions as a birefringence characteristic and transmittance calculation processing device that calculates the birefringence characteristic and transmittance of the measurement sample 7 from the output of the detector 17 input via the lock-in amplifier 21 and the calculation circuit 24. (This function is the same as that of the conventional apparatus) In addition, the positions and angles of the analyzer 16 and the detector 17 are determined from the output of the detector 17 via the light receiving portion position driving device 19 and the light receiving portion angle driving device 20. It can also function as a light receiving unit control device to be controlled.

次に、本測定装置による複屈折特性の測定方法を説明する。   Next, a method for measuring birefringence characteristics using this measuring apparatus will be described.

測定試料7(図1および2は、測定試料7が凸レンズである場合を示している)を、その光軸を試料ステージ5の回転台14の回転軸14aに合致させるようにして、試料ステージ5のホルダ6に支持させた後、XY移動装置8のX方向駆動装置13およびY方向駆動装置11を駆動することにより、回転台14およびホルダ6とともに測定試料7をX方向およびY方向に移動し、測定試料7の所望の位置(点)に光弾性変調器4から出力された変調光ビームAが入射されるようにする。   The measurement sample 7 (FIGS. 1 and 2 shows a case where the measurement sample 7 is a convex lens) is set so that its optical axis is aligned with the rotation axis 14 a of the turntable 14 of the sample stage 5. Then, the measurement sample 7 is moved in the X direction and the Y direction together with the rotary table 14 and the holder 6 by driving the X direction driving device 13 and the Y direction driving device 11 of the XY moving device 8. The modulated light beam A output from the photoelastic modulator 4 is incident on a desired position (point) of the measurement sample 7.

すると、コンピュータ22は、検知器17の受光量が最大となるように、受光部位置駆動装置19および受光部角度駆動装置20を駆動して、検光子16および検知器17の位置および角度を変化させる。これにより、測定試料7から出射された光ビームBが検光子16を介して検知器17の受光中心位置に垂直に入射するように、光ビームBの出射角度に検光子16および検知器17の位置および角度が追従する。図2は、この追従の様子を示したもので、光弾性変調器4から出力された変調光ビームAがそれぞれ測定試料7の光軸(回転台14の回転軸14a)から半径R1,R2,Rnの位置において測定試料7に入射されたとき、測定試料7から出射された光ビームBを検知器17が測定試料7の光軸からそれぞれ半径D1,D2,Dnの位置においてそれぞれ角度θ1,θ2,θn傾いた状態で受光する。 Then, the computer 22 drives the light receiving unit position driving device 19 and the light receiving unit angle driving device 20 so that the amount of light received by the detector 17 is maximized, and changes the positions and angles of the analyzer 16 and the detector 17. Let As a result, the light beam B emitted from the measurement sample 7 is incident on the light receiving center position of the detector 17 through the analyzer 16 perpendicularly, so that the analyzer 16 and the detector 17 have an emission angle of the light beam B. The position and angle follow. FIG. 2 shows the state of this follow-up. The modulated light beam A output from the photoelastic modulator 4 has radii R 1 and R from the optical axis of the measurement sample 7 (the rotation axis 14a of the turntable 14), respectively. 2 , when incident on the measurement sample 7 at the position of R n, the detector 17 causes the light beam B emitted from the measurement sample 7 to be positioned at radii D 1 , D 2 , D n from the optical axis of the measurement sample 7, respectively. The light is received with the angles θ 1 , θ 2 , and θ n inclined.

円周方向の位置に関しては、回転駆動装置15を駆動し、回転台14およびホルダ6とともに測定試料7を回転させることにより、測定試料7の所望の円周方向位置に光弾性変調器4から出力された変調光ビームAが入射されるようにすることができる。   Regarding the position in the circumferential direction, the rotational driving device 15 is driven to rotate the measurement sample 7 together with the turntable 14 and the holder 6, thereby outputting the measurement sample 7 from the photoelastic modulator 4 to a desired circumferential direction position. The modulated light beam A may be incident.

そして、検知器17の出力を演算回路24およびコンピュータ22が従来と同様に演算することによって、各位置における測定試料7の複屈折特性および透過率を求めることができる。   Then, the arithmetic circuit 24 and the computer 22 calculate the output of the detector 17 in the same manner as in the past, whereby the birefringence characteristics and transmittance of the measurement sample 7 at each position can be obtained.

図4は、測定試料7を凹レンズとした場合の、測定試料7に対する変調光ビームAの入射位置が変えられたとき、検光子16および検知器17の位置および角度がそれに追従する様子を示したものである。   FIG. 4 shows how the positions and angles of the analyzer 16 and the detector 17 follow when the incident position of the modulated light beam A on the measurement sample 7 is changed when the measurement sample 7 is a concave lens. Is.

なお、上述のような複屈折特性の測定は、X方向駆動装置13、Y方向駆動装置11および回転駆動装置15を非連続的に駆動して、測定試料7上の離散した位置において行うこともできるし、測定試料7をXY方向または(および)回転方向に連続的に移動しながら測定することにより、測定試料7上の連続した位置において行うこともできる。   The birefringence characteristics as described above may be measured at discrete positions on the measurement sample 7 by driving the X direction drive device 13, the Y direction drive device 11 and the rotation drive device 15 discontinuously. It is also possible to perform measurement at successive positions on the measurement sample 7 by measuring the measurement sample 7 while continuously moving in the XY direction or (and) the rotation direction.

また、前記実施例においては、検知器17の受光量が最大になるように制御することにより、測定試料7からの光ビームBの出射角度に検光子16および検知器17の位置および角度を追従させているが、測定試料7の形状および材質が既知で、測定試料7への変調光ビームAの入射位置と測定試料7からの光ビームBの出射角度との関係が既知の場合は、前述のような受光量による追従動作を行わせることなく、検光子16および検知器17の位置および角度を変化させて測定を行うこともできる。   In the above embodiment, the position and angle of the analyzer 16 and the detector 17 are made to follow the emission angle of the light beam B from the measurement sample 7 by controlling so that the amount of light received by the detector 17 is maximized. However, when the shape and material of the measurement sample 7 are known and the relationship between the incident position of the modulated light beam A on the measurement sample 7 and the emission angle of the light beam B from the measurement sample 7 is known, It is also possible to perform measurement by changing the positions and angles of the analyzer 16 and the detector 17 without performing the following operation based on the amount of received light.

以上のように本装置では、測定試料7からの光ビームBの出射角度に応じて、測定試料7に対し検光子16および検知器17の位置および角度を変化することにより、測定試料7によって光ビームが大きく屈折しても、測定試料7を透過した光ビームを検知器17に適正に入射させることができるので、非平面形状の測定試料7の複屈折特性を測定することができる。   As described above, in the present apparatus, the position and angle of the analyzer 16 and the detector 17 are changed with respect to the measurement sample 7 according to the emission angle of the light beam B from the measurement sample 7, so Even if the beam is largely refracted, the light beam that has passed through the measurement sample 7 can be appropriately incident on the detector 17, so that the birefringence characteristics of the non-planar measurement sample 7 can be measured.

図5は、本発明による非平面形状試料の複屈折測定装置の実施例2を示している。前記実施例1においては、測定試料7からの光ビームBの出射角度の変化に対応するために、検光子16および検知器17を直線方向であるX方向に移動可能としていたが、本実施例では、検光子16および検知器17が、Y方向に対し垂直な鉛直面内の円弧軌道23に沿って移動可能とされている。他の構成は実施例1と同様である。   FIG. 5 shows a second embodiment of the non-planar sample birefringence measuring apparatus according to the present invention. In the first embodiment, the analyzer 16 and the detector 17 can be moved in the X direction, which is a linear direction, in order to cope with the change in the emission angle of the light beam B from the measurement sample 7. Then, the analyzer 16 and the detector 17 are movable along a circular arc track 23 in a vertical plane perpendicular to the Y direction. Other configurations are the same as those of the first embodiment.

このように、本発明においては、測定試料7からの光ビームBの出射角度の変化に対応するために、検光子16および検知器17を円弧軌道等の曲線軌道上を移動可能としても、検光子16および検知器17を直線方向に移動可能する場合と同様の作用効果を得ることができる。   As described above, in the present invention, in order to cope with the change in the emission angle of the light beam B from the measurement sample 7, even if the analyzer 16 and the detector 17 are movable on a curved orbit such as an arc orbit, the detection is possible. The same effect as when the photon 16 and the detector 17 are movable in the linear direction can be obtained.

なお、前記各実施例は、本発明を光弾性変調法を用いた複屈折測定装置に適用した例であるが、本発明は回転検光子法、液晶位相変調法、クロスニコル等の他の測定法を用いる複屈折測定装置にも適用できるものである。   In addition, although each said Example is an example which applied this invention to the birefringence measuring apparatus using the photoelastic modulation method, this invention is other measurements, such as a rotation analyzer method, a liquid crystal phase modulation method, and crossed Nicols. The present invention can also be applied to a birefringence measuring apparatus using a method.

また、前記各実施例では、光学系を鉛直方向に配列しているが、本発明においては、光学系を水平方向や斜め方向に配列してもよい。   In each of the above embodiments, the optical system is arranged in the vertical direction. However, in the present invention, the optical system may be arranged in a horizontal direction or an oblique direction.

また、前記各実施例では、コンピュータ22を、検知器17の出力に基づいて演算回路24とともに複屈折特性および透過率を演算する複屈折特性および透過率演算処理装置として使用するとともに、検知器17の受光量が最大となるように受光部位置駆動装置19および受光部角度駆動装置20を介して検光子16および検知器17の位置および角度を制御する受光部制御装置として使用しているが、本発明においては、前記複屈折特性および透過率演算処理装置並びに受光部制御装置として、それぞれコンピュータではなく、その他の電子回路を用いてもよい。   In each of the above embodiments, the computer 22 is used as a birefringence characteristic and transmittance calculation processing device for calculating the birefringence characteristic and the transmittance together with the arithmetic circuit 24 based on the output of the detector 17, and the detector 17. Is used as a light receiving unit control device that controls the position and angle of the analyzer 16 and the detector 17 via the light receiving unit position driving device 19 and the light receiving unit angle driving device 20 so that the amount of received light is maximized. In the present invention, as the birefringence and transmittance calculation processing device and the light receiving unit control device, other electronic circuits may be used instead of a computer.

また、前記各実施例では、単体のレンズを測定試料7としているが、本発明においては、組み合わせレンズを測定試料とすることもできるし、レンズ以外の単体の物体や複数組み合わされた物体を測定試料とすることもできる。   In each of the above embodiments, a single lens is used as the measurement sample 7. However, in the present invention, a combination lens can be used as the measurement sample, or a single object other than the lens or a plurality of combined objects can be measured. It can also be used as a sample.

さらに、前記各実施例では、測定試料7が回転体形状とされているが、本発明においては、測定試料は回転体形状でなくてもよい。さらに、本発明の複屈折測定装置は、平面状の測定試料の複屈折特性も測定できることは言うまでもない。   Further, in each of the above embodiments, the measurement sample 7 has a rotating body shape. However, in the present invention, the measurement sample may not have a rotating body shape. Furthermore, it goes without saying that the birefringence measuring apparatus of the present invention can also measure the birefringence characteristics of a planar measurement sample.

以上のように本発明による非平面形状試料の複屈折測定装置は、非平面形状の測定試料の複屈折特性を測定する測定装置として有用である。   As described above, the non-planar sample birefringence measurement apparatus according to the present invention is useful as a measurement apparatus for measuring the birefringence characteristics of a non-planar measurement sample.

1 筺体
2 光源
3 偏光子
4 光弾性変調器
5 試料ステージ
6 ホルダ
7 測定試料
8 XY移動装置
9 回転装置
10 Y方向移動部
11 Y方向駆動装置
12 X方向移動部
13 X方向駆動装置
14 回転台
15 回転駆動装置
16 検光子
17 検知器
18 受光部支持部
19 受光部位置駆動装置
20 受光部角度駆動装置
21 ロックインアンプ
22 コンピュータ(複屈折特性および透過率演算処理装置並びに受光部制御装置)
23 円弧軌道
24 演算回路
A 変調光ビーム(測定試料への入射光ビーム)
B 測定試料から出射された光ビーム
DESCRIPTION OF SYMBOLS 1 Housing 2 Light source 3 Polarizer 4 Photoelastic modulator 5 Sample stage 6 Holder 7 Measurement sample 8 XY moving device 9 Rotating device 10 Y direction moving unit 11 Y direction driving device 12 X direction moving unit 13 X direction driving device 14 Rotary table DESCRIPTION OF SYMBOLS 15 Rotation drive device 16 Analyzer 17 Detector 18 Light-receiving part support part 19 Light-receiving part position drive device 20 Light-receiving part angle drive device 21 Lock-in amplifier 22 Computer (birefringence characteristic and transmittance calculation processing apparatus and light-receiving part control apparatus)
23 Arc track 24 Arithmetic circuit A Modulated light beam
B Light beam emitted from the measurement sample

Claims (7)

非平面形状の測定試料の複屈折特性を測定する非平面形状試料の複屈折測定装置であって、
光ビームを発する光源と、
前記光源からの光ビームを偏光とする偏光子と、
前記測定試料をセットされ、該測定試料の所望位置に前記偏光子を経由した光ビームが入射するように該測定試料の位置を変化させることができる試料ステージと、
前記測定試料への入射光ビームおよび前記試料ステージにセットされた前記測定試料に対し位置を可変、かつ傾斜角度を可変に支持された検光子と、
前記測定試料への入射光ビームおよび前記試料ステージにセットされた前記測定試料に対し位置を可変、かつ傾斜角度を可変に支持されており、前記測定試料から出射された光ビームを前記検光子を介して入射されると、該光を信号に変換する検知器とを有してなる非平面形状試料の複屈折測定装置。
A non-planar shape sample birefringence measuring device for measuring the birefringence characteristics of a non-planar shape measurement sample,
A light source that emits a light beam;
A polarizer that polarizes a light beam from the light source;
A sample stage in which the measurement sample is set, and the position of the measurement sample can be changed so that the light beam that has passed through the polarizer enters the desired position of the measurement sample;
An analyzer that is supported by a variable position and a variable tilt angle with respect to the incident light beam on the measurement sample and the measurement sample set on the sample stage;
The position of the incident light beam to the measurement sample and the measurement sample set on the sample stage is supported with a variable position and a variable tilt angle. The light beam emitted from the measurement sample is passed through the analyzer. A birefringence measuring device for a non-planar sample having a detector that converts the light into a signal when incident on the sample.
前記測定試料から出射された光ビームが前記検光子を介して前記検知器に入射するように前記検光子および前記検知器の位置を移動させることができる受光部位置駆動装置と、
前記測定試料から出射された光ビームが前記検知器に垂直に入射するように前記検光子および前記検知器の角度を変えることができる受光部角度駆動装置とを有する請求項1記載の非平面形状試料の複屈折測定装置。
A light receiving unit position driving device capable of moving the position of the analyzer and the detector so that the light beam emitted from the measurement sample is incident on the detector via the analyzer;
The non-planar shape according to claim 1, further comprising: a light receiving unit angle driving device capable of changing an angle between the analyzer and the detector so that a light beam emitted from the measurement sample is perpendicularly incident on the detector. Sample birefringence measurement device.
前記検知器に入射する受光量が最大となるように前記受光部位置駆動装置および前記受光部角度駆動装置を介して前記検光子および前記検知器の位置および角度を制御する受光部制御装置を有する請求項2記載の非平面形状試料の複屈折測定装置。   A light-receiving unit control device that controls the position and angle of the analyzer and the detector via the light-receiving unit position driving device and the light-receiving unit angle driving device so that the amount of received light incident on the detector is maximized; The non-planar sample birefringence measuring apparatus according to claim 2. 前記試料ステージは、前記光源から出射される光ビームに対し垂直でかつ互いに直交する2つの直線方向に前記測定試料を移動可能、かつ前記光源から出射される光ビームに対し平行に延びる回転軸周りに前記測定試料を回転可能である請求項1乃至3のいずれかに記載の非平面形状試料の複屈折測定装置。   The sample stage is capable of moving the measurement sample in two linear directions perpendicular to the light beam emitted from the light source and orthogonal to each other, and around a rotation axis extending parallel to the light beam emitted from the light source. 4. The non-planar sample birefringence measuring apparatus according to claim 1, wherein the measurement sample is rotatable. 前記検光子および前記検知器は、前記互いに直交する2つの直線方向のうちの1つの直線方向に移動可能とされている請求項4に記載の非平面形状試料の複屈折測定装置。   5. The non-planar sample birefringence measuring apparatus according to claim 4, wherein the analyzer and the detector are movable in one of the two linear directions orthogonal to each other. 前記検光子および前記検知器は、前記互いに直交する2つの直線方向のうちの1つの直線方向に対し垂直な平面内の曲線軌道に沿って移動可能とされている請求項4に記載の非平面形状試料の複屈折測定装置。   The non-plane according to claim 4, wherein the analyzer and the detector are movable along a curved trajectory in a plane perpendicular to one of the two linear directions orthogonal to each other. Birefringence measuring device for shape samples. 光弾性変調法を用いて前記測定試料の複屈折特性を測定する複屈折測定装置であって、前記偏光子からの偏光ビームを変調する光弾性変調器を有し、この光弾性変調器により変調された変調光ビームが前記測定試料に入射されるようになっている請求項1乃至6のいずれかに記載の非平面形状試料の複屈折測定装置。
A birefringence measuring apparatus for measuring the birefringence characteristics of the measurement sample using a photoelastic modulation method, comprising a photoelastic modulator for modulating a polarized beam from the polarizer, and modulating by the photoelastic modulator. 7. The non-planar sample birefringence measuring apparatus according to claim 1, wherein the modulated light beam is incident on the measurement sample.
JP2009268855A 2009-11-26 2009-11-26 Non-planar sample birefringence measurement device Expired - Fee Related JP5433118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268855A JP5433118B2 (en) 2009-11-26 2009-11-26 Non-planar sample birefringence measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268855A JP5433118B2 (en) 2009-11-26 2009-11-26 Non-planar sample birefringence measurement device

Publications (2)

Publication Number Publication Date
JP2011112493A true JP2011112493A (en) 2011-06-09
JP5433118B2 JP5433118B2 (en) 2014-03-05

Family

ID=44234936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268855A Expired - Fee Related JP5433118B2 (en) 2009-11-26 2009-11-26 Non-planar sample birefringence measurement device

Country Status (1)

Country Link
JP (1) JP5433118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118870A (en) * 2018-04-11 2019-10-21 한국원자력연구원 Apparatus for non-destructive inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332533A (en) * 1997-06-03 1998-12-18 Unie Opt:Kk Birefringence evaluation system
JPH11132940A (en) * 1997-08-29 1999-05-21 Ricoh Co Ltd Apparatus and method for measurement of birefringence
JP2000097805A (en) * 1998-04-22 2000-04-07 Ricoh Co Ltd Double refraction measuring method and device
JP2004184225A (en) * 2002-12-03 2004-07-02 Jasco Corp Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332533A (en) * 1997-06-03 1998-12-18 Unie Opt:Kk Birefringence evaluation system
JPH11132940A (en) * 1997-08-29 1999-05-21 Ricoh Co Ltd Apparatus and method for measurement of birefringence
JP2000097805A (en) * 1998-04-22 2000-04-07 Ricoh Co Ltd Double refraction measuring method and device
JP2004184225A (en) * 2002-12-03 2004-07-02 Jasco Corp Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118870A (en) * 2018-04-11 2019-10-21 한국원자력연구원 Apparatus for non-destructive inspection
KR102097508B1 (en) * 2018-04-11 2020-04-06 한국원자력연구원 Apparatus for non-destructive inspection

Also Published As

Publication number Publication date
JP5433118B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US10119904B2 (en) Birefringence measurement device and birefringence measurement method
KR101509054B1 (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
WO2015101352A1 (en) Optical polarisation modulation and detection apparatus and detection method
JP5584099B2 (en) Object surface shape measuring apparatus, shape measuring method and component kit
JP2005509153A (en) Accurate calibration of birefringence measurement system
JP2007127567A (en) Polarization direction measurement device
US8958062B2 (en) Defect inspection method and device using same
JP4538344B2 (en) Axial bearing measuring apparatus and method
JP3844222B2 (en) Birefringence measuring device
JP5433118B2 (en) Non-planar sample birefringence measurement device
CN102706809A (en) Linear birefringence measuring device and measuring method thereof
JP2016102682A (en) Inclination detector and rotary laer device
KR20160096550A (en) Light irradiation device
Rakonjac et al. Note: Computer controlled rotation mount for large diameter optics
CN106154593B (en) Anisotropy measurement system, anisotropy measurement method and calibration method thereof
JP2019100862A (en) Birefringence measurement device and birefringence measurement method
JP2008276062A (en) Liquid crystal display device
JPH0552657A (en) Polarization measurement equipment
JP4926003B2 (en) Polarization analysis method
JP2005265649A (en) Optical rotation measuring device and concentration measuring device
CN113574433A (en) Aligning a polarizing device using a spatially varying polarizing element
EP0527128A1 (en) Two axis plane mirror interferometer
JP7193196B2 (en) Measuring Mechanism for Alignment Film Exposure Apparatus and Adjustment Method for Alignment Film Exposure Apparatus
JP2003167267A (en) Polarized light control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131207

R150 Certificate of patent or registration of utility model

Ref document number: 5433118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees