JPS6044810A - Device for detecting position of spot light - Google Patents

Device for detecting position of spot light

Info

Publication number
JPS6044810A
JPS6044810A JP15350383A JP15350383A JPS6044810A JP S6044810 A JPS6044810 A JP S6044810A JP 15350383 A JP15350383 A JP 15350383A JP 15350383 A JP15350383 A JP 15350383A JP S6044810 A JPS6044810 A JP S6044810A
Authority
JP
Japan
Prior art keywords
spot light
spot
light
scanning
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15350383A
Other languages
Japanese (ja)
Other versions
JPH0324603B2 (en
Inventor
Seiichiro Tamai
誠一郎 玉井
Masao Murata
村田 正雄
Keiichi Kobayashi
圭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15350383A priority Critical patent/JPS6044810A/en
Publication of JPS6044810A publication Critical patent/JPS6044810A/en
Publication of JPH0324603B2 publication Critical patent/JPH0324603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To decrease the effect of the secondary reflection, by projecting light to a material to be measured, detecting the projecting direction of the spot light, which is scanned in two dimensions, and sequentially selecting one-dimensional photoelectric elements based on the detected data of a spot-light-image detecting means. CONSTITUTION:Motors connected to reflecting mirrors 13 and 14 are driven by driving circuits 17 and 18. Thus spot light images 5 are scanned on a work 4 in two dimensions. The light projecting direction of the spot light detected by a means III. In this means, the rotary angle of the reflecting mirror 14 is detected by a detector 19. The result is converted into a signal required for the control of a circuit 21 in the next state. A spot-light-image detecting means IV is constituted by arranging an optical lens 22 and a plurality of one-dimensional photoelectric elements 23. Then the one-dimensional photoelectric elements 23 are sequentially selected by a sensor output selecting means based on the output signal of the means III.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、産業用ロボットの視覚センサとして、あるい
は物体の形状9寸法9位置等の検査9位置決め用非接触
センサとして利用されるスポット光位置検出装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a spot light position detection device that is used as a visual sensor for an industrial robot or as a non-contact sensor for inspecting the shape, dimensions, and position of an object. It is related to.

従来例の構成とその問題点 溶接、塗装2組立、検査等の自動化、無人化のが ために、各種のセンサ1使用されている。中でも、光学
方式のものは、測定レンジ、分解能、応答性。
Conventional configurations and their problems Various types of sensors 1 are used to automate and unattend welding, painting, assembly, inspection, etc. Among them, the optical method is characterized by its measurement range, resolution, and response.

柔軟性あるいは大局的および微視的な計測ができる等の
優位性を他方式のものに比し有しているため、注目され
ている。、その代表的な方法は、固体撮像素子(例えば
、COD素子)やPSD(PO8ITION 5ENS
ITIVE DETECTOR)をセンサとして用い、
スリット光やスポット光を被測定物(ワーク)に投光し
て、その投光像の特徴点(例えば、折曲点)等から、ワ
ークの形状や位置等を計測する方法である。
It is attracting attention because it has advantages over other methods, such as flexibility and the ability to perform global and microscopic measurements. , a typical method is to use a solid-state image sensor (for example, a COD device) or a PSD (PO8ITION 5ENS).
ITIVE DETECTOR) as a sensor,
This is a method of projecting slit light or spot light onto an object to be measured (workpiece) and measuring the shape, position, etc. of the workpiece from characteristic points (for example, bending points) of the projected image.

第1図は、前記方式のものの実施例を示し、第11回産
業用ロボットシンポジウム(1981年10月東京で開
催)で発表されたものである。図において、1は近赤外
LED、2は前記近赤外LED1からの光をスポット光
(略円形状の平行光束)に絞るためのコリメートレンズ
、3はスポット光を溶接ワーク4上に投光し、そのスポ
ット光を走査するためのガルバノメータ、5はワーク4
上でのスポット光像で、このスポット光像5を集光レン
ズ6を介して、2次元PSDセンサー7上に結像させる
。周知のように前記2次元PSDセンサ7は、その上に
結像されたスポット光像5の照度重心に比例した信号を
出力するので、前記2次元PSDセンサ7面上にx−y
軸を設け、前記2次元PSDセンサ7面に垂直な軸をZ
軸とするような座標系を設定し、前記2次元PSDセン
サ7と集光レンズ6およびガルバノメータ3の位置関係
と、スポット光の投光方向(位置)を決めれば、前記2
次元PSDセンサ7面上のスポット光像5の位置データ
からワーク4面上のスポット光像5の位置を三角測量の
原理で算出できる。したがって、第1図のようなワーク
4の溶接線8の位置は、前記2次元PSDセンサ7で検
出されたスポット光像5の位置データをもとにして、マ
イコン等で容易に算出できる。そして2次元PSDセン
サ7を用いれば、スポット光像5の照度重心を自動的に
検出してくれるのでCOD素子を用いる方法に比し、像
のぼけを気にしなくてもよいし、スポットの位置をめる
ための細線化処理等の演算が不要なことやランダムアク
セスであるため高速の検出が可能である等の利点を有す
る。
FIG. 1 shows an embodiment of the above system, which was announced at the 11th Industrial Robot Symposium (held in Tokyo in October 1981). In the figure, 1 is a near-infrared LED, 2 is a collimating lens for concentrating the light from the near-infrared LED 1 into a spot light (approximately circular parallel light beam), and 3 is a projecting spot light onto a welding work 4. and a galvanometer for scanning the spot light, 5 is a workpiece 4
This spot light image 5 is formed on a two-dimensional PSD sensor 7 via a condensing lens 6. As is well known, the two-dimensional PSD sensor 7 outputs a signal proportional to the center of gravity of the illuminance of the spot light image 5 formed thereon, so that
An axis is provided, and the axis perpendicular to the surface of the two-dimensional PSD sensor 7 is defined as Z.
By setting a coordinate system such as an axis, and determining the positional relationship between the two-dimensional PSD sensor 7, condensing lens 6, and galvanometer 3, and the direction (position) of spot light projection, the above two
The position of the spot light image 5 on the surface of the workpiece 4 can be calculated from the position data of the spot light image 5 on the surface of the dimensional PSD sensor 7 using the principle of triangulation. Therefore, the position of the welding line 8 of the workpiece 4 as shown in FIG. 1 can be easily calculated using a microcomputer or the like based on the position data of the spot light image 5 detected by the two-dimensional PSD sensor 7. If the two-dimensional PSD sensor 7 is used, the center of illuminance of the spot light image 5 is automatically detected, so compared to the method using a COD element, there is no need to worry about image blurring, and the spot position This method has advantages such as not requiring calculations such as line thinning processing for determining the line width, and high-speed detection due to random access.

しかしながら、第2図に示すように凹状の形状をしたワ
ーク4の斜面にスポット光9を投光すると、0点で反射
された光がC′点にも像をつくることになり、前記2次
元PSDセンサ7上には、0点、01点に対するD点、
D1点の像が検出され、前記2次元PSDセンサ7はD
点、D”点の照度重心の位置すなわち、Do“点を出力
する。検出したいのは、スポット光9の0点に対するD
点の位置であるのに、このような企次反射の影響からD
“°点に偏位し、(D−D”)分が検出誤差となる。こ
の量は、斜面の反射状態によっても大きく影響を受け、
2次元PSDセンサ71を利用する場合は、ワーク4の
斜面の形状を検出することは困難である。 。
However, when the spot light 9 is projected onto the slope of the concave workpiece 4 as shown in FIG. On the PSD sensor 7, the D point for the 0 point and the 01 point,
An image of point D1 is detected, and the two-dimensional PSD sensor 7
The position of the center of illuminance at point D'', that is, point Do'' is output. What we want to detect is D relative to the 0 point of spot light 9.
Although it is the position of a point, due to the influence of such deliberate reflection, D
It deviates to the "° point," and the detection error is (D-D). This amount is also greatly affected by the reflective state of the slope.
When using the two-dimensional PSD sensor 71, it is difficult to detect the shape of the slope of the workpiece 4. .

一方、ワーク4が特に厚板の場合は、第3図に示を±0
.2門程度0精度で検出する必要がある。
On the other hand, if the workpiece 4 is a particularly thick plate, the value shown in Figure 3 is ±0.
.. It is necessary to detect about 2 gates with zero accuracy.

用している場合はスポット光径として0.7〜1.0こ
のため、2次元PSDセンサ7を使用した方法では、反
射の影響を受けない凸状物体の計測にしか適用できない
ことになり、制約が多くかつ計測精度も十分ではない問
題があった。
Therefore, the method using the two-dimensional PSD sensor 7 can only be applied to the measurement of convex objects that are not affected by reflection. There were many restrictions and the measurement accuracy was not sufficient.

発明の目的 本発明は、前記従来例の問題点(反射の問題やスポット
光の形状)を改善することにより、物体の3次元的な位
置、形状2寸法の測定を可能にする視覚センサとしての
スポット光位置検出装置を得ることを目的とする。
Purpose of the Invention The present invention provides a visual sensor that can measure the three-dimensional position and two dimensions of an object by improving the problems of the conventional example (reflection problem and the shape of the spotlight). The purpose is to obtain a spot light position detection device.

発明の構成 そのための構成として、本発明はスポット光を設定する
手段(,1)と、前記スポット光を被測定物に投光し2
次元的に走査する手段(Illと、前記走査によるスポ
ット光の投光方向を検出する手段(Ill)と、光学レ
ンズと1次元光電素子を複数個並列に配置したセンサと
で構成したスポット光像検出手段(IV)と、前記手段
(IIllの検出データに基き、前記1次元光電素子を
順次選択するセンサ出力選択手段(V)とを備えたもの
である。
Structure of the Invention As a structure for this purpose, the present invention includes a means (1) for setting a spot light, and a means (2) for projecting the spot light onto an object to be measured.
A spot light image composed of a means for dimensionally scanning (Ill), a means for detecting the projection direction of the spot light by the scanning (Ill), and a sensor in which an optical lens and a plurality of one-dimensional photoelectric elements are arranged in parallel. The apparatus includes a detection means (IV) and a sensor output selection means (V) for sequentially selecting the one-dimensional photoelectric element based on the detection data of the means (IIll).

実施例の説明− 以下、本発明の一実施例につき図面第4図〜第7図に沿
って説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 4 to 7 of the drawings.

+11はスポット光9を設定する手段であって、発光部
10と前=a発光部1oを制御する回路11と前記発光
部1oから出力された光をスポット光に絞るレンズ12
とから構成される。−例として、発光部1oは近赤外L
EDや半導体レーザやガスレーザ等を利用するが、半導
体レーザ等のレーザを利用すれば、近赤外LEDの場合
に比し、スポット光9のスポットをより小さく絞れ、単
一波長の利点を生かして、干渉フィルタ等による外乱ノ
イズ光のカットが容易である。レンズ12はコリメート
レンズであって、通常の光学レンズや屈折率が中心軸か
ら外周面に向って放射状に分布している円柱状光学ガラ
スレンズ等を利用する。つぎに、(n)はスポット光を
被測定物(ここでは、溶接ワーク4)上に投光するとと
もに、スポット光9を216とから構成する。例えば、
第4図に示すように、反射鏡13を走査機構部16とし
てのパルスモータに接続し、他の反射鏡14を走査機構
部16としてのAC4たはDCモータに接続し、これら
モータを各々の駆動回路17.18により駆動させるこ
とにより、図で示すように、スポット光像5をワーク4
上で、2次元的に走査させる。この場合は、パルスモー
タをX軸方向走査用、ACまたはDCモータをY軸方向
走査用にしている。捷だ各々の走査シーケンスは、Y軸
方向の1走査が完了スる毎に、パルスモータを制御して
、Y軸方向走査ラインをX軸方向に単位長さシフトさせ
る制御をしている。
+11 is means for setting the spot light 9, which includes a light emitting section 10, a circuit 11 for controlling the light emitting section 1o, and a lens 12 for focusing the light output from the light emitting section 1o into a spot light.
It consists of - As an example, the light emitting part 1o is near infrared L
ED, semiconductor lasers, gas lasers, etc. are used, but if a laser such as a semiconductor laser is used, the spot of the light spot 9 can be focused smaller than in the case of a near-infrared LED, and the advantage of a single wavelength can be utilized. It is easy to cut out disturbance noise light using an interference filter or the like. The lens 12 is a collimating lens, such as a normal optical lens or a cylindrical optical glass lens whose refractive index is distributed radially from the central axis toward the outer peripheral surface. Next, (n) projects a spot light onto the object to be measured (here, the welding work 4), and the spot light 9 is composed of a light beam 216. for example,
As shown in FIG. 4, the reflecting mirror 13 is connected to a pulse motor as the scanning mechanism section 16, and the other reflecting mirror 14 is connected to an AC4 or DC motor as the scanning mechanism section 16. By driving the drive circuits 17 and 18, the spot light image 5 is moved to the workpiece 4 as shown in the figure.
The image is scanned two-dimensionally. In this case, the pulse motor is used for scanning in the X-axis direction, and the AC or DC motor is used for scanning in the Y-axis direction. In each scanning sequence, a pulse motor is controlled to shift the Y-axis scanning line by a unit length in the X-axis direction every time one scan in the Y-axis direction is completed.

また、ここでは、反射鏡13.14を回転もしくはI揺
動させるためにモータを利用する一例を示したが、モー
タ以外の例えば音gの振動の利用等も有効でこれを制限
するものではない。
Furthermore, although an example of using a motor to rotate or oscillate the reflecting mirrors 13 and 14 is shown here, other methods other than the motor, such as the use of vibrations of sound g, etc., are also effective and are not limited to this. .

つぎに(Ill)は前記手段(Ill)により、スポッ
ト光9を走査させた叫のスポット光9の投光方向を検出
する手段÷あって、例えば、検知器19と信号処理回路
20とにより構成される。そして、第4図に示すように
、Y軸方向走査用の機構部16(ACまたはDCモータ
笠)に接続したパルスエンコーダ次段の回路21を制御
するために必要な信号に変換する。なおX軸方向走査機
構部15に、サーボモータ等によるサーボ制御を使用す
る場合は、当然のことながら走査位置検出制御は必要で
ある。
Next, (Ill) is a means for detecting the projection direction of the spot light 9 scanned by the spot light 9 by the means (Ill), and is composed of, for example, a detector 19 and a signal processing circuit 20. be done. Then, as shown in FIG. 4, the signal is converted into a signal necessary for controlling the circuit 21 next to the pulse encoder connected to the mechanism section 16 (AC or DC motor shaft) for scanning in the Y-axis direction. Note that when using servo control using a servo motor or the like for the X-axis direction scanning mechanism section 15, scanning position detection control is of course necessary.

ここでは、パルスモータを使用した例をあげたので、パ
ルスエンコーダのような検出器は不要であり、その走査
位置は、予め検知することができる。
Here, an example is given in which a pulse motor is used, so a detector such as a pulse encoder is not necessary, and the scanning position can be detected in advance.

つぎに、(lv)はワーク4上に投光されたスポット光
像の位置を検出するスポット光像検出手段である。
Next, (lv) is a spot light image detection means for detecting the position of the spot light image projected onto the workpiece 4.

これハ光学レンズ22と(タンザク状)1次元光電素子
23を複数個並列に(横に)ならべたものとで構成され
る。1次元光電素子23としては、例えば、1次元のイ
メージセンサや1次元のPSDセンサ等を用いることが
できる。また光学レンズとして、光学フィルタ効果のあ
るもの、例えば−号が得られる。つぎに、(V)は前記
手段(1111の出力信号にもとすいて、前記1次元光
電素子23を順次選択するセンサ出力選択手段であって
、アナログ信号マルチプレクサ等の回路21により構成
される。選択されたPSDセンサの出力はVoとして出
力される。この出力VoをA/D変換して、マイコン内
に取込めば、各種の計測、認識処理ができる。
This is composed of an optical lens 22 and a plurality of one-dimensional (tanzak-shaped) photoelectric elements 23 arranged in parallel (horizontally). As the one-dimensional photoelectric element 23, for example, a one-dimensional image sensor, a one-dimensional PSD sensor, or the like can be used. Further, as an optical lens, one having an optical filter effect, for example, a negative lens can be obtained. Next, (V) is a sensor output selection means for sequentially selecting the one-dimensional photoelectric element 23 based on the output signal of the means (1111), and is constituted by a circuit 21 such as an analog signal multiplexer. The output of the selected PSD sensor is output as Vo. If this output Vo is A/D converted and input into the microcomputer, various measurement and recognition processes can be performed.

以上のように、特に七ンサとして、スポット光の投光方
向と同期して、1次元光電素子23が選択される仕組み
になっているため、従来の2次元PSDセンサを用いた
ものに比し、反射の影響による検出精度の低下は格段に
小さくなる。
As described above, especially as a seven-sensor, the one-dimensional photoelectric element 23 is selected in synchronization with the direction of spot light projection, which is superior to the conventional two-dimensional PSD sensor. , the decrease in detection accuracy due to the influence of reflection is significantly reduced.

さらに実施例につき具体的に説明する。まず、光源1o
として、2577LWの半導体レーザ(波長830nm
)を10市に変調したものを用い、レンズ12としてコ
リメートレンズを用い、スポット光の光径として、0.
4φ■に絞り、これを走査機構部15.16としてのパ
ルスモータおよび■モータにそれぞれ取付けた反射鏡1
3.14により第5図に示すような溶接ワーク4上を2
次元的に走査させる。Y軸方向走査用の反射鏡14の回
転角は5笥、これはワーク4面上の走査中にして、約2
0mmに相当するものである。また反射鏡140回転角
の検出はDCモータに直結した検知器19トシてのパル
スエンコーダ(4000パルス/T)にて検出し、回路
2oのエンコーダパルス4倍周波回路により、0.02
5°の分解能で検出する。
Further, examples will be specifically explained. First, light source 1o
As a 2577LW semiconductor laser (wavelength 830nm
) is modulated into 10 cities, a collimating lens is used as the lens 12, and the diameter of the spot light is 0.
A pulse motor serving as a scanning mechanism part 15, 16 and a reflecting mirror 1 each attached to the motor.
3.14, the top of the welding work 4 as shown in Fig. 5 is
Scan dimensionally. The rotation angle of the reflecting mirror 14 for scanning in the Y-axis direction is 5 degrees, which is approximately 2 degrees during scanning on the 4 surfaces of the workpiece.
This corresponds to 0 mm. The rotation angle of the reflecting mirror 140 is detected by a pulse encoder (4000 pulses/T) in the detector 19 directly connected to the DC motor, and by the encoder pulse quadruple frequency circuit in the circuit 2o.
Detects with a resolution of 5°.

また回路2oでは、この検出パルスをベースにして、反
射鏡14の回転角0.5°毎に、回路21としてのアナ
ログマルチプレクサに信号を送り、1次元PSDセンサ
(IX10調)を10ケ並べた1次元光電素子23のP
SDセンサの出力選択を行う。一方、X軸走査用パルス
モータは、Y軸走査が1回完了する毎に、0.5°づつ
反射鏡13を回転させ、これを5°周期に制御する。な
お、光学レンズ22には、通常の凸レンズと8oO〜8
50nmの波長の光を85%以上通す干渉フィルタを組
合せて使用した。なお、第6図において、忍、−201
11111、ff12=15111111 、 Q3=
6rrrm 、n4=2mm テあり、また反射鏡14
から溶接ワーク4の平板部までの距離は約150mmで
あった。
In addition, in the circuit 2o, based on this detection pulse, a signal is sent to an analog multiplexer as a circuit 21 every 0.5 degrees of rotation angle of the reflecting mirror 14, and 10 one-dimensional PSD sensors (IX10 tone) are arranged. P of the one-dimensional photoelectric element 23
Select the output of the SD sensor. On the other hand, the X-axis scanning pulse motor rotates the reflecting mirror 13 by 0.5° every time one Y-axis scan is completed, and controls this at a 5° cycle. Note that the optical lens 22 includes a normal convex lens and an 8oO~8
An interference filter that allows 85% or more of light with a wavelength of 50 nm to pass through was used in combination. In addition, in Figure 6, Shinobu, -201
11111, ff12=15111111, Q3=
6rrrm, n4=2mm with Te, and reflector 14
The distance from the welding workpiece 4 to the flat plate part was about 150 mm.

本実施例により得られた検出データの一例を第6図(、
)に示す。波線が実際の開先形状に対応する基準値であ
り、黒点が検出データである。なお、1次元光電素子2
3としてのPSDセンサからの出力は電流信号のためこ
れを電流電圧変換し、信号増巾を行い、さらに10匪の
バンドパスフィルタを介し、A/D変換してマイコン内
に取込み、1次元PSDセンサ面上でのスポット光像の
位置信号に変換したものが、この黒点のデータである。
An example of the detection data obtained in this example is shown in Figure 6 (
). The wavy lines are reference values corresponding to the actual groove shape, and the black dots are detected data. Note that the one-dimensional photoelectric element 2
The output from the PSD sensor (3) is a current signal, so it is converted into a current voltage, amplified, and then passed through a 10mm bandpass filter, A/D converted, and input into the microcontroller to be converted into a one-dimensional PSD. This sunspot data is converted into a position signal of the spot light image on the sensor surface.

これより、開先ギャップ中の検出精度は、±0.2鴫以
内にできること、反射の影響がほとんどなく、開先形状
を±0.2調 の精度で検出できることが明らかになっ
た。つぎに、第6図(b)は1次元光電素子23に従来
の2次元PSDセンサを用いた場合(したがって、手段
(fillおよび(Vlは不要)の結果であるが、開先
内のスポット光の反射の影響により、開先ギャップ中は
もちろんのこと、開先形状の検出もきわめて不正確であ
ることが明白である。
This revealed that the detection accuracy in the groove gap can be within ±0.2 degrees, that there is almost no influence of reflection, and that the groove shape can be detected with an accuracy of ±0.2 degrees. Next, FIG. 6(b) shows the result when a conventional two-dimensional PSD sensor is used as the one-dimensional photoelectric element 23 (therefore, means (fill and (Vl) are unnecessary), but the spot light inside the groove is It is clear that the detection of the groove shape as well as the groove gap is extremely inaccurate due to the influence of reflections.

つぎに、第7図は本発明装置を隅肉溶接継手の溶接開始
点24と溶接線8の検出に応用した例を示す。従来の1
次元走査方式では、この溶接開始点24を検出するのに
、きわめて繁雑かつ多大の時間を要していたが、本装置
によれば、1回の2次元スキャンで、X軸方向の検出精
度2mm、Y軸方向の検出精度0.4圏 の精度で検出
できた。検出時間は約2秒であった。
Next, FIG. 7 shows an example in which the device of the present invention is applied to detecting the welding start point 24 and weld line 8 of a fillet weld joint. Conventional 1
With the dimensional scanning method, it was extremely complicated and took a lot of time to detect this welding start point 24, but with this device, a single two-dimensional scan can achieve a detection accuracy of 2 mm in the X-axis direction. , the detection accuracy in the Y-axis direction was within the 0.4 range. Detection time was about 2 seconds.

なお、この場合、溶接開始点24を検出してからは、X
とY軸方向の走査中を半分以下にし、検出時間の短縮を
図っている。
In this case, after detecting the welding start point 24,
The detection time is reduced by half or less during scanning in the Y-axis direction.

発明の効果 以上のように本発明によれば、如何なる形状の物体でも
、2次反射の影響をほとんど無視できるくらい低減でき
、かつ半導体レーザによるスポット光径の小径化や干渉
フィルタ等による光ノイズカット効果により、きわめて
正確な物体の3次元位置、形状9寸法等の計測が可能と
なる。また、2次元走査機能により、2次元的な距離情
報を得ることができ、溶接開始、終了点、コーナ点等の
検出も大巾に高速化されることになる。また本装置とマ
イコン等の制御回路とを組み合わせることにより、高性
能、高信頼、低コストの産業用視覚センサを構成できる
優れた効果を奏するものである。
Effects of the Invention As described above, according to the present invention, it is possible to reduce the influence of secondary reflection on objects of any shape to an almost negligible level, and to reduce optical noise by reducing the spot diameter using a semiconductor laser or by using an interference filter, etc. This effect makes it possible to extremely accurately measure the three-dimensional position, nine dimensions, etc. of an object. Furthermore, the two-dimensional scanning function allows two-dimensional distance information to be obtained, and detection of welding start, end points, corner points, etc. can be greatly speeded up. Furthermore, by combining this device with a control circuit such as a microcomputer, it is possible to construct a high-performance, highly reliable, and low-cost industrial visual sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の3次元物体検出方法の例を示す説明図、
第2図および第3図は同従来例の2次反射の影響を示す
説明図、第4図は本発明の一実施例におけるスポット光
位置検出装置の説明図、第6図はワークの斜視図、第6
図(a) 、 (b)はそれぞれ開先形状の結果を示す
特性図、第7図は隅肉溶接継手の溶接開始点の検出例を
示す斜視図である。 4・・・・・・溶接ワーク、8・・・・・・溶接線、9
・・・・・・スポット光、1o・・・・・・発光部、1
1・・・・・・回路、12・・・・・・レンズ、13.
14・・・・・・反射鏡、15・・・・・・X方向の走
査機構部、16・・・・・・Y方向の走査機構部、17
.18・・・・・・駆動回路、19・・・・・・検知器
、2゜・・・・・・信号処理回路、21・・・・・・回
路、22・・・・・・光学レンズ、23・・・・・・1
次元光電素子、24・・・・・・溶接開始点、(11・
・・・・・スポット光を設定する手段、(II)・・・
・・・スポット光を2次元的に走査する手段、(I[[
)・・・・・・スポット光の投光方向を検出する手段、
(IV)・・・・・・スポット光像検出手段、(V)・
・・・・・センサ出力選択手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 3図 41!l 第5図 第 6 図 (OL) 第7図
FIG. 1 is an explanatory diagram showing an example of a conventional three-dimensional object detection method,
FIGS. 2 and 3 are explanatory diagrams showing the influence of secondary reflection in the conventional example, FIG. 4 is an explanatory diagram of a spot light position detection device in an embodiment of the present invention, and FIG. 6 is a perspective view of a workpiece. , 6th
Figures (a) and (b) are characteristic diagrams showing the results of groove shapes, respectively, and Fig. 7 is a perspective view showing an example of detecting the welding start point of a fillet weld joint. 4...Welding workpiece, 8...Welding line, 9
...Spot light, 1o... Light emitting part, 1
1...Circuit, 12...Lens, 13.
14...Reflecting mirror, 15...X-direction scanning mechanism section, 16...Y-direction scanning mechanism section, 17
.. 18...Drive circuit, 19...Detector, 2゜...Signal processing circuit, 21...Circuit, 22...Optical lens , 23...1
Dimensional photoelectric element, 24...Welding start point, (11.
...Means for setting spot light, (II)...
. . . Means for scanning the spot light two-dimensionally, (I[[
)...Means for detecting the direction of spot light projection,
(IV)...Spot light image detection means, (V).
...Sensor output selection means. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 41! l Figure 5 Figure 6 (OL) Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1) スポット光を設定する手段(1)と、前記スポ
ット光を被測定物に投光し2次元的に走査する手段(n
)と、前記走査によるスポット光の投光方向を検出する
手段(III)と、光学レンズと1次元光電素子を複数
個並列に配置したセンサとで構成したスポット光像検出
手段(問と、前記手段(Ill)の検出データに基き、
前記1次元光電素子を順次選択するセンサ出力選択手段
(V)とを備えたスポット光位置検出装置。
(1) A means (1) for setting a spot light, and a means (n) for projecting the spotlight onto an object to be measured and scanning it two-dimensionally.
), a means (III) for detecting the projection direction of the spot light by the scanning, and a spot light image detecting means (III) consisting of a sensor having an optical lens and a plurality of one-dimensional photoelectric elements arranged in parallel. Based on the detection data of means (Ill),
A spot light position detection device comprising sensor output selection means (V) for sequentially selecting the one-dimensional photoelectric elements.
(2)スポット光を設定する手段(1)が、半導体レー
ザとコリメートレンズとで構成されている特許請求の範
囲第(1)項記載のスポット光位置検出装置。
(2) The spot light position detecting device according to claim (1), wherein the means (1) for setting the spot light comprises a semiconductor laser and a collimating lens.
(3)スポット光を2次元的に走査する手段(II)が
、反射鏡とその反射鏡を回転もしくは揺動させる機構部
とで構成されている特許請求の範囲第(1)項記載のス
ポット光位置検出袋装置。
(3) The spot according to claim (1), wherein the means (II) for two-dimensionally scanning the spot light is constituted by a reflecting mirror and a mechanism unit that rotates or swings the reflecting mirror. Optical position detection bag device.
(4) スポット光像検出手段(IV)の1次元光電素
子が、PSDセンサである特許請求の範囲第(1)項記
載のスポット光位置検出装置。
(4) The spot light position detection device according to claim (1), wherein the one-dimensional photoelectric element of the spot light image detection means (IV) is a PSD sensor.
(5) スポット光像検出手段(転)の光学レンズが、
光学的フィルタ作用のあるレンズである特許請求の範囲
第(1)項、記載のスポット光位置検出装置。
(5) The optical lens of the spot light image detection means (transmission) is
The spot light position detection device according to claim (1), which is a lens having an optical filtering effect.
JP15350383A 1983-08-22 1983-08-22 Device for detecting position of spot light Granted JPS6044810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15350383A JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15350383A JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Publications (2)

Publication Number Publication Date
JPS6044810A true JPS6044810A (en) 1985-03-11
JPH0324603B2 JPH0324603B2 (en) 1991-04-03

Family

ID=15563977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15350383A Granted JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Country Status (1)

Country Link
JP (1) JPS6044810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259109A (en) * 1985-05-13 1986-11-17 Matsushita Electric Ind Co Ltd Optical range finder
JPS6217606A (en) * 1985-07-15 1987-01-26 Hitachi Zosen Corp Underwater measuring device
JPS62228106A (en) * 1985-12-03 1987-10-07 Yukio Sato Method and apparatus for measuring shape of three-dimensional object
JPH02161302A (en) * 1988-12-14 1990-06-21 Juki Corp Shape measuring instrument
JPH04122809A (en) * 1990-09-14 1992-04-23 Matsushita Electric Works Ltd Shape recognition device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259109A (en) * 1985-05-13 1986-11-17 Matsushita Electric Ind Co Ltd Optical range finder
JPS6217606A (en) * 1985-07-15 1987-01-26 Hitachi Zosen Corp Underwater measuring device
JPS62228106A (en) * 1985-12-03 1987-10-07 Yukio Sato Method and apparatus for measuring shape of three-dimensional object
JPH02161302A (en) * 1988-12-14 1990-06-21 Juki Corp Shape measuring instrument
JPH04122809A (en) * 1990-09-14 1992-04-23 Matsushita Electric Works Ltd Shape recognition device

Also Published As

Publication number Publication date
JPH0324603B2 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
JP2510786B2 (en) Object shape detection method and apparatus
JPS6312521B2 (en)
JPS6044810A (en) Device for detecting position of spot light
US4521113A (en) Optical measuring device
EP0110937A1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam.
JPH0334563B2 (en)
JPH04356010A (en) Apparatus for generating telecentric light ray
JPH09113234A (en) Sensor for measuring two-dimensional shape
JP3724162B2 (en) Laser scanning device and shape measuring device
JP2858678B2 (en) Shape measuring device
JPH0425611Y2 (en)
JPS62287107A (en) Center position measuring instrument
JPH0128987B2 (en)
JP2536821Y2 (en) 3D position measuring device
JPH10111107A (en) Method and device for measuring distance
JP2674129B2 (en) Distance measuring device
JPH033550B2 (en)
JPH06347227A (en) Apparatus and method for measuring surface shape
JPS61151490A (en) Apparatus for detecting matter
JPH0255734B2 (en)
JPH0120641Y2 (en)
JPH07318454A (en) Laser beam scanning accuracy measuring method and measuring device
JPS63120204A (en) Optical dimension measuring device
JPH05322529A (en) Surface shape measuring device
JPS62245912A (en) Scanning type distance measuring method