JPS63120204A - Optical dimension measuring device - Google Patents

Optical dimension measuring device

Info

Publication number
JPS63120204A
JPS63120204A JP26547686A JP26547686A JPS63120204A JP S63120204 A JPS63120204 A JP S63120204A JP 26547686 A JP26547686 A JP 26547686A JP 26547686 A JP26547686 A JP 26547686A JP S63120204 A JPS63120204 A JP S63120204A
Authority
JP
Japan
Prior art keywords
measured
article
laser beam
emitted
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26547686A
Other languages
Japanese (ja)
Inventor
Tadao Totsuka
戸塚 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26547686A priority Critical patent/JPS63120204A/en
Publication of JPS63120204A publication Critical patent/JPS63120204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To simply measure a dimension in a non-contact state, by a method wherein a part of the rotary locus of emitted beam is blocked from the emitted beam by the article to be measured arranged so as to cross the rotary locus of said beam when the dimension of the outer or inner diameter of the article to be measured is measured and the dimensional value of the article to be measured is operated on the basis of the beam blocking angle-of- rotation position range of the emitted beam. CONSTITUTION:An article 12 to be measured is arranged to the front surface part of a total reflection plate 7 in parallel thereto in order to allow the outer diameter thereof to cross the rotary locus of emitted laser beam L and a part of the laser beam L is blocked by the outer diameter of the article 12 to be measured. By this mechanism, the incidence of the beam to a beam receiving element 8 is interrupted during a time when the beam L traverses the outer diameter of the article to be measured and the level of the electric signal inputted to an operation part 9 is allowed to fall during this time. The operation part 9 preliminarily counts the number of the pulse signals from a pulse generator 10 and collates the same with the level-down interval of the signal inputted through the beam receiving element 8 to calculate the beam blocking angle-of-rotation position range generated by the article 12 to be measured. By this method, the outer diameter value of the article 12 to be measured is calculated and the output signal corresponding to said value is sent out from an output part 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物の外径や内径のような寸法を非接触
で測定するために用いて好適な光学式寸法測定器に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical dimension measuring instrument suitable for non-contact measurement of dimensions such as the outer diameter and inner diameter of a workpiece. be.

〔従来の技術〕[Conventional technology]

従来より、この種の光学式寸法測定器としては、高精度
な光学系による直線の平行光を用いたものが一般的であ
った。
Conventionally, this type of optical dimension measuring instrument has generally used a straight parallel light beam produced by a highly accurate optical system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような従来の光学式寸法測定器による
と、その光学系の部品を高精密に加工する必要があり、
コストアップの要因となっていた。
However, with such conventional optical dimension measuring instruments, the parts of the optical system need to be processed with high precision.
This was a factor in increasing costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点に鑑みてなされたもので、中
心点に対して出射光線を回転するようになすと共に、こ
の出射光線の回転軌跡に交差するように配置された被測
定物による前記出射光線の遮光回転角度位置範囲に基づ
き、この被測定物の寸法値の演算を行うようにしたもの
である。
The present invention has been made in view of these problems, and is designed to rotate an emitted light beam with respect to a center point, and to rotate the emitted light beam with respect to the center point, and to detect the The dimension value of the object to be measured is calculated based on the shielding rotation angle position range of the emitted light beam.

〔作用〕[Effect]

したがってこの発明によれば、出射光線の回転軌跡に交
差するように配置された被測定物によって、出射光線の
回転軌跡の一部が遮光され、この出射光線の遮光回転角
度位置範囲に基づいて被測定物の寸法値の演算が行われ
る。
Therefore, according to the present invention, a part of the rotational locus of the emitted light beam is blocked by the object to be measured which is arranged to intersect with the rotational locus of the emitted light beam. Calculation of the dimension values of the object to be measured is performed.

〔実施例〕〔Example〕

以下、本発明に係る光学式寸法測定器を詳細に説明する
。第1図は、この光学式寸法測定器の一実施例を示す構
成図であるゆ同図において、1はレーザ発振器、2はこ
のレーザ発振器1の発射するレーザビームを透過するハ
ーフミラ−13はこのハーフミラ−2を透過して入射さ
れるレーザビームに対して45″の傾斜角度をもって配
置されると共に、その入射レーザビームを直角に全反射
する第1の全反射ミラー、4はこの全反射ミラー3を経
由して入射されるレーザビームに対して45°の傾斜角
度をもって配置されると共に、その入射レーザビームを
直角に全反射し出射レーザビームとなす第2の全反射ミ
ラーである。
Hereinafter, the optical dimension measuring instrument according to the present invention will be explained in detail. FIG. 1 is a configuration diagram showing an embodiment of this optical dimension measuring device. In the figure, 1 is a laser oscillator, and 2 is a half mirror 13 that transmits the laser beam emitted from the laser oscillator 1. A first total reflection mirror 4 is disposed at an inclination angle of 45'' with respect to the laser beam that is incident after passing through the half mirror 2, and totally reflects the incident laser beam at right angles. This is a second total reflection mirror that is arranged at an inclination angle of 45 degrees with respect to the laser beam that is incident through the mirror, and totally reflects the incident laser beam at right angles to form an output laser beam.

全反射ミラー3と全反射ミラー4とはその中心部間が1
なる距離を隔てて対向配置されており、このように配置
された全反射ミラー3と全反射ミラー4とで出射レーザ
ビーム回転器5が構成されている。この出射レーザビー
ム回転器5は、モータ6の回転駆動力を得て、図の一点
鎖線で示す駆動軸5aを軸心として回転するようになっ
ており、このとき全反射ミラー3と全反射ミラー4とが
、その相対位置関係を常に保ちながら回転するように構
成されている。すなわち、駆動軸5aを軸心とする出射
レーザビーl、回転器5の回転により、全反射ミラー4
を介して出射される出射レーザビームLが、第2図に示
すように、出射レーザビーム回転器5の駆動軸5aを中
心P1とする半径l。
Total reflection mirror 3 and total reflection mirror 4 have a distance of 1 between their centers.
The total reflection mirror 3 and the total reflection mirror 4 arranged in this manner constitute an output laser beam rotator 5. The output laser beam rotator 5 receives rotational driving force from a motor 6 and rotates around a drive shaft 5a indicated by a dashed line in the figure.At this time, the total reflection mirror 3 and the total reflection mirror 4 are configured to rotate while always maintaining their relative positional relationship. In other words, the total reflection mirror 4 is rotated by the output laser beam l with the drive shaft 5a as the axis, and the rotation of the rotator 5.
As shown in FIG. 2, the emitted laser beam L emitted through the emitted laser beam has a radius l with the drive shaft 5a of the emitted laser beam rotator 5 as the center P1.

の回転軌跡を描(ような構成となっている。The structure is as follows:

そして、この出射レーザビームLの回転軌跡を投射すべ
く、全反射板7が出射レーザビーム回転器5に対して所
定距離を隔てて対向配置されており、この全反射板7に
照射された出射レーザビームがその入射方向へ全反射さ
れ反射レーザビームとなり、この反射レーザビームが全
反射ミラー4゜全反射ミラー3を経由してハーフミラ−
2の鏡面に導かれて反射し、受光素子8において受光さ
れるようになっている。そして、この受光素子8におい
て受光される反射レーザビームがその光の強さに応じた
電気信号に変換され、演算部9に入力されるようになっ
ている。また、演算部9には、モータ6を駆動するパル
スジェネレータ10からのパルス情報も入力されるよう
になっており、演算部9における演算結果が出力部11
に送出されるようになっている。
In order to project the rotation locus of the emitted laser beam L, a total reflection plate 7 is disposed to face the emitted laser beam rotator 5 at a predetermined distance, and the output laser beam irradiated onto the total reflection plate 7 is The laser beam is totally reflected in the incident direction to become a reflected laser beam, and this reflected laser beam passes through a total reflection mirror 4 and a total reflection mirror 3 to a half mirror.
The light is guided and reflected by the mirror surface of 2, and is received by the light receiving element 8. The reflected laser beam received by the light-receiving element 8 is converted into an electrical signal according to the intensity of the light, and the electrical signal is input to the arithmetic unit 9. Further, pulse information from a pulse generator 10 that drives the motor 6 is also input to the calculation unit 9, and the calculation results in the calculation unit 9 are sent to the output unit 11.
It is now sent to .

次に、このように構成された光学式寸法測定器の動作を
説明する。すなわち、この光学式寸法測定器を用いて被
測定物の外径の測定を行う場合、出射レーザビームLの
回転軌跡にその外径を交差させるべく、全反射板7の前
面部に所望の被測定物を配置する。例えば今、ロフト状
の被測定物(第1図において破線で示す12)を全反射
板7の前面部に配置し、この被測定物12の外径を測定
するものとする。この場合、全反射板7に投射される出
射レーザビームLの回転軌跡は、第3図に示すように、
被測定物12の外径によってその一部が遮光される。す
なわち、出射レーザビームLが被測定物12の外径を横
切る間、受光素子8への反射レーザビームの入射が中断
され、この間演算部9に入力される電気信号のレベルが
ダウンする。一方、演算部9には、刻々とパルスジェネ
レータ10を介するパルス情報が入力されており、この
パルス情報に基づいて出射レーザビームLのその回転軌
跡における現在の回転角度位置が認識される。つまり、
演算部9においてパルスジェネレータ10を介して入力
されるパルス信号数がカウントされ、このカウント値よ
り出射レーザビームLの現在の回転角度位置が認識され
る。そして、この認識回転角度位置と受光素子8を介し
て入力される電気信号のレベルダウン間隔とを突き合わ
せることにより、出射レーザビームLの被測定物12に
よる遮光回転角度位置範囲が求まり、この遮光回転角度
位置範囲より被測定物12の外径値を算出することがで
き、この外径値に応じた出力信号が出力部11に送出さ
れる。
Next, the operation of the optical dimension measuring instrument configured as described above will be explained. That is, when measuring the outer diameter of the object to be measured using this optical dimension measuring instrument, a desired coating is placed on the front surface of the total reflection plate 7 so that the outer diameter intersects the rotation locus of the emitted laser beam L. Place the object to be measured. For example, assume that a loft-shaped object to be measured (12 indicated by a broken line in FIG. 1) is placed in front of the total reflection plate 7, and the outer diameter of this object to be measured 12 is to be measured. In this case, the rotation locus of the output laser beam L projected onto the total reflection plate 7 is as shown in FIG.
A portion of the object to be measured 12 is blocked from light by its outer diameter. That is, while the emitted laser beam L crosses the outer diameter of the object to be measured 12, the incidence of the reflected laser beam on the light receiving element 8 is interrupted, and during this period, the level of the electrical signal input to the calculation section 9 is reduced. On the other hand, pulse information via the pulse generator 10 is inputted to the calculation unit 9 every moment, and the current rotation angle position of the emitted laser beam L in its rotation locus is recognized based on this pulse information. In other words,
The number of pulse signals input via the pulse generator 10 is counted in the calculation section 9, and the current rotational angular position of the emitted laser beam L is recognized from this count value. By comparing this recognized rotational angular position with the level down interval of the electrical signal input via the light receiving element 8, the shading rotational angular position range of the emitted laser beam L by the object to be measured 12 is determined. The outer diameter value of the object to be measured 12 can be calculated from the rotation angle position range, and an output signal corresponding to this outer diameter value is sent to the output section 11.

このように本実施例によれば、高精密に加工した光学系
を用いることなく、非接触で被測定物12の外径を測定
することができ、従来に比してその構成の筒略化が図ら
れ、そのトータルコストが低減される効果がある。
In this way, according to this embodiment, the outer diameter of the object to be measured 12 can be measured in a non-contact manner without using a highly precisely machined optical system, and the structure is simpler than the conventional one. This has the effect of reducing the total cost.

尚、本実施例においては、被測定物12の両側部を出射
レーザビームLの回転軌跡に交差させるように配置した
が、片側部のみを交差させるように配置してもその外径
を測定することができる。
In this embodiment, both sides of the object to be measured 12 are arranged so as to intersect with the rotation locus of the emitted laser beam L, but even if only one side is arranged so as to intersect, its outer diameter can be measured. be able to.

また、本例では、被測定物12のセンタ軸線S(第3図
)を出射レーザビーム■、の回転軌跡の中心131に交
差するような配置としたが、例えば第3図の点線で示す
ように、被測定物12を出射レーザビームLの回転軌跡
の外縁部近傍への配置としてもよい。このような配置と
することによって、出射レーザビームの被測定物12に
よる遮光時間が長くなり、その測定分解能がアップする
。また、全反射板7の前面部への被測定物12の配置は
、第3図に示したような横方向からの平行配置に限るも
のではなく、縦方向あるいは斜め方向からの平行配置で
あっても、同様にして被測定物12の外径の測定が可能
である。
In addition, in this example, the center axis S (Fig. 3) of the object to be measured 12 is arranged to intersect with the center 131 of the rotation locus of the emitted laser beam ■, as shown by the dotted line in Fig. 3, for example. Alternatively, the object to be measured 12 may be placed near the outer edge of the rotation locus of the emitted laser beam L. By adopting such an arrangement, the time period during which the emitted laser beam is blocked by the object to be measured 12 becomes longer, and the measurement resolution increases. Furthermore, the arrangement of the object to be measured 12 on the front surface of the total reflection plate 7 is not limited to parallel arrangement from the horizontal direction as shown in FIG. 3, but may be parallel arrangement from the vertical or diagonal direction. However, the outer diameter of the object to be measured 12 can be measured in the same manner.

また、本実施例においては、全反射板7において出射レ
ーザビームLを反射するように構成したが、この全反射
板7に替えて直接受光素子を配した受光面板を用いても
よく、この受光面板に生ずる影の大きさより被測定物1
2の外径を測定するように構成してもよい。さらに、全
反射ミラー3に替えて、全反射ミラー4と一体的に回転
するレーザビーム発振器を直接配置してもよく、また全
反射ミラ−4自体をレーザビーム発振器で構成し、この
レーザビーム発振器を駆動軸5aを軸心として回転し、
出射レーザビームによる回転軌跡を作るようにしてもよ
い。尚、被測定物はロンド状の他に種々の形状のものが
考えられ、また測定対象も外径ばかりでなく、内径等種
々の寸法測定に適用可能であることは言うまでもない。
Further, in this embodiment, the total reflection plate 7 is configured to reflect the emitted laser beam L, but instead of this total reflection plate 7, a light receiving face plate having a direct light receiving element may be used. Measured object 1 based on the size of the shadow that appears on the face plate.
It may be configured to measure the outer diameter of 2. Furthermore, instead of the total reflection mirror 3, a laser beam oscillator that rotates integrally with the total reflection mirror 4 may be directly arranged, or the total reflection mirror 4 itself may be configured with a laser beam oscillator, and this laser beam oscillator rotates around the drive shaft 5a,
A rotation locus may be created by the emitted laser beam. It should be noted that the object to be measured may have various shapes other than the round shape, and it goes without saying that the object to be measured is applicable to measurement of various dimensions such as not only the outer diameter but also the inner diameter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による光学式寸法測定器によ
ると、中心点に対して出射光線を回転するようになすと
共に、この出射光線の回転軌跡に交差するように配置さ
れた被測定物による前記出射光線の遮光回転角度位置範
囲に基づき、この被測定物の寸法値を演算するようにし
たので、高精密な光学系を用いることなく非接触で被測
定物の寸法を測定することが可能となり、従来に比して
その構成の簡略化が図られ、その1・−タルコストが低
減される。
As explained above, according to the optical dimension measuring instrument according to the present invention, the emitted light beam is rotated with respect to the center point, and the emitted light beam is rotated with respect to the center point. Since the dimensions of the object to be measured are calculated based on the shading rotation angle position range of the output beam, it is possible to measure the dimensions of the object without contact, without using a highly precise optical system. , the structure is simplified compared to the conventional one, and the cost per unit is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光学式寸法測定器の一実施例を示
す構成図、第2図はこの光学式寸法測定器の出射する出
射レーザビームの回転軌跡を示す図、第3図はこの出射
レーザビームの回転軌跡に交差するように配置した被測
定物の配置状態図である。 1・・・レーザ発振器、2・・・ハーフミラ−13,4
・・・全反射ミラー、5・・・出射レーザビーム回転器
、5a・・・駆動軸、6・・・モータ、7・・・全反射
板、8・・・受光素子、9・・・演算部、10・・・パ
ルスジェネレータ、12・・・被測定物。
FIG. 1 is a block diagram showing an embodiment of the optical dimension measuring device according to the present invention, FIG. 2 is a diagram showing the rotation locus of the output laser beam emitted from this optical dimension measuring device, and FIG. FIG. 2 is a diagram showing the arrangement of objects to be measured that are arranged to intersect the rotation locus of an emitted laser beam. 1... Laser oscillator, 2... Half mirror 13, 4
... Total reflection mirror, 5 ... Output laser beam rotator, 5a ... Drive shaft, 6 ... Motor, 7 ... Total reflection plate, 8 ... Light receiving element, 9 ... Calculation Section 10... Pulse generator, 12... Measured object.

Claims (1)

【特許請求の範囲】[Claims] 中心点に対して出射光線を回転せしめる光線回転手段と
、この光線回転手段の回転する出射光線の回転軌跡に交
差するように配置された被測定物による前記出射光線の
遮光回転角度位置範囲に基づいて、前記被測定物の寸法
値の演算を行う寸法値演算手段とを備えてなる光学式寸
法測定器。
A light beam rotating means for rotating the emitted light beam with respect to a center point, and a shielding rotation angle position range of the emitted light beam by a measured object arranged so as to intersect the rotation locus of the emitted light beam rotated by the light beam rotation means. and a dimension value calculating means for calculating the dimension values of the object to be measured.
JP26547686A 1986-11-10 1986-11-10 Optical dimension measuring device Pending JPS63120204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26547686A JPS63120204A (en) 1986-11-10 1986-11-10 Optical dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26547686A JPS63120204A (en) 1986-11-10 1986-11-10 Optical dimension measuring device

Publications (1)

Publication Number Publication Date
JPS63120204A true JPS63120204A (en) 1988-05-24

Family

ID=17417702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26547686A Pending JPS63120204A (en) 1986-11-10 1986-11-10 Optical dimension measuring device

Country Status (1)

Country Link
JP (1) JPS63120204A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111906A (en) * 1983-11-22 1985-06-18 Nippon Gakki Seizo Kk Angle measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111906A (en) * 1983-11-22 1985-06-18 Nippon Gakki Seizo Kk Angle measuring method

Similar Documents

Publication Publication Date Title
JPS58167902A (en) Detecting device for object
JPH07335962A (en) Light beam scanner
US4947695A (en) Apparatus for controlling a star wheel for positioning specimen containers
US4521113A (en) Optical measuring device
JPS63120204A (en) Optical dimension measuring device
JP2865337B2 (en) Optical measuring device
JPH04356010A (en) Apparatus for generating telecentric light ray
JPS6044810A (en) Device for detecting position of spot light
JP3574733B2 (en) Rotation angle detector
JP2674129B2 (en) Distance measuring device
JPH0249534Y2 (en)
JPS63187103A (en) Non-contact measurement of three-dimensional shape
JPH01320430A (en) Optical displacement detector
JPH05223563A (en) Laser displacement meter
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
JP2988594B2 (en) Wafer center detection device
JPH07318454A (en) Laser beam scanning accuracy measuring method and measuring device
JPH0441923B2 (en)
JPH11190615A (en) Laser scanning device and shape measuring device
JPH0861917A (en) Position detecting device
JPH0331367B2 (en)
JPH01280201A (en) Film thickness measuring method
JP2000213962A (en) Angle detecting device
JPH0642942A (en) Apparatus for measuring angle of rotation
JPH079369B2 (en) Film thickness measuring device