JPH05223563A - Laser displacement meter - Google Patents

Laser displacement meter

Info

Publication number
JPH05223563A
JPH05223563A JP3074792A JP3074792A JPH05223563A JP H05223563 A JPH05223563 A JP H05223563A JP 3074792 A JP3074792 A JP 3074792A JP 3074792 A JP3074792 A JP 3074792A JP H05223563 A JPH05223563 A JP H05223563A
Authority
JP
Japan
Prior art keywords
light
laser
measured
displacement meter
reception part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074792A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
敬司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3074792A priority Critical patent/JPH05223563A/en
Publication of JPH05223563A publication Critical patent/JPH05223563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure an object to be measured properly without any measurement error even if the object is transparent by a laser displacement meter. CONSTITUTION:A laser displacement meter 1 is provided with a laser light source 2 and a light-reception part 3, a laser beam 5a which is cast from the laser light source 2 is reflected on the surface of an object 4 to be measured, a reflection beam 5b enters a light-detection element of the light-reception part 3 as a normal measurement light, and then the amount of displacement is measured according to a laser beam distribution at that time. Also, light- screening plates 7 where a small hole 6 is formed are laid out in parallel slightly away from the surface of the object 4 to be measured. The light-screening plate 7 travels while maintaining a parallel posture for the surface of the objet 4 to be measured in a direction which is parallel to a light-projection axis by a drive device 10 in axial direction. A normal reflection beam 5b passes through the small hole 6 and then enters the light-reception part 3 but nearly all of a pseudo measurement beam 5c toward the light-reception part 3 are screened by the light-screening plate 7 and do not enter the light-reception part 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、形状測定に用いられる
レーザ変位計に関し、特に透明な光学部品の形状を測定
するのに適したレーザ変位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser displacement meter used for shape measurement, and more particularly to a laser displacement meter suitable for measuring the shape of transparent optical parts.

【0002】[0002]

【従来の技術】物品の形状を測定する装置の一つとして
レーザ変位計が知られている。このレーザ変位計は、被
測定物の表面に対して傾斜してレーザ光を照射するレー
ザ光源と、被測定物の表面からの反射光が入射する受光
部から構成されている。被測定物の表面の高さが変化す
ると反射光の光軸が平行に移動するため、受光器におけ
る入射点の位置を検出することにより表面の変位量が判
明する。
2. Description of the Related Art A laser displacement meter is known as one of the devices for measuring the shape of an article. This laser displacement meter is composed of a laser light source that irradiates a laser beam at an angle with respect to the surface of the object to be measured, and a light receiving section on which reflected light from the surface of the object to be measured enters. When the height of the surface of the object to be measured changes, the optical axis of the reflected light moves in parallel, so the amount of displacement of the surface can be found by detecting the position of the incident point in the light receiver.

【0003】[0003]

【発明が解決しようとする課題】ところが、レーザ変位
計を使用して透明な光学部品の形状を測定しようとする
と問題が生じる。すなわち、被測定物が透明材料である
場合には、レーザ光源からのレーザ光は被測定物の表面
で反射するだけでなく、被測定物の内部にも進入し被測
定物の内面で反射し、更に被測定物に対する入射点の近
傍から被測定物外に出射して受光器に疑似測定光として
入射する場合がある。この場合、受光器上の複数の点に
レーザ光が入射することになり、変位量を正しく検出す
ることができず、測定誤差を生じる。
However, when a laser displacement meter is used to measure the shape of a transparent optical component, there arises a problem. That is, when the object to be measured is a transparent material, the laser light from the laser light source not only reflects on the surface of the object to be measured, but also enters the inside of the object to be measured and is reflected on the inner surface of the object to be measured. Further, there is a case where the light is emitted from the vicinity of the incident point on the measured object to the outside of the measured object and is incident on the light receiver as pseudo measurement light. In this case, the laser light is incident on a plurality of points on the light receiver, the amount of displacement cannot be correctly detected, and a measurement error occurs.

【0004】本発明は上記の課題を解決するもので、被
測定物が透明であっても測定誤差なく被測定物を正しく
測定することを目的とする。
The present invention is intended to solve the above problems, and an object of the present invention is to correctly measure an object to be measured without a measurement error even if the object is transparent.

【0005】[0005]

【課題を解決するための手段】本発明は、レーザ光源か
らのレーザ光を被測定物の表面に対して斜めに照射し、
被測定物の表面からの反射レーザ光を受光部に入射さ
せ、該受光部に入射するレーザ光の位置を検出すること
により被測定物の表面の変位を検出するレーザ変位計に
おいて、被測定物の表面近傍に、前記レーザ光源から被
測定物の表面に入射するレーザ光と被測定物の表面から
反射するレーザ光を共通に通過させる小孔が形成された
遮光板を配置したことを特徴とする。
According to the present invention, a laser beam from a laser light source is irradiated obliquely to the surface of an object to be measured,
A laser displacement meter that detects the displacement of the surface of the object to be measured by detecting the position of the laser light that is incident on the light receiving section by entering the reflected laser light from the surface of the object to be measured into the object to be measured. In the vicinity of the surface of, a light-shielding plate having a small hole is formed for passing the laser light incident on the surface of the object to be measured from the laser light source and the laser light reflected from the surface of the object to be measured in common. To do.

【0006】前記遮光板を、前記レーザ光源からのレー
ザ光の光軸と平行に移動させる軸方向駆動装置を設ける
ことができる。
It is possible to provide an axial driving device for moving the light shielding plate in parallel with the optical axis of the laser light from the laser light source.

【0007】また、前記軸方向駆動装置は、前記受光部
により検出された被測定物の表面の変位に応じて駆動す
ることもできる。
The axial driving device can also be driven according to the displacement of the surface of the object to be measured detected by the light receiving section.

【0008】[0008]

【作用】レーザ光源から被測定物の表面にレーザ光が照
射されると、実際に被測定物の表面で反射したレーザ光
以外の光は、遮光板によって遮られるか、或いは受光部
に入らない角度で遮光板にあけられた小孔を通過する。
よって、正規の反射光のみが受光部に入射し、測定誤差
の原因となる透明体の内部からの反射光は受光部の光検
出素子には入射しない。
When the laser light source irradiates the surface of the object to be measured with laser light, the light other than the laser light actually reflected on the surface of the object to be measured is blocked by the light shielding plate or does not enter the light receiving portion. It passes through a small hole in the light shield at an angle.
Therefore, only the regular reflected light is incident on the light receiving portion, and the reflected light from the inside of the transparent body, which causes the measurement error, is not incident on the light detection element of the light receiving portion.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明のレーザ変位計の構成例を
示すものである。レーザ変位計1は、レーザ光源2と受
光部3とを備えている。レーザ光源2と受光部3とは、
それぞれ投光軸と受光軸とが被測定物4の表面に対して
対称となるように配置されている。レーザ光源2から出
射したレーザ光5aは被測定物4の表面で反射し、反射
光5bは正規の測定光として受光部3の光検出素子に入
射し、そのときのレーザ光分布で変位量を測定する。ま
た、被測定物4の表面近傍で入射光5aと反射光5bが
同時に通過できる程度の小孔6が形成された遮光板7
が、被測定物4の表面から僅かに離れて平行に配置され
る。この遮光板7は破線で模式的に示すガイドレール8
により、投光軸と平行な方向に被測定物4の表面に対し
て平行姿勢を維持したまま移動可能となっている。ま
た、この遮光板7には投光軸と平行な傾きを有する支持
棒9の一端が固着されており、支持棒9の他端は、軸方
向駆動装置10に接続されている。
FIG. 1 shows a structural example of a laser displacement meter of the present invention. The laser displacement meter 1 includes a laser light source 2 and a light receiving unit 3. The laser light source 2 and the light receiving unit 3 are
The light projecting axis and the light receiving axis are arranged so as to be symmetrical with respect to the surface of the DUT 4. The laser light 5a emitted from the laser light source 2 is reflected on the surface of the DUT 4, and the reflected light 5b enters the photodetector of the light receiving unit 3 as the regular measurement light, and the displacement amount is determined by the laser light distribution at that time. taking measurement. Further, a light shielding plate 7 having a small hole 6 formed so that the incident light 5a and the reflected light 5b can pass through in the vicinity of the surface of the DUT 4 at the same time.
Are arranged parallel to each other with a slight distance from the surface of the DUT 4. This shading plate 7 is a guide rail 8 schematically shown by a broken line.
As a result, it is possible to move in a direction parallel to the projection axis while maintaining a parallel posture with respect to the surface of the DUT 4. Further, one end of a supporting rod 9 having an inclination parallel to the light projecting axis is fixed to the light shielding plate 7, and the other end of the supporting rod 9 is connected to an axial driving device 10.

【0011】軸方向駆動装置10は、図2に示すよう
に、ステッピングモータ11とこのモータ11の回転軸
12に連結され内部にメネジ13が切られた回転スリー
ブ14とを備えている。また、支持棒9の他端にはオネ
ジ15が切られており、回転スリーブ14のメネジ13
に螺合される。モータ11が回転すると、モータ11の
回転方向に応じて支持棒9が軸方向に進退し、これに連
れて遮光板7も投光軸に平行に移動する。ここでは、モ
ータ11が正回転すると支持棒9が押し出されるものと
する。
As shown in FIG. 2, the axial drive unit 10 includes a stepping motor 11 and a rotary sleeve 14 which is connected to a rotary shaft 12 of the motor 11 and has a female screw 13 cut therein. Further, a male screw 15 is cut at the other end of the support rod 9, and the female screw 13 of the rotary sleeve 14 is
Is screwed onto. When the motor 11 rotates, the support rod 9 moves back and forth in the axial direction according to the rotation direction of the motor 11, and along with this, the light shielding plate 7 also moves parallel to the light projecting axis. Here, it is assumed that the support rod 9 is pushed out when the motor 11 rotates forward.

【0012】前記受光部3においては、図3に模式的に
示すように、複数の検出素子3aが受光軸に直角で投光
軸と受光軸の双方を含む面内に直線的に配置されてい
る。なお、検出素子3aの数は必要な解像度に応じて適
宜選ばれる。各検出素子3aの出力は、図4に示すよう
に位置検出回路16に供給され、入力したレーザ光5b
のレーザ光分布(破線で示す)から入射位置、すなわ
ち、変位量が検出される。位置検出回路16からは、た
とえば図5に示すように、受光部3の中心にレーザ光5
bが入射したときの出力を0とし、Aの方向にずれたと
きにずれに応じた正の出力が発生し、Bの方向にずれた
ときにずれに応じた負の出力が発生するものとする。位
置検出回路16で得られた変位信号Sは表示装置17に
供給され、基準位置からの変位が正負の数値で表示され
る。また、変位信号Sはサーボ回路18を介してモータ
11に供給され、モータ11は変位信号Sの大きさ及び
正負に応じて所定の方向へ所定の速度で回転する。本実
施例では、サーボ回路18は、正の変位信号Sが供給さ
れたときに、支持棒9が押し出される方向にすなわち正
回転方向にモータ11を駆動するように構成されてい
る。なお、信号の処理はディジタル,アナログのいずれ
でもよい。
In the light receiving section 3, as schematically shown in FIG. 3, a plurality of detection elements 3a are linearly arranged in a plane including both the light projecting axis and the light receiving axis at right angles to the light receiving axis. There is. The number of detection elements 3a is appropriately selected according to the required resolution. The output of each detection element 3a is supplied to the position detection circuit 16 as shown in FIG.
The incident position, that is, the amount of displacement is detected from the laser light distribution (shown by the broken line). From the position detection circuit 16, for example, as shown in FIG.
It is assumed that the output when b is incident is 0, a positive output corresponding to the deviation is generated when the deviation is in the direction A, and a negative output is generated when the deviation is in the direction B. To do. The displacement signal S obtained by the position detection circuit 16 is supplied to the display device 17, and the displacement from the reference position is displayed by positive and negative numerical values. Further, the displacement signal S is supplied to the motor 11 via the servo circuit 18, and the motor 11 rotates in a predetermined direction at a predetermined speed according to the magnitude and positive / negative of the displacement signal S. In the present embodiment, the servo circuit 18 is configured to drive the motor 11 in the direction in which the support rod 9 is pushed out, that is, in the positive rotation direction, when the positive displacement signal S is supplied. The signal processing may be digital or analog.

【0013】次に、上述のレーザ変位計を用いて被測定
物として透明な光学部品の形状を測定する場合の動作に
ついて説明する。
Next, the operation of measuring the shape of a transparent optical component as an object to be measured using the above laser displacement meter will be described.

【0014】いま、レーザ変位計1と被測定物4と遮光
板7の関係は、図1に示すような状態にあるものとす
る。このときレーザ光源2から出射したレーザ光5aは
遮光板7の小孔6を通って被測定物4の表面に照射さ
れ、表面で反射して再び小孔6を通って受光部3の光検
出素子3aに入射する。一方、表面から内部に進入した
レーザ光5cは、被測定物4の形状によっては、図に示
すように内部で反射し、この反射レーザ光5cが疑似測
定光として受光部3の光検出素子3aに入射する場合が
ある。ところが、本実施例においては、遮光体7が被測
定物4の表面の近傍に配置されており、被測定物4の表
面の反射位置近傍にのみ小孔6が位置しているので、正
規の反射光5bは受光部3に入射するが、受光部3に向
かう疑似測定光5cはほとんど全てが遮光板7によって
遮られて受光部3に入射しない。したがって、誤差なく
正しい測定を行うことができる。また、偶然小孔6を通
る疑似測定光があったとしても、そのほとんどが受光部
3の光検出素子3aに向かう方向とは別の方向にしか入
射しないものと考えられるので、測定誤差とはならな
い。
Now, it is assumed that the relationship between the laser displacement meter 1, the DUT 4, and the light shielding plate 7 is as shown in FIG. At this time, the laser light 5a emitted from the laser light source 2 passes through the small hole 6 of the light shielding plate 7 and is applied to the surface of the DUT 4, and is reflected by the surface and again passes through the small hole 6 to detect the light of the light receiving portion 3. It is incident on the element 3a. On the other hand, depending on the shape of the DUT 4, the laser light 5c that has entered the inside from the surface is internally reflected as shown in the figure, and this reflected laser light 5c serves as pseudo measurement light and is the photodetection element 3a of the light receiving unit 3. May be incident on. However, in this embodiment, since the light shield 7 is arranged near the surface of the DUT 4, and the small hole 6 is located only near the reflection position of the surface of the DUT 4, it is possible to perform the normal operation. Although the reflected light 5b is incident on the light receiving unit 3, almost all of the pseudo measurement light 5c traveling toward the light receiving unit 3 is blocked by the light shielding plate 7 and does not enter the light receiving unit 3. Therefore, correct measurement can be performed without error. Further, even if there is incidental pseudo measurement light passing through the small hole 6, it is considered that most of the pseudo measurement light is incident only in a direction different from the direction toward the light detection element 3a of the light receiving section 3, and therefore the measurement error is I won't.

【0015】本実施例においては、被測定物4を一定速
度で一定方向に送ることにより、被測定物4の表面の凹
凸形状を連続的に測定している。したがって、被測定物
4の移動に応じて表面の高さが変化する。いま、図3に
示すように被測定物4の表面の高さが実線で示す高さか
ら破線で示す高さにL1だけ低くなったとすると、受光
部3におけるレーザ光5bの照射位置はA側に移動し、
位置検出回路16からは変位に応じた正の変位信号Sが
得られる。これにより、被測定物4の表面の変位量が検
出される。また、変位信号Sはサーボ回路18に供給さ
れる。サーボ回路18は、正の変位信号Sが供給された
ときに正回転方向にモータ11を駆動するように構成さ
れているので、モータ11が正回転して支持棒9が押し
出され、これに連れて遮光体7は、図3に破線で示す位
置に移動する。これにより、遮光板7は被測定物4の表
面に近づいて遮光板7と被測定物4の表面の間隔は一定
に維持される。また、遮光板7の小孔6は水平方向に距
離L2だけ移動してレーザ光5aの新しい照射位置に一
致する。
In the present embodiment, the irregular shape of the surface of the object 4 is continuously measured by sending the object 4 at a constant speed in a certain direction. Therefore, the height of the surface changes according to the movement of the DUT 4. Assuming that the height of the surface of the DUT 4 is lowered from the height indicated by the solid line to the height indicated by the broken line by L1 as shown in FIG. 3, the irradiation position of the laser beam 5b on the light receiving section 3 is the A side. Move to
A positive displacement signal S corresponding to the displacement is obtained from the position detection circuit 16. Thereby, the amount of displacement of the surface of the DUT 4 is detected. Further, the displacement signal S is supplied to the servo circuit 18. Since the servo circuit 18 is configured to drive the motor 11 in the forward rotation direction when the positive displacement signal S is supplied, the motor 11 rotates forward and the support rod 9 is pushed out. The light shield 7 moves to the position shown by the broken line in FIG. As a result, the shading plate 7 approaches the surface of the DUT 4 and the distance between the shading plate 7 and the surface of the DUT 4 is maintained constant. Further, the small hole 6 of the light shielding plate 7 moves in the horizontal direction by the distance L2 and coincides with a new irradiation position of the laser beam 5a.

【0016】逆に被測定物4の表面の高さが高くなった
とすると、遮光板7は被測定物4の表面にから遠ざかる
方向に移動して遮光板7と被測定物4の表面の間隔は一
定に維持されるとともに、遮光板7の小孔6はレーザ光
5aの新しい照射位置に移動する。
On the contrary, if the height of the surface of the object to be measured 4 becomes high, the light shielding plate 7 moves in a direction away from the surface of the object to be measured 4 and the distance between the light shielding plate 7 and the surface of the object to be measured 4 is increased. Is maintained constant, and the small hole 6 of the light shielding plate 7 moves to a new irradiation position of the laser beam 5a.

【0017】このように、本実施例においては、被測定
物4の表面の変位に追従して遮光板7の位置のフィード
バックがかけられ、遮光板7が投光軸に平行に移動する
ので、遮光板7の小孔6の中心を被測定物4の表面上の
レーザスポットと一致させることができ、遮光板7の位
置を常に最適な位置に移動させて不要な反射光、すなわ
ち、疑似測定光を確実に遮蔽することができる。
As described above, in this embodiment, the position of the light shielding plate 7 is fed back in accordance with the displacement of the surface of the object to be measured 4, and the light shielding plate 7 moves parallel to the projection axis. The center of the small hole 6 of the shading plate 7 can be made to coincide with the laser spot on the surface of the DUT 4, and the position of the shading plate 7 is always moved to an optimum position to eliminate unnecessary reflected light, that is, pseudo measurement. It is possible to reliably block light.

【0018】次に、上記レーザ変位計の具体的な寸法例
について図6を参照して説明する。ここでは、被測定物
4が透明薄板であり、裏面から疑似測定光5cが発生す
る場合を説明する。
Next, a specific example of dimensions of the laser displacement meter will be described with reference to FIG. Here, the case where the DUT 4 is a transparent thin plate and the pseudo measurement light 5c is generated from the back surface will be described.

【0019】図6に示す被測定物4の透明薄板の厚さを
2 、屈折率をn2 、レーザ変位計から発射されるレー
ザ光5aの入射角をθ1 、空気の屈折率をn1 とする。
被測定物4の裏面で反射した疑似測定光5cを遮光して
正確な測定値を得るために、被測定物4の表面から距離
1 だけ離れた地点に、直径d1 の小孔6が開いた遮光
板7を置く。測定に使用するレーザ光の最大スポット径
をrmax とすると小孔6の直径の最小値d1minは以下の
ように表される。
The thickness of the transparent thin plate of the DUT 4 shown in FIG. 6 is h 2 , the refractive index is n 2 , the incident angle of the laser beam 5a emitted from the laser displacement meter is θ 1 , and the refractive index of air is n. Set to 1 .
In order to block the pseudo measurement light 5c reflected on the back surface of the DUT 4 and obtain an accurate measurement value, a small hole 6 having a diameter d 1 is formed at a point separated from the surface of the DUT 4 by a distance h 1. Place the open light shield 7. When the maximum spot diameter of the laser beam used for measurement is r max , the minimum value d 1min of the diameter of the small hole 6 is expressed as follows.

【0020】d1min=2h1 tanθ1 +rmax また、被測定物4の裏面を反射した疑似測定光5cが被
測定物4の表面に到達したときの本来の反射地点からの
距離d2 は以下のように表される。
D 1min = 2h 1 tan θ 1 + r max Further , the distance d 2 from the original reflection point when the pseudo measurement light 5c reflected from the back surface of the DUT 4 reaches the front surface of the DUT 4 is as follows: It is expressed as.

【0021】 d2 =2h2 tan[arcsin{(n1 /n2 )sinθ1 }] したがって、疑似測定光5cを遮光するため小孔6の最
大値d1maxは以下のように表される。
D 2 = 2h 2 tan [arcsin {(n 1 / n 2 ) sin θ 1 }] Therefore, the maximum value d 1max of the small hole 6 for blocking the pseudo measurement light 5c is expressed as follows.

【0022】 d1max=2(d2 +h1 tanθ1 )−rmax 以上より d1min<d1 <d1max となるように適当なd1 を定めてやれば良い。From d 1max = 2 (d 2 + h 1 tan θ 1 ) −r max or more, an appropriate d 1 may be determined so that d 1min <d 1 <d 1max .

【0023】たとえば、θ1 =30度、rmax =60μ
mのレーザ変位計を用いてh2 =1mm、n2 =1.3
の透明薄板を測定しようとするとき(n1 =1.0)、
1=0.1mmを採用すると、d1min=0.18m
m、d1max=0.77mmとなるので、d1 =0.4m
mとした。これにより、フィードバックのために十分な
時間的余裕が得られるので、遮光板7をステッピングモ
ータ11で駆動して被測定物4の表面の変位に追従させ
ることができる。
For example, θ 1 = 30 degrees, r max = 60 μ
m laser displacement meter, h 2 = 1 mm, n 2 = 1.3
When trying to measure the transparent thin plate of (n 1 = 1.0),
If h 1 = 0.1 mm is adopted, d 1min = 0.18 m
Since m and d 1max = 0.77 mm, d 1 = 0.4 m
m. As a result, a sufficient time margin for feedback can be obtained, so that the shading plate 7 can be driven by the stepping motor 11 to follow the displacement of the surface of the DUT 4.

【0024】[0024]

【発明の効果】以上に述べたように、本発明のレーザ変
位計においては、実際に被測定物表面で反射したレーザ
光以外は、遮光板によって遮られるか受光部に入らない
角度で小さな穴を通過するため、受光部に入射すること
はなく、被測定物が透明体であっても正確な測定が可能
になる。
As described above, in the laser displacement meter of the present invention, except for the laser light actually reflected on the surface of the object to be measured, a small hole is formed at an angle which is blocked by the light shielding plate or does not enter the light receiving portion. Since it does not enter the light receiving portion, accurate measurement is possible even if the object to be measured is a transparent body.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のレーザ変位計の構成例を示す模式図
である。
FIG. 1 is a schematic diagram showing a configuration example of a laser displacement meter of the present invention.

【図2】 軸方向駆動装置の構成例を示す部分断面図で
ある。
FIG. 2 is a partial cross-sectional view showing a configuration example of an axial drive device.

【図3】 受光部に対して入射するレーザ光の状態を模
式的に示す説明図である。
FIG. 3 is an explanatory diagram schematically showing a state of laser light incident on a light receiving section.

【図4】 レーザ変位計の電気回路系を示すブロック図
である。
FIG. 4 is a block diagram showing an electric circuit system of the laser displacement meter.

【図5】 位置検出回路における検出位置と変位信号の
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a detected position and a displacement signal in the position detection circuit.

【図6】 遮光板の小孔の大きさを検討するための説明
図である。
FIG. 6 is an explanatory diagram for examining the size of small holes in the light shielding plate.

【符号の説明】[Explanation of symbols]

1:レーザ変位計、2:レーザ光源、3:受光部、3
a:検出素子、4:被測定物、5a:入射レーザ光、5
b:正規測定光、5c:疑似測定光、6:小孔、7:遮
光板、8:ガイドレール、9:支持棒、10:軸方向駆
動装置、11:ステッピングモータ、12:回転軸、1
3:メネジ、14:回転スリーブ、15:オネジ、1
6:位置検出回路、17:表示装置、18:サーボ回路
1: Laser displacement meter, 2: Laser light source, 3: Light receiving part, 3
a: detection element, 4: object to be measured, 5a: incident laser light, 5
b: regular measurement light, 5c: pseudo measurement light, 6: small hole, 7: light-shielding plate, 8: guide rail, 9: support rod, 10: axial drive device, 11: stepping motor, 12: rotating shaft, 1
3: Female thread, 14: Rotating sleeve, 15: Male thread, 1
6: Position detection circuit, 17: Display device, 18: Servo circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源からのレーザ光を被測定物の
表面に対して斜めに照射し、被測定物の表面からの反射
レーザ光を受光部に入射させ、該受光部に入射するレー
ザ光の位置を検出することにより被測定物の表面の変位
を検出するレーザ変位計において、被測定物の表面近傍
に、前記レーザ光源から被測定物の表面に入射するレー
ザ光と被測定物の表面から反射するレーザ光を共通に通
過させる小孔が形成された遮光板を配置したことを特徴
とするレーザ変位計。
1. A laser beam from a laser light source is obliquely applied to the surface of an object to be measured, a reflected laser beam from the surface of the object to be measured is incident on a light receiving section, and the laser light is incident on the light receiving section. In the laser displacement meter for detecting the displacement of the surface of the measured object by detecting the position of, the laser beam incident on the surface of the measured object from the laser light source and the surface of the measured object in the vicinity of the surface of the measured object. A laser displacement meter having a light-shielding plate formed with a small hole through which a laser beam reflected from the laser beam passes in common.
【請求項2】 前記遮光板を、前記レーザ光源からのレ
ーザ光の光軸と平行に移動させる軸方向駆動装置を設け
たことを特徴とする請求項1記載のレーザ変位計。
2. The laser displacement meter according to claim 1, further comprising an axial drive device for moving the light shielding plate in parallel with the optical axis of the laser light from the laser light source.
【請求項3】 前記軸方向駆動装置は、前記受光部によ
り検出された被測定物の表面の変位に応じて駆動される
ことを特徴とする請求項2記載のレーザ変位計。
3. The laser displacement meter according to claim 2, wherein the axial driving device is driven according to the displacement of the surface of the object to be measured detected by the light receiving section.
JP3074792A 1992-02-18 1992-02-18 Laser displacement meter Pending JPH05223563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074792A JPH05223563A (en) 1992-02-18 1992-02-18 Laser displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074792A JPH05223563A (en) 1992-02-18 1992-02-18 Laser displacement meter

Publications (1)

Publication Number Publication Date
JPH05223563A true JPH05223563A (en) 1993-08-31

Family

ID=12312277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074792A Pending JPH05223563A (en) 1992-02-18 1992-02-18 Laser displacement meter

Country Status (1)

Country Link
JP (1) JPH05223563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248411A (en) * 2006-03-20 2007-09-27 Kobe Steel Ltd Shape measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248411A (en) * 2006-03-20 2007-09-27 Kobe Steel Ltd Shape measuring instrument

Similar Documents

Publication Publication Date Title
JP2018105847A (en) Coordinate measurement device having optical sensor and method corresponding to the same
JPH0812057B2 (en) Light beam device
GB2248109A (en) Non-contact measuring device
JPH03123811A (en) Sheet thickness measuring instrument
US5432330A (en) Two-stage detection noncontact positioning apparatus having a first light detector with a central slit
JP3793315B2 (en) Tilt detection device
JPH05223563A (en) Laser displacement meter
KR20070015267A (en) Light displacement measuring apparatus
JP2874795B2 (en) Orientation flat detector
JPS6365885B2 (en)
JPS5616806A (en) Surface roughness measuring unit
JPS59157512A (en) Optical position detector
JP2988594B2 (en) Wafer center detection device
JP2674129B2 (en) Distance measuring device
JP2675051B2 (en) Optical non-contact position measuring device
JP4175715B2 (en) Optical scanning touch panel
JPH10132527A (en) Three-dimensional form measuring device
JPS6327690B2 (en)
GB2124761A (en) Measuring position and/or dimensions of objects
JPH04322025A (en) Photoelectric sensor
JPH06249648A (en) Displacement gauge
JPS63120204A (en) Optical dimension measuring device
GB2291967A (en) Optical scanning position checking system
JPS5832103A (en) Noncontacting measuring device
JPH08106040A (en) Position detector