JPS5832103A - Noncontacting measuring device - Google Patents

Noncontacting measuring device

Info

Publication number
JPS5832103A
JPS5832103A JP13110281A JP13110281A JPS5832103A JP S5832103 A JPS5832103 A JP S5832103A JP 13110281 A JP13110281 A JP 13110281A JP 13110281 A JP13110281 A JP 13110281A JP S5832103 A JPS5832103 A JP S5832103A
Authority
JP
Japan
Prior art keywords
light
group
deflector
receiving element
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13110281A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hayashi
義明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13110281A priority Critical patent/JPS5832103A/en
Publication of JPS5832103A publication Critical patent/JPS5832103A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure optical distances and surface shapes inexpensively with high accuracy in a large measuring range in a measuring device for optical distances and surface shapes by polarizing pulse light periodically and operating the optical distances or surface shapes from the detection positions and deflection angles of the reflected light from an object. CONSTITUTION:The pulse light of a constant period from a laser source 2 is deflected periodically with an optical deflector 3. A photodetector 4 is placed in the position of a known angle thetao, and an object 1 is placed in the direction of an unknown angle thetai. A photodetector group 5 is placed on the same plane as the front surface of the deflector. If the respective unit elements 51-5n detect only the vertical incident light, the scattered and reflected light at the point P on an object is detected by, for example, the element 5i. If the distance between the element 5i and the deflector is defined as D, the distance L between the point P and the element 5i is determined by L=D/tanthetai. Since thetai-thetao is determined from the difference Ti in the output pulse time of the photodetector 4 and the element 5i and the period of the deflector, the thetai is beforehand determined from the same.

Description

【発明の詳細な説明】 本発明は、光学的な方法で対象物体までの距離や、対象
物体の表面形状を精度よく測定できる非接触測定装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact measuring device that can accurately measure the distance to a target object and the surface shape of the target object using an optical method.

最近、自動機械やロボットが開発され、・この自動機械
やロボットを用いて物体の輸送や加工を行うために、物
体の位置や表面形状を高精度で測定することは極めて有
用であり、これまで種々の方法が提案されている。非接
触で測定を行うことは。
Recently, automatic machines and robots have been developed, and in order to transport and process objects using these automatic machines and robots, it is extremely useful to measure the position and surface shape of objects with high precision. Various methods have been proposed. It is possible to perform measurements without contact.

通常可動細分が少ないうえ測定精度も高く、故障も少な
いため望ましいといえるが、従来のものは必ずしも上記
の目的を十分に果たすものではなかった。すなわち、磁
気や静電容量を用いたものは比較的短距離に限られ、距
離が長くなると精度が悪くなる。また超音波を用いたも
のは超音波の指向性、集向性が悪いため小物体に対する
精度が悪く、誤動作しやすい、さらに光の干渉を用いた
ものは精度は良いが非常に高価である等である。
Although it can be said that it is desirable because there are usually few movable subdivisions, high measurement accuracy, and few failures, conventional ones did not necessarily fully fulfill the above objectives. In other words, those using magnetism or capacitance are limited to relatively short distances, and become less accurate as the distance increases. Also, those that use ultrasonic waves have poor directivity and focusing, so they have poor accuracy against small objects and are prone to malfunction, and those that use optical interference have good accuracy but are very expensive. It is.

本発明は、上記諸点に鑑み、測定距離範囲、精度、訓格
の点で作来のものよりすぐれた実用的な非接・触測定装
置を提供するものである。
In view of the above points, the present invention provides a practical non-contact measuring device that is superior to conventional ones in terms of measurement distance range, accuracy, and formality.

以下本発明について図面とともに説明する。The present invention will be explained below with reference to the drawings.

第1図は、本発明の非接触測定装置における測定原理を
説明するための図で、図において、1は被゛測定物体、
2は細いビーム状の光をパルス的にくり返えし発生する
レーザー光源であり、このビーム光は光学素子3に垂直
に入射する。光学素子3は偏向制御信号によりこのビー
ム光を一平面内において周期的に偏向するもので通常光
偏向器と称される音響光学素子2用いることができる。
FIG. 1 is a diagram for explaining the measurement principle in the non-contact measuring device of the present invention. In the figure, 1 indicates the object to be measured;
Reference numeral 2 denotes a laser light source that repeatedly generates a narrow beam of light in the form of pulses, and this beam light enters the optical element 3 perpendicularly. The optical element 3 periodically deflects this light beam within one plane according to a deflection control signal, and can be an acousto-optic element 2 commonly called an optical deflector.

すなわち、レーザー光源2より発したビーム光は偏向制
御信号に応じて、レーザー光軸とθの角度に偏向される
。そして偏向角θ。において、この偏向面内に存在する
受光素子4に直接入射する。受光素子4はこのパルス状
ビーム光に応じたパルス状の出力を発する。第2図(イ
)にこれを示す、今、偏向411Jm信号により、偏向
角θ、の時にパルス状ビームが発せられ、そのビーム□
光が物体表面上の微小な部分Pに照射すると、Pからの
散乱光および正反射光が生ずる。これらを受光するため
の受光素子群6は前記偏向面を含む平面上に設けられ。
That is, the beam light emitted from the laser light source 2 is deflected at an angle θ with respect to the laser optical axis according to the deflection control signal. and the deflection angle θ. , the light directly enters the light receiving element 4 existing within this deflection plane. The light receiving element 4 emits a pulsed output corresponding to this pulsed beam light. This is shown in Figure 2 (A). Now, with the deflection 411Jm signal, a pulsed beam is emitted at the deflection angle θ, and that beam □
When light irradiates a minute portion P on the surface of an object, scattered light and specularly reflected light from P are generated. A light receiving element group 6 for receiving these lights is provided on a plane including the deflection surface.

かつレーザー光源2からのビーム光に垂直で光学素子3
の前面を含む平面上に設けられたものでだ数個の単位受
光素子51,52.・・・・5i、・・・・5nよりな
る。さらに単位受光素子はすべて垂直に入射する正面光
のみに出力を生ずるものとする。さらにまた各単位受光
素子と光学素子3の間の距離(徒精密に既知であるとす
る。このようにすれば前記物体上の微小部分Pからの散
乱光および正反射( 光のうち、受答素子群5に入射し、出力を生じさせるの
は、その光路がレーザー光源2から射出されるビーム光
と平行なものだけであり、この場合単位受光素子6iに
入射する光線がそれである。
and perpendicular to the beam light from the laser light source 2 and the optical element 3
Only a few unit light-receiving elements 51, 52 . Consists of ...5i, ...5n. Furthermore, it is assumed that all unit light receiving elements produce an output only for vertically incident frontal light. Furthermore, the distance between each unit light-receiving element and the optical element 3 (assuming that it is known to a rough degree).In this way, the scattered light and specular reflection from the minute portion P on the object (the distance between the light receiving element and the optical element 3 is assumed to be known). Only the beam whose optical path is parallel to the beam emitted from the laser light source 2 enters the element group 5 and produces an output, and in this case, it is the beam that enters the unit light-receiving element 6i.

単位受光素子5iはこれを受けて出力を発する。The unit light receiving element 5i receives this and emits an output.

も受光し、出力応答するためこれらも併記した一層・1
: (第2図(ロ)に))。さて、受光素子4の出力パルス
と単位受光素子6.の出力パルスの時間差Tiから以下
のようにして、単位受光素子6iから点Pまでの距離が
求められる。今、偏向角θ、の偏向ビームの距離をDと
すると、単位受光素子6.から点P″iでの距離りは、 t a n 01 となる、しかるに偏向角θは偏光制御信号の関数が°っ
て、出力パルスの時間差T、から、偏向角度の差(θ、
−〇。)が求められ、θ。は既知にしておけば、Lが求
められる。このようにして、ビ゛−ム光を光学素子で偏
向しつつ物体表面に照射し。
Since it also receives light and responds with output, these are also included in the layer 1.
: (See Figure 2 (b)). Now, the output pulse of the light receiving element 4 and the unit light receiving element 6. The distance from the unit light receiving element 6i to the point P is determined from the time difference Ti between the output pulses in the following manner. Now, if the distance of the deflected beam with the deflection angle θ is D, then the unit light receiving element 6. The distance from point P″i to point P″i is tan 01 . However, the deflection angle θ is a function of the polarization control signal, and from the time difference T of the output pulse, the difference in deflection angle (θ,
−〇. ) is determined, and θ. If is known, L can be found. In this way, the beam light is irradiated onto the object surface while being deflected by the optical element.

その散乱光のうち受光素子群への正面光を検出して行け
ば単位受光素子の配列ピッチに等しい間隔で物体までの
距離測定が行え、表面形状を包絡線で測定することがで
きる。これらの測定をより一層精度よく行うためには次
に述べる補正を行えばよい、すなわち、光学素子による
偏向ビームは。
By detecting the front light toward the light-receiving element group among the scattered light, the distance to the object can be measured at intervals equal to the array pitch of the unit light-receiving elements, and the surface shape can be measured using an envelope. In order to perform these measurements with even greater precision, the following corrections can be made, namely, the beam deflected by the optical element.

偏向角度が変わると偏向ビームの射出位置が変化する。When the deflection angle changes, the exit position of the deflected beam changes.

しかるに、この変化はあらかじめ偏向角度に対して測定
しておくことが可能であるから、幾何学的計算時に補正
することができる。
However, since this change can be measured in advance with respect to the deflection angle, it can be corrected during the geometrical calculation.

一方、受光素子群を構成する単位受光素子が先に述べた
ように自身に垂直な正面光のみに出力応答するようにす
るためには、その前面に細長い導光路を設け、正面光以
外は壁面の吸収により減衰させることによって容易に行
うことができる。な以上のような本発明の装置によれば
次のような効果がある。
On the other hand, in order for the unit light-receiving elements constituting the light-receiving element group to output and respond only to the frontal light perpendicular to itself, as mentioned earlier, a long and narrow light guide path is provided in front of the unit light-receiving element, and all light other than the frontal light is directed toward the wall. This can be easily done by attenuating it by absorption of . The apparatus of the present invention as described above has the following effects.

(ト)光学的測定方法を用いることにょハ測定距離範囲
が大きく、また可動部分がないため測ており、抑]定精
度が高い。
(g) By using an optical measurement method, the measurement distance range is wide and there are no moving parts, so the measurement accuracy is high.

(iii)  非常に簡単な構成で装置が得られ、従来
の光学的精密測定器に比べ安価に供給できる。
(iii) The device can be obtained with a very simple configuration and can be supplied at a lower cost than conventional optical precision measuring instruments.

OV)  物体の散乱光を用いているため、表面状態や
反射係数の影響を受けに〈<、信頼性の高い夕1」定が
−できる。
OV) Since the scattered light of the object is used, it is possible to make a highly reliable measurement regardless of the influence of the surface condition or reflection coefficient.

(V)  測定対象物体にマークやミラー等を付加する
こ゛となく測定できるため、量産工程に烏用じやすい。
(V) It can be easily used in mass production processes because it can be measured without adding marks, mirrors, etc. to the object to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による非癲触測定装置の一実施例の要部
の概略構成図、第2図(イ)(ロン (ハ)に)は同装
暉における各部の出力特性図である。 1 ・・・・・被測定物体、2・・・・・・レーザー光
源、3・・・・・光学素子、4・・・・・受光、素子、
6・・・・・・・受光素子群。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名lf
l  図
FIG. 1 is a schematic diagram of the main parts of an embodiment of the non-contact measuring device according to the present invention, and FIG. 1...Object to be measured, 2...Laser light source, 3...Optical element, 4...Light receiving element,
6... Light receiving element group. Name of agent: Patent attorney Toshio Nakao and 1 other person lf
l figure

Claims (2)

【特許請求の範囲】[Claims] (1)細いビーム状のパルス光をくシ返えし発生するレ
ーザー光源と、前部パルス光を一平面内で周「 期的に偏向する光学素子と、前記光学素子よりの偏向光
を直接受光して出力する受光素子と、前記偏向光の物体
による散乱光を受光して出力する受光素子群と、これら
受光素子および受光素子群の出やと前肩己光学−子の偏
光制御信号とから測定信号を得る電気回路とを備え、前
記受光素子群は自身に垂直に大群する正面光のみに出力
応答を行うものであることを特徴とする非接触測定装置
(1) A laser light source that generates a narrow beam of pulsed light by repeating it, an optical element that periodically deflects the front pulsed light within one plane, and a device that directly directs the polarized light from the optical element. A light-receiving element that receives and outputs light, a group of light-receiving elements that receives and outputs the light scattered by the object of the polarized light, and a polarization control signal for the output and front shoulder optics of these light-receiving elements and the group of light-receiving elements. and an electric circuit for obtaining a measurement signal from a non-contact measurement device, wherein the light receiving device group outputs an output response only to frontal light that is concentrated perpendicularly to the light receiving device group.
(2)  レーザー光源、光、学素子、受光素子、受光
素子群が、前記光学素子による偏向面を含む平面内にめ
って、前記受光素子群の前面に細長い導光路を儒えてい
ることを特徴する特許請求の範囲第(1)項に記載の非
接触測定装置′。
(2) The laser light source, the light, the optical element, the light receiving element, and the light receiving element group have an elongated light guide path in front of the light receiving element group within a plane including the deflection plane by the optical element. A non-contact measuring device' according to claim (1).
JP13110281A 1981-08-20 1981-08-20 Noncontacting measuring device Pending JPS5832103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13110281A JPS5832103A (en) 1981-08-20 1981-08-20 Noncontacting measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13110281A JPS5832103A (en) 1981-08-20 1981-08-20 Noncontacting measuring device

Publications (1)

Publication Number Publication Date
JPS5832103A true JPS5832103A (en) 1983-02-25

Family

ID=15050019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13110281A Pending JPS5832103A (en) 1981-08-20 1981-08-20 Noncontacting measuring device

Country Status (1)

Country Link
JP (1) JPS5832103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026991A1 (en) 1996-12-17 1998-06-25 Japan Crown Cork Co., Ltd. Synthetic resin container lid having tamper evident characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026991A1 (en) 1996-12-17 1998-06-25 Japan Crown Cork Co., Ltd. Synthetic resin container lid having tamper evident characteristics

Similar Documents

Publication Publication Date Title
US3986774A (en) Gauging surfaces by remotely tracking multiple images
EP0279347B1 (en) Optical axis displacement sensor
JPS6037907B2 (en) Distance measurement method
US4678337A (en) Laser based gaging system and method of using same
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH0123041B2 (en)
JPS5832103A (en) Noncontacting measuring device
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JPH0226164B2 (en)
JPH06167327A (en) Measuring method for camber
JPH0439522Y2 (en)
JP3192461B2 (en) Optical measuring device
JPH06281418A (en) Optical thickness measuring method of plate-shaped transparent body having ruggedness
JPH0357914A (en) Optical probe
JPH0318887Y2 (en)
JPH0331367B2 (en)
JP2675051B2 (en) Optical non-contact position measuring device
JPS59168309A (en) Displacement-quantity measuring device
JP2502413B2 (en) Non-contact displacement measuring device
JPH08166212A (en) Measuring device for position or length
JPS63101702A (en) Optical length measuring gauge
JPH06249648A (en) Displacement gauge
JPH0739948B2 (en) Surface roughness measuring device
JPH0224446B2 (en)
JPS63135808A (en) Length measuring device