JPH10132527A - Three-dimensional form measuring device - Google Patents

Three-dimensional form measuring device

Info

Publication number
JPH10132527A
JPH10132527A JP29057196A JP29057196A JPH10132527A JP H10132527 A JPH10132527 A JP H10132527A JP 29057196 A JP29057196 A JP 29057196A JP 29057196 A JP29057196 A JP 29057196A JP H10132527 A JPH10132527 A JP H10132527A
Authority
JP
Japan
Prior art keywords
light
detecting element
position detecting
shielding mask
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29057196A
Other languages
Japanese (ja)
Inventor
Shuji Torii
居 修 司 鳥
Masaaki Katsumata
亦 正 晃 勝
Fumio Ueda
田 文 男 上
Toshihiko Matsuda
田 敏 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29057196A priority Critical patent/JPH10132527A/en
Publication of JPH10132527A publication Critical patent/JPH10132527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a matter to be measured having a narrow or complicated form by providing a light shielding mask having a slit laid along the plane determined by both optical axes of emitted and reflected laser beams on a light receiving part side. SOLUTION: A light position detecting element 4 is mounted on the vertical wall part 12a of a bracket 12 together with a circuit board 11, and a light shielding mask 13 is stuck to the glass plate surface on a light receiving part side. The light shielding mask 13 is formed of a laser beam shielding film, which has a slit 14 formed along the longitudinal direction in a position corresponding to the light position detecting element 4 in the center. Only a primary reflected laser beam LR reflected by the emitted laser beam LT irradiated part of a matter to be measured is passed through the slit 14 of the light shielding mask 13, and received by the light position detecting element 4. The secondary reflected light reflected by other than the emitted laser beam LT irradiated part is shifted from the slit 14 since the reflecting direction is differed from the primary reflected laser beam LR, and prevented from being passed by the shielding mask 13. Thus, the only the primary reflected laser beam LR necessary for measurement is received, whereby a highly precise measurement can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を用いて
三次元形状を有する被測定物の形状を非接触状態で測定
するのに用いられる三次元形状測定装置に関し、例え
ば、歯科用補綴物製作用の歯牙模型等の被測定物の形状
を測定するのに適した三次元形状測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring device used for measuring the shape of an object having a three-dimensional shape in a non-contact state by using a laser beam. The present invention relates to a three-dimensional shape measuring apparatus suitable for measuring the shape of an object to be measured such as a tooth model for manufacturing.

【0002】[0002]

【従来の技術】図6は三次元形状を有する被測定物の一
例である歯牙模型を示す図である。歯牙模型Mは、基台
D上に、成形済みの支台歯Aと、その両側の隣接歯B,
Cを備えている。このような歯牙模型Mの形状を測定す
るには、例えば、図7に示すような三次元形状測定装置
が用いられる。
2. Description of the Related Art FIG. 6 is a view showing a tooth model which is an example of an object to be measured having a three-dimensional shape. The tooth model M is formed on a base D by forming an abutment tooth A and adjacent teeth B on both sides thereof.
C is provided. In order to measure the shape of such a tooth model M, for example, a three-dimensional shape measuring device as shown in FIG. 7 is used.

【0003】三次元形状測定装置100は、歯牙模型M
の測定点Pmに向けて照射レーザ光LTを発振するレー
ザ光源101と、歯牙模型Mからの反射レーザ光LRを
光学レンズ102を介して受けてその受光位置を検出す
る光位置検出素子(PSD;Photo Positi
on Sensitive Device)103を備
えており、三角測量法により被測定物Mまでの距離を測
定する。
[0003] The three-dimensional shape measuring apparatus 100 is a tooth model M
A laser light source 101 that oscillates irradiation laser light LT toward the measurement point Pm, and a light position detection element (PSD) that receives the reflected laser light LR from the tooth model M via the optical lens 102 and detects the light receiving position thereof. Photo Positi
on Sensitive Device) 103, and measures the distance to the object M by triangulation.

【0004】つまり、光位置検出素子103における受
光位置y、光位置検出素子103における受光面端距離
yo、光位置検出素子103の受光面配置角度θ、およ
び光位置検出素子103の受光面配置距離d2から、反
射レーザ光LRの測量角度α(tanα)が求められ、
さらに、その測量角度α(tanα)と、センサ基準点
Psから光学レンズ102の中心までの距離d1によ
り、センサ基準点Psから被測定物Mの測定点Pmまで
の距離Lが求められる。そして、複数の測定点Pmにつ
いて距離Lを求めることにより歯牙模型Mの三次元形状
が特定されることとなる。
That is, the light receiving position y of the light position detecting element 103, the light receiving surface end distance yo of the light position detecting element 103, the light receiving surface arrangement angle θ of the light position detecting element 103, and the light receiving surface disposing distance of the light position detecting element 103 From d2, the survey angle α (tan α) of the reflected laser light LR is obtained,
Further, the distance L from the sensor reference point Ps to the measurement point Pm of the DUT is obtained from the survey angle α (tan α) and the distance d1 from the sensor reference point Ps to the center of the optical lens 102. Then, the three-dimensional shape of the tooth model M is specified by obtaining the distance L for the plurality of measurement points Pm.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記したよ
うな三次元形状測定装置100を用いて歯牙模型Mの形
状を測定する場合、例えば、歯牙模型Mにおける支台歯
Aに照射レーザ光LTを照射すると、照射部分近傍の隣
接歯Bなどにおいて2次反射(図6中に符号LSで示
す)が生じ、この2次反射光を含む反射レーザ光LRを
光位置検出素子103で受けてしまうことによって測定
精度が低下することがあった。
When the shape of the tooth model M is measured using the three-dimensional shape measuring apparatus 100 as described above, for example, the laser beam LT is applied to the abutment A of the tooth model M. When the light is irradiated, secondary reflection (indicated by LS in FIG. 6) occurs at the adjacent teeth B and the like near the irradiated portion, and the reflected laser light LR including the secondary reflected light is received by the light position detecting element 103. Measurement accuracy may be reduced.

【0006】一方、レーザ光を用いた三次元形状測定装
置においては、2次反射光による測定精度の低下を防止
する手段として、測定に必要な1次反射光のみを通過さ
せ且つ2次反射光を遮る遮光板を設けたものがあった。
この遮光板は、1次反射光と2次反射光の反射方向が異
なることから、1次反射光のみが光位置検出素子側に通
過するようにできるだけ被測定物の表面近傍に配置され
る。
On the other hand, in a three-dimensional shape measuring apparatus using a laser beam, as a means for preventing a decrease in measurement accuracy due to a secondary reflected light, only a primary reflected light necessary for measurement is passed and a secondary reflected light is transmitted. In some cases, a light-shielding plate was provided to block the light.
Since the direction of reflection of the primary reflected light and the direction of the secondary reflected light are different from each other, this light shielding plate is arranged as close to the surface of the DUT as possible so that only the primary reflected light passes to the light position detecting element side.

【0007】そこで、三次元形状測定装置を用いて歯牙
模型の形状を測定するにあたり、上記遮光板の採用を検
討したが、歯牙模型は狭い測定部分を有し且つ形状が複
雑であるため、とくに狭い測定部分に対してその近傍に
遮光板を配置するのが困難であると共に、測定位置によ
って2次反射光の反射方向が異なるので遮光板の位置を
設定するのが難しいという問題があり、その結果、遮光
板以外の他の手段が要望されていた。
Therefore, when measuring the shape of a tooth model using a three-dimensional shape measuring apparatus, the use of the above-mentioned light-shielding plate was examined. However, since the tooth model has a narrow measuring portion and the shape is complicated, it is particularly required. There is a problem that it is difficult to arrange a light shielding plate in the vicinity of a narrow measurement part, and it is difficult to set the position of the light shielding plate because the reflection direction of the secondary reflected light differs depending on the measurement position. As a result, other means other than the light shielding plate have been demanded.

【0008】[0008]

【発明の目的】本発明は、上記従来の状況に鑑みて成さ
れたもので、とくに、狭い測定部分を有し且つ形状が複
雑である被測定物であっても、その被測定物の形状を精
度良く測定することができる三次元形状測定装置を提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances. Particularly, even if the object to be measured has a narrow measuring portion and has a complicated shape, the shape of the object to be measured can be improved. It is an object of the present invention to provide a three-dimensional shape measuring device capable of measuring the height of a three-dimensional shape with high accuracy.

【0009】[0009]

【課題を解決するための手段】本発明に係わる三次元形
状測定装置は、請求項1として、三次元形状の被測定物
に向けて照射レーザ光を照射するレーザ光源と、被測定
物からの反射レーザ光を受けてその受光位置を検出する
光位置検出素子を備えると共に、光位置検出素子の受光
部側に、基準平面を測定する際の照射レーザ光の光軸と
反射レーザ光の光軸との2軸により決定される平面に沿
うスリットを有する遮光マスクを設けた構成とし、請求
項2として、遮光マスクがフィルムであって、この遮光
マスクが光位置検出素子の受光部側に貼り付けてある構
成とし、請求項3として、遮光マスクのスリットがレー
ザビームスポットの直径と略同一の幅寸法を有する構成
とし、請求項4として、装置の固定部位と光位置検出素
子を取付けたブラケットとの間に、双方の間隔およびブ
ラケットの傾斜を可変にする微調整機構を設けた構成と
しており、上記の構成を課題を解決するための手段とし
ている。
According to a first aspect of the present invention, there is provided a three-dimensional shape measuring apparatus, comprising: a laser light source for irradiating a three-dimensional object to be measured with an irradiation laser beam; An optical position detecting element for receiving the reflected laser light and detecting the light receiving position thereof is provided, and the optical axis of the irradiation laser light and the optical axis of the reflected laser light when measuring the reference plane are provided on the light receiving portion side of the optical position detecting element. A light-shielding mask having a slit along a plane determined by the two axes of the light-shielding mask is a film, and the light-shielding mask is attached to the light-receiving portion side of the optical position detecting element. According to a third aspect of the present invention, the slit of the light-shielding mask has a width substantially the same as the diameter of the laser beam spot. Between the Tsu bets, it has a structure in which a fine adjustment mechanism for both the spacing and the tilt of the bracket to the variable, and a means for solving the problems of the above configuration.

【0010】[0010]

【発明の作用】本発明の請求項1に係わる三次元形状測
定装置では、光位置検出素子の受光部側に、基準平面を
測定する際の照射レーザ光の光軸と反射レーザ光の光軸
との2軸により決定される平面に沿うスリットを有する
遮光マスクを設けているので、被測定物における照射レ
ーザ光の照射部分で反射した1次反射レーザ光のみが遮
光マスクのスリットを通過し、その1次反射レーザ光を
光位置検出素子により受光する。また、照射レーザ光の
照射部分以外の位置で反射した2次反射光は、1次反射
レーザ光と反射方向が異なるので、遮光マスクのスリッ
トから外れ、同遮光マスクにより光位置検出素子側への
通過が阻止される。
In the three-dimensional shape measuring apparatus according to the first aspect of the present invention, the optical axis of the irradiation laser light and the optical axis of the reflected laser light when measuring the reference plane are provided on the light receiving portion side of the optical position detecting element. Since the light-shielding mask having a slit along a plane determined by the two axes is provided, only the primary reflected laser light reflected at the irradiated portion of the object to be irradiated by the irradiated laser light passes through the slit of the light-shielded mask, The primary reflected laser light is received by the light position detecting element. In addition, the secondary reflected light reflected at a position other than the irradiated portion of the irradiation laser light has a different reflection direction from the primary reflected laser light, so that the light comes off the slit of the light shielding mask and is directed to the light position detecting element side by the light shielding mask. Passage is blocked.

【0011】本発明の請求項2に係わる三次元形状測定
装置では、フィルムから成る遮光マスクを光位置検出素
子の受光部側に貼り付けているので、遮光マスクと受光
部との間の隙間がきわめて小さくなり、1次反射レーザ
光以外の反射光が光位置検出素子側に入るのをより確実
に阻止する。
In the three-dimensional shape measuring apparatus according to the second aspect of the present invention, since the light-shielding mask made of a film is attached to the light-receiving portion side of the optical position detecting element, a gap between the light-shielding mask and the light-receiving portion is reduced. It becomes extremely small, and more reliably prevents reflected light other than the primary reflected laser light from entering the optical position detecting element side.

【0012】本発明の請求項3に係わる三次元形状測定
装置では、遮光マスクのスリットがレーザビームスポッ
トの直径と略同一の幅寸法を有しているので、1次反射
レーザ光のみがスリットを通過し、1次反射レーザ光以
外の反射光が光位置検出素子側に入るのをより確実に阻
止する。
In the three-dimensional shape measuring apparatus according to the third aspect of the present invention, since the slit of the light shielding mask has a width substantially equal to the diameter of the laser beam spot, only the primary reflected laser beam cuts the slit. The reflected light other than the primary reflected laser light is more reliably prevented from entering the optical position detecting element side.

【0013】本発明の請求項4に係わる三次元形状測定
装置では、装置の固定部位と光位置検出素子を取付けた
ブラケットとの間に設けた微調整機構を操作することに
よって、光位置検出素子に設けた遮光マスクのスリット
が、基準平面を測定する際の照射レーザ光の光軸と反射
レーザ光の光軸との2軸により決定される平面に沿う状
態となるように、装置の固定部位とブラケットとの間隔
およびブラケットの傾斜が調整されることとなる。
In the three-dimensional shape measuring apparatus according to a fourth aspect of the present invention, the fine position adjustment mechanism provided between the fixed portion of the device and the bracket on which the light position detecting element is mounted is operated, whereby the light position detecting element is operated. The fixed portion of the apparatus is arranged such that the slit of the light-shielding mask provided at a position along the plane determined by the two axes of the optical axis of the irradiation laser light and the optical axis of the reflected laser light when measuring the reference plane. The distance between the bracket and the bracket and the inclination of the bracket are adjusted.

【0014】[0014]

【発明の効果】本発明の請求項1に係わる三次元形状測
定装置によれば、測定に必要な1次反射レーザ光のみを
遮光マスクのスリットに通過させて光位置検出素子によ
り受光し、遮光マスクにより2次反射光が光位置検出素
子に入るのを阻止することができるので、測定精度を大
幅に向上させることができ、また、被測定物に遮光板等
を近接して配置する必要がなく、被測定物から完全に離
間した状態で測定が行われるので、例えば歯牙模型のよ
うに狭い測定部分を有し且つ形状が複雑な被測定物であ
っても、精度の良い測定を容易に行うことができる。さ
らに、被測定物の傾斜面に照射レーザ光を照射した際、
反射レーザ光のスポット形状が歪むことがあるが、この
ような場合でもスポットエリアのほぼ中心位置を受光す
ることができ、精度の高い測定が可能になる。
According to the three-dimensional shape measuring apparatus according to the first aspect of the present invention, only the primary reflected laser light necessary for the measurement is passed through the slit of the light shielding mask, received by the light position detecting element, and blocked. Since the mask can prevent the secondary reflected light from entering the optical position detecting element, the measurement accuracy can be greatly improved, and it is necessary to dispose a light shielding plate or the like close to the object to be measured. Since the measurement is performed in a state completely separated from the object to be measured, even an object having a narrow measuring portion and a complicated shape such as a tooth model can be easily measured with high accuracy. It can be carried out. Furthermore, when irradiating the irradiation laser light on the inclined surface of the object to be measured,
Although the spot shape of the reflected laser light may be distorted, even in such a case, it is possible to receive light at almost the center position of the spot area, and to perform highly accurate measurement.

【0015】本発明の請求項2に係わる三次元形状測定
装置によれば、請求項1と同様の効果を得ることができ
るうえに、フィルムから成る遮光マスクを光位置検出素
子の受光部側に貼り付けたことから、遮光マスクを安価
に得ることができ、さらに、遮光マスクと受光部との間
の隙間がきわめて小さくなり、1次反射レーザ光のみを
光位置検出素子により受光することができると共に、2
次反射光が光位置検出素子側に入るのをより確実に阻止
することができ、測定精度のさらなる向上に貢献するこ
とができる。
According to the three-dimensional shape measuring apparatus of the second aspect of the present invention, the same effect as in the first aspect can be obtained, and a light-shielding mask made of a film is provided on the light-receiving portion side of the light position detecting element. Since the light-shielding mask is attached, the light-shielding mask can be obtained at low cost, and the gap between the light-shielding mask and the light receiving portion is extremely small, so that only the primary reflected laser light can be received by the light position detecting element. With 2
It is possible to more reliably prevent the next reflected light from entering the light position detecting element side, which can contribute to further improvement in measurement accuracy.

【0016】本発明の請求項3に係わる三次元形状測定
装置によれば、請求項1および2と同様の効果を得るこ
とができるうえに、遮光マスクのスリットがレーザビー
ムスポットの直径と略同一の幅寸法を有していることか
ら、1次反射レーザ光のみを通過させ且つ2次反射光の
通過を阻止する機能をより高めることができる。
According to the three-dimensional shape measuring apparatus of the third aspect of the present invention, the same effect as in the first and second aspects can be obtained, and the slit of the light shielding mask is substantially the same as the diameter of the laser beam spot. , The function of passing only the primary reflected laser light and blocking the passage of the secondary reflected light can be further enhanced.

【0017】本発明の請求項4に係わる三次元形状測定
装置によれば、請求項1〜3と同様の効果を得ることが
できるうえに、微調整機構の操作により、ブラケットと
ともに遮光マスクのスリットの位置を容易に調整するこ
とができ、これにより、遮光マスクのスリットを、基準
平面を測定する際の照射レーザ光の光軸と反射レーザ光
の光軸との2軸により決定される平面に沿う状態に正確
に合わせて、精度の良い測定を可能にする。
According to the three-dimensional shape measuring apparatus according to the fourth aspect of the present invention, the same effects as in the first to third aspects can be obtained, and the slit of the light shielding mask together with the bracket is operated by operating the fine adjustment mechanism. Can be easily adjusted, so that the slit of the light-shielding mask is aligned with a plane determined by the two axes of the optical axis of the irradiation laser light and the optical axis of the reflected laser light when measuring the reference plane. Accurate measurement is made possible in accordance with the conditions along the line.

【0018】[0018]

【実施例】以下、図面に基づいて、本発明に係わる三次
元形状測定装置の一実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-dimensional shape measuring apparatus according to the present invention will be described below with reference to the drawings.

【0019】図1に示す三次元形状測定装置1は、ケー
ス2内に、図示しない三次元形状の被測定物に向けて照
射レーザ光LTを照射するレーザ光源3と、被測定物か
らの反射レーザ光LRを受けてその受光位置を検出する
光位置検出素子4を備えており、このほか、反射レーザ
光LRの受光レンズ(図7の符号102参照)などを備
えている。
A three-dimensional shape measuring apparatus 1 shown in FIG. 1 includes a laser light source 3 for irradiating an irradiation laser beam LT to a three-dimensional object to be measured (not shown) in a case 2 and a reflection from the object to be measured. A light position detecting element 4 for receiving the laser light LR and detecting a light receiving position thereof is provided, and in addition, a light receiving lens (see reference numeral 102 in FIG. 7) for the reflected laser light LR is provided.

【0020】ケース2は、片側に開放されたものであっ
て、中央にレーザ光源3を収容し、その両側に光位置検
出素子4を収容するようになっており、レーザ光発振側
の面には、中央に照射レーザ光LTの照射用窓5を有す
ると共に、その両側に反射レーザ光LRの受光用窓6,
6を有している。両側の受光用窓6,6は、反射レーザ
光LRの反射角度に対応して互いに内向きに傾斜した状
態になっている。このケース2の開放部分には、複数の
ねじ7によって蓋8が取付けられる。
The case 2 is open on one side and accommodates a laser light source 3 in the center and an optical position detecting element 4 on both sides thereof. Has an irradiation window 5 for the irradiation laser light LT at the center, and a light reception window 6 for the reflection laser light LR on both sides thereof.
6. The light receiving windows 6, 6 on both sides are in a state of being inclined inward from each other corresponding to the reflection angle of the reflected laser light LR. A lid 8 is attached to an open portion of the case 2 with a plurality of screws 7.

【0021】光位置検出素子4は、ケース2内におい
て、受光用窓6に対向した状態で設けてある。光位置検
出素子4は、図4にも示すように帯状を成すと共に、受
光部側に保護用のガラス板9を設けたホルダ10内に取
付けてある。ホルダ10には、光位置検出素子4と電気
的に接続した端子10a〜10dが設けてある。これら
の端子10a〜10dは、図1(b)に示す光位置検出
素子4の回路基盤11に接続してある。また、回路基盤
11には、図示しない制御器へのコネクタ20が設けて
ある。
The light position detecting element 4 is provided in the case 2 so as to face the light receiving window 6. The light position detecting element 4 has a band shape as shown in FIG. 4 and is mounted in a holder 10 provided with a protective glass plate 9 on the light receiving section side. The holder 10 is provided with terminals 10 a to 10 d electrically connected to the light position detecting element 4. These terminals 10a to 10d are connected to the circuit board 11 of the light position detecting element 4 shown in FIG. The circuit board 11 is provided with a connector 20 for a controller (not shown).

【0022】上記の光位置検出素子4は、ホルダ10お
よび回路基盤11とともにL型ブラケット12の竪壁部
12aに取付けられると共に、受光部側であるガラス板
9の表面に遮光マスク13が貼り付けてあり、装置の固
定部位であるケース底面2aにブラケット12を取付け
ることによってケース2内に設置してある。
The light position detecting element 4 is mounted on the vertical wall 12a of the L-shaped bracket 12 together with the holder 10 and the circuit board 11, and a light shielding mask 13 is attached to the surface of the glass plate 9 on the light receiving side. It is installed in the case 2 by attaching a bracket 12 to the case bottom surface 2a which is a fixing portion of the device.

【0023】遮光マスク13は、レーザ光を遮断するフ
ィルムから成るものであって、その中央の光位置検出素
子4に対応する位置には、同光位置検出素子4の長手方
向に沿ったスリット14が形成してある。このスリット
14は、レーザビームスポットの直径と略同一の幅寸法
を有している。
The light-shielding mask 13 is made of a film for blocking laser light, and a slit 14 along the longitudinal direction of the light position detecting element 4 is provided at a position corresponding to the light position detecting element 4 at the center. Is formed. The slit 14 has a width substantially equal to the diameter of the laser beam spot.

【0024】ブラケット12は、ケース底面2aに対し
て、双方の間隔および当該ブラケット12の傾斜を可変
にする微調整機構により取付けてある。微調整機構は、
ブラケット12の下部横壁部12bにおいて、中央に位
置する間隔調整ねじ15と、その両側に設けた2本の傾
斜調整ねじ16a,16bで構成してある。間隔調整ね
じ15は、ブラケット12の下部横壁部12bに螺入貫
通していると共に、ケース底面2aに当接しており、ね
じ込み量を変えることによってケース底面2aとブラケ
ット12との間隔を変化させる。他方、各傾斜調整ねじ
16a,16bは、ブラケット12の下部横壁部12b
に貫通していると共に、ケース底面2aに螺入してお
り、左右でねじ込み量を変えることによってブラケット
12の傾斜の度合いを変化させる。
The bracket 12 is attached to the case bottom surface 2a by a fine adjustment mechanism that makes the distance between the two and the inclination of the bracket 12 variable. The fine adjustment mechanism is
The lower horizontal wall portion 12b of the bracket 12 includes a gap adjusting screw 15 located at the center and two tilt adjusting screws 16a and 16b provided on both sides thereof. The spacing adjusting screw 15 is threaded through the lower lateral wall portion 12b of the bracket 12 and abuts on the case bottom surface 2a. On the other hand, each of the tilt adjusting screws 16a and 16b is
, And is screwed into the case bottom surface 2a, and the degree of inclination of the bracket 12 is changed by changing the screwing amount between left and right.

【0025】上記の如くケース底面2aにブラケット1
2を取付けた状態において、光位置検出素子4は、その
受光部側に貼り付けた遮光マスク13のスリット14
が、図1(a)に示す基準平面Sを測定する際の照射レ
ーザ光LTの光軸と反射レーザ光LRの光軸との2軸に
より決定される平面に沿う状態となるように配置されて
いる。つまり、先の微調整機構は、結果的にスリット1
4の位置調整を行うものであって、スリット14が2本
の光軸により決定される平面に沿う状態となるように、
ケース底面2aとブラケット12との間隔やブラケット
12の傾斜を調整することとなる。この微調整は、実際
に基準平面Sを測定し、光位置検出素子4の出力電流を
電圧に変換する回路からの出力表示を見ながら簡単に行
うことが可能である。
As described above, the bracket 1 is attached to the case bottom surface 2a.
2, the light position detecting element 4 has the slit 14 of the light shielding mask 13 attached to the light receiving portion side.
Are arranged along a plane determined by two axes of the optical axis of the irradiation laser beam LT and the optical axis of the reflected laser beam LR when measuring the reference plane S shown in FIG. ing. That is, the fine adjustment mechanism described above results in the slit 1
4 to adjust the position, so that the slit 14 is in a state along a plane determined by the two optical axes.
The distance between the case bottom surface 2a and the bracket 12 and the inclination of the bracket 12 are adjusted. This fine adjustment can be easily performed while actually measuring the reference plane S and watching the output display from the circuit that converts the output current of the optical position detection element 4 into a voltage.

【0026】次に、上記三次元形状測定装置1の作用を
説明する。
Next, the operation of the three-dimensional shape measuring apparatus 1 will be described.

【0027】図3は被測定物Wにレーザ光を照射した状
態を示す図であって、図3(a)は照射レーザ光LTの
光軸と反射レーザ光LRの光軸との2軸により決定され
る平面を直角方向から見た状態の図であり、図3(b)
〜(d)は同平面を平行な方向から見た状態の図であ
る。
FIG. 3 is a view showing a state in which a laser beam is irradiated on the object to be measured W. FIG. 3A shows two axes of an optical axis of the irradiation laser light LT and an optical axis of the reflected laser light LR. FIG. 3B is a diagram of a state in which a determined plane is viewed from a right angle direction, and FIG.
(D) is a view of the same plane viewed from a parallel direction.

【0028】まず、図3(a)(b)に示すように、光
位置検出素子4に遮光マスクを設けていない場合、被測
定物Wにおいて照射レーザ光LTを照射すると、その照
射部分で反射した1次反射レーザ光LRが受光レンズ1
7を介して光位置検出素子4に受光されると共に、被測
定物Wにおいて2次反射が生じ、その2次反射光LSも
受光レンズ17を経て光位置検出素子4に受光される。
これにより、測定精度が低下することとなる。このと
き、2次反射光LSは、被測定物Wにおいて照射レーザ
光LTの照射部分以外の位置で反射しているので、1次
反射レーザ光LRと反射方向が異なり、光位置検出素子
4において1次反射レーザ光LRとは異なる位置で受光
される。
First, as shown in FIGS. 3 (a) and 3 (b), if the light position detecting element 4 is not provided with a light-shielding mask, when the object to be measured W is irradiated with the irradiation laser light LT, the light is reflected at the irradiated part. The primary reflected laser light LR is received by the light receiving lens 1.
7, the light is detected by the light position detecting element 4, and secondary reflection is generated on the measured object W. The secondary reflected light LS is also received by the light position detecting element 4 via the light receiving lens 17.
As a result, the measurement accuracy decreases. At this time, since the secondary reflected light LS is reflected at a position other than the irradiated portion of the irradiation laser light LT on the workpiece W, the reflection direction is different from that of the primary reflected laser light LR. The light is received at a position different from the primary reflected laser light LR.

【0029】そこで、当該三次元形状測定装置1では、
図3(c)に示すように、光位置検出素子4の受光部側
に、基準平面Sを測定したときの照射レーザ光LTの光
軸と反射レーザ光LRの光軸との2軸により決定される
平面に沿うスリット14を有する遮光マスク13を設け
ており、これにより、被測定物Wにおける照射レーザ光
LTの照射部分で反射した1次反射レーザ光LRのみを
遮光マスク13のスリット14に通過させ、その1次反
射レーザ光LRを光位置検出素子4により受光する。ま
た、照射レーザ光LTの照射部分以外の位置で反射した
2次反射光LSは、1次反射レーザ光LRと反射方向が
異なるので、遮光マスク13のスリット14から外れ、
同遮光マスク13により光位置検出素子4側への通過が
阻止される。したがって、当該三次元形状測定装置1で
は、測定に必要な1次反射レーザ光LRのみを光位置検
出素子4で受光することにより、精度の良い測定が行わ
れることとなる。
Therefore, in the three-dimensional shape measuring apparatus 1,
As shown in FIG. 3C, the optical axis of the irradiation laser beam LT and the optical axis of the reflected laser beam LR when the reference plane S is measured are determined on the light receiving portion side of the optical position detection element 4 by two axes. A light-shielding mask 13 having a slit 14 along a plane to be measured is provided, so that only the primary reflected laser light LR reflected at the irradiated portion of the object W to be irradiated with the irradiation laser light LT is transmitted to the slit 14 of the light-shielded mask 13. The primary reflected laser light LR is received by the light position detecting element 4. Further, since the secondary reflected light LS reflected at a position other than the irradiated part of the irradiation laser light LT has a different reflection direction from the primary reflected laser light LR, it comes off the slit 14 of the light shielding mask 13,
The light shielding mask 13 prevents passage to the light position detecting element 4 side. Therefore, in the three-dimensional shape measuring apparatus 1, accurate measurement is performed by receiving only the primary reflected laser beam LR required for measurement by the optical position detection element 4.

【0030】なお、被測定物Wまでの距離は、図7に基
づいて説明した三角測量法により求められ、被測定物W
の複数箇所の距離を測定することにより被測定物Wの形
状が特定されることとなる。
The distance to the object to be measured W is obtained by the triangulation method described with reference to FIG.
By measuring the distances at a plurality of locations, the shape of the DUT W is specified.

【0031】さらに、図3(d)は、比較例として、受
光レンズ17の前面側に遮光マスク13を設けた場合を
示す図である。この場合には、1次反射レーザ光LRお
よび2次反射光LSのいずれもが遮光マスク13のスリ
ット14を通過し、光位置検出素子4に受光されてしま
うこととなる。
FIG. 3D shows a comparative example in which a light shielding mask 13 is provided on the front side of the light receiving lens 17. In this case, both the primary reflected laser light LR and the secondary reflected light LS pass through the slit 14 of the light shielding mask 13 and are received by the light position detecting element 4.

【0032】これに対して、当該三次元形状測定装置1
では、遮光マスク13を光位置検出素子4の受光部側に
貼り付けていることから、遮光マスク13と受光部との
間の隙間がきわめて小さくなり、しかも、スリット14
の幅をレーザビームスポットの直径と略同一にしている
ので、1次反射レーザ光LRのみを光位置検出素子4に
より受光し、且つ2次反射光LSが光位置検出素子4側
に入るのをより確実に阻止している。
On the other hand, the three-dimensional shape measuring device 1
In this case, since the light shielding mask 13 is attached to the light receiving portion side of the light position detecting element 4, the gap between the light shielding mask 13 and the light receiving portion becomes extremely small.
Is approximately the same as the diameter of the laser beam spot, so that only the primary reflected laser light LR is received by the light position detecting element 4 and the secondary reflected light LS enters the light position detecting element 4 side. It is more reliably blocked.

【0033】このように、上記実施例の三次元形状測定
装置1では、被測定物Wに遮光板等を近接して配置する
必要がなく、被測定物Wから完全に離間した状態で測定
が行われるので、例えば図6に示す歯牙模型のように狭
い測定部分を有し且つ形状が複雑な被測定物であって
も、精度の良い測定が容易に行われることとなる。
As described above, in the three-dimensional shape measuring apparatus 1 of the above embodiment, it is not necessary to dispose a light shielding plate or the like close to the object W, and the measurement can be performed in a state where the object W is completely separated from the object W. Therefore, accurate measurement can be easily performed even on an object to be measured having a narrow measuring portion and a complicated shape, such as a tooth model shown in FIG.

【0034】また、当該三次元形状測定装置1では、ス
リット14により、光位置検出素子4の受光面をレーザ
ビームスポットの直径に相当する幅で直線的に使用する
ことから、光位置検出素子4における抵抗層の抵抗値分
布が一様でないことによる横方向誤差の影響を受けるこ
とがないという利点がある。
In the three-dimensional shape measuring apparatus 1, since the light receiving surface of the light position detecting element 4 is linearly used with a width corresponding to the diameter of the laser beam spot by the slit 14, the light position detecting element 4 is used. There is an advantage that there is no influence of the lateral error due to the non-uniform resistance value distribution of the resistance layer.

【0035】図5は微調整機構の他の例を示す図であっ
て、この例では、ブラケット12の下部横壁部12bを
貫通し且つケース底面2aに螺入した2本の調整ねじ1
8a,18bと、下部横壁部12bとケース底面2aの
間に介装される調整シム19とで微調整機構を構成して
いる。
FIG. 5 is a view showing another example of the fine adjustment mechanism. In this example, two adjustment screws 1 penetrating the lower horizontal wall portion 12b of the bracket 12 and screwing into the case bottom surface 2a are shown.
8a, 18b and an adjustment shim 19 interposed between the lower horizontal wall portion 12b and the case bottom surface 2a constitute a fine adjustment mechanism.

【0036】上記の微調整機構にあっても、各調整ねじ
18a,18bのねじ込み量や、調整シム19の介装位
置あるいは数を変更することにより、ケース底面2aと
ブラケット12との間隔およびブラケット12の傾斜の
度合いが調整され、結果的として、ブラケット12に取
付けた光位置検出素子4における遮光マスク13のスリ
ット14が、基準平面Sを測定したときの照射レーザ光
LTの光軸と反射レーザ光LRの光軸との2軸により決
定される平面に沿う状態となるように調整される。
Even in the above-mentioned fine adjustment mechanism, the distance between the case bottom surface 2a and the bracket 12 and the bracket can be changed by changing the screwing amounts of the adjustment screws 18a and 18b and the interposition position or number of the adjustment shims 19. 12 is adjusted, and as a result, the slit 14 of the light shielding mask 13 in the light position detecting element 4 attached to the bracket 12 causes the optical axis of the irradiation laser beam LT and the reflected laser beam when the reference plane S is measured. The adjustment is performed so as to be in a state along a plane determined by two axes of the light LR and the optical axis of the light LR.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる三次元形状測定装置の一実施例
を説明する斜視図(a)および光位置検出素子を設けた
ブラケットを示す斜視図(b)である。
FIG. 1A is a perspective view illustrating an embodiment of a three-dimensional shape measuring apparatus according to the present invention, and FIG. 1B is a perspective view illustrating a bracket provided with a light position detecting element.

【図2】ブラケットの微調整機構を説明する断面図であ
る。
FIG. 2 is a cross-sectional view illustrating a fine adjustment mechanism of a bracket.

【図3】被測定物に照射レーザ光を照射した状態を説明
する図であって、遮光マスクが無い場合を示す2方向か
らの説明図(a)(b)、光位置検出素子の受光部側に
遮光マスクを設けた場合を示す説明図(c)、および比
較例として受光レンズの前面側に遮光マスクを設けた場
合を示す説明図(d)である。
FIGS. 3A and 3B are diagrams illustrating a state in which an object to be measured is irradiated with an irradiation laser beam, and are explanatory diagrams (a) and (b) from two directions showing a case where there is no light shielding mask; FIG. 7C is an explanatory diagram showing a case where a light-shielding mask is provided on the side, and FIG. 7D is an explanatory diagram showing a case where a light-shielding mask is provided on the front side of a light receiving lens as a comparative example.

【図4】光位置検出素子およびホルダを説明する正面図
(a)および側面図(b)である。
FIG. 4 is a front view (a) and a side view (b) illustrating a light position detecting element and a holder.

【図5】ブラケットの微調整機構の他の例を説明する断
面図である。
FIG. 5 is a sectional view illustrating another example of the fine adjustment mechanism of the bracket.

【図6】被測定物の一例としての歯牙模型を説明する斜
視図である。
FIG. 6 is a perspective view illustrating a tooth model as an example of an object to be measured.

【図7】従来における三次元形状測定装置および三角測
量法による距離の測定を示す説明図である。
FIG. 7 is an explanatory view showing distance measurement by a conventional three-dimensional shape measuring apparatus and a triangulation method.

【符号の説明】[Explanation of symbols]

1 三次元形状測定装置 2a ケース底面(装置の固定部位) 3 レーザ光源 4 光位置検出素子 12 ブラケット 13 遮光マスク 14 スリット 15 間隔調整ねじ(微調整機構) 16a 16b 傾斜調整ねじ(微調整機構) 18a 18b 調整ねじ(微調整機構) 19 調整シム(微調整機構) LR 反射レーザ光 LT 照射レーザ光 S 基準平面 W 被測定物 Reference Signs List 1 3D shape measuring device 2a Case bottom (fixed part of device) 3 Laser light source 4 Optical position detecting element 12 Bracket 13 Light shielding mask 14 Slit 15 Interval adjustment screw (fine adjustment mechanism) 16a 16b Tilt adjustment screw (fine adjustment mechanism) 18a 18b Adjustment screw (fine adjustment mechanism) 19 Adjustment shim (fine adjustment mechanism) LR Reflected laser light LT Irradiated laser light S Reference plane W DUT

フロントページの続き (72)発明者 松 田 敏 彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Continued on front page (72) Inventor Toshihiko Matsuda 2 Nissan Motor Co., Ltd., Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 三次元形状の被測定物に向けて照射レー
ザ光を照射するレーザ光源と、被測定物からの反射レー
ザ光を受けてその受光位置を検出する光位置検出素子を
備えると共に、光位置検出素子の受光部側に、基準平面
を測定する際の照射レーザ光の光軸と反射レーザ光の光
軸との2軸により決定される平面に沿うスリットを有す
る遮光マスクを設けたことを特徴とする三次元形状測定
装置。
1. A laser light source for irradiating an irradiation laser beam toward a three-dimensional object to be measured, and a light position detecting element for receiving a reflected laser beam from the object to detect a light receiving position thereof, A light-shielding mask having a slit along a plane determined by two axes of the optical axis of the irradiation laser light and the optical axis of the reflected laser light when measuring the reference plane is provided on the light receiving portion side of the light position detecting element. A three-dimensional shape measuring device characterized by the following.
【請求項2】 遮光マスクがフィルムであって、この遮
光マスクが光位置検出素子の受光部側に貼り付けてある
ことを特徴とする請求項1に記載の三次元形状測定装
置。
2. The three-dimensional shape measuring apparatus according to claim 1, wherein the light-shielding mask is a film, and the light-shielding mask is affixed to the light receiving portion side of the optical position detecting element.
【請求項3】 遮光マスクのスリットがレーザビームス
ポットの直径と略同一の幅寸法を有することを特徴とす
る請求項1または2に記載の三次元形状測定装置。
3. The three-dimensional shape measuring apparatus according to claim 1, wherein the slit of the light shielding mask has a width substantially equal to the diameter of the laser beam spot.
【請求項4】 装置の固定部位と光位置検出素子を取付
けたブラケットとの間に、双方の間隔およびブラケット
の傾斜を可変にする微調整機構を設けたことを特徴とす
る請求項1〜3のいずれかに記載の三次元形状測定装
置。
4. A fine-adjustment mechanism for varying the distance between the two and the inclination of the bracket is provided between the fixed portion of the device and the bracket on which the optical position detecting element is mounted. The three-dimensional shape measuring device according to any one of the above.
JP29057196A 1996-10-31 1996-10-31 Three-dimensional form measuring device Pending JPH10132527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29057196A JPH10132527A (en) 1996-10-31 1996-10-31 Three-dimensional form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29057196A JPH10132527A (en) 1996-10-31 1996-10-31 Three-dimensional form measuring device

Publications (1)

Publication Number Publication Date
JPH10132527A true JPH10132527A (en) 1998-05-22

Family

ID=17757755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29057196A Pending JPH10132527A (en) 1996-10-31 1996-10-31 Three-dimensional form measuring device

Country Status (1)

Country Link
JP (1) JPH10132527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202369A (en) * 2000-12-27 2002-07-19 Nikon Corp Light signal detector and range finder
CN110779473A (en) * 2019-10-11 2020-02-11 深圳市乐业科技有限公司 Safe and reliable's multi-functional laser check out test set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202369A (en) * 2000-12-27 2002-07-19 Nikon Corp Light signal detector and range finder
CN110779473A (en) * 2019-10-11 2020-02-11 深圳市乐业科技有限公司 Safe and reliable's multi-functional laser check out test set

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JPS60127403A (en) Thickness measuring apparatus
US20140067316A1 (en) Measuring apparatus, detector deviation monitoring method and measuring method
JP3793315B2 (en) Tilt detection device
KR100568439B1 (en) Ellipsometer measuring instrument
US4976543A (en) Method and apparatus for optical distance measurement
JP2756331B2 (en) Interval measuring device
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH09304036A (en) Angle measuring apparatus for solid component
JPH10132527A (en) Three-dimensional form measuring device
US7675019B2 (en) Method and device for adjusting at least one light beam in an optical system
KR20070015267A (en) Light displacement measuring apparatus
JPH0968507A (en) X-ray diffraction device
JP2879242B2 (en) Laser displacement meter
JP2565274B2 (en) Height measuring device
JPH0734334Y2 (en) Triangular distance type photoelectric detector
JPH06167305A (en) Optical displacement sensor
JPH03115911A (en) Thickness measuring instrument for transparent body
GB2321309A (en) Double glazing unit thickness measuring apparatus
JPH07301519A (en) Distance measuring instrument
JPH07218618A (en) Optical axis adjuster for laser radar
US5497228A (en) Laser bevel meter
JPH05223563A (en) Laser displacement meter
KR20240044739A (en) Displacement measuring system and displascement measuring method using optical interferometer