JPH01320430A - Optical displacement detector - Google Patents

Optical displacement detector

Info

Publication number
JPH01320430A
JPH01320430A JP15295988A JP15295988A JPH01320430A JP H01320430 A JPH01320430 A JP H01320430A JP 15295988 A JP15295988 A JP 15295988A JP 15295988 A JP15295988 A JP 15295988A JP H01320430 A JPH01320430 A JP H01320430A
Authority
JP
Japan
Prior art keywords
displacement
light
detection
specularly reflected
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15295988A
Other languages
Japanese (ja)
Inventor
Takahide Iida
隆英 飯田
Hiroshi Miyake
三宅 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP15295988A priority Critical patent/JPH01320430A/en
Publication of JPH01320430A publication Critical patent/JPH01320430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the displacement of an object by dividing the displacement between displacement related to movement and displacement related to inclination by utilizing the regular reflected light from the surface of the object. CONSTITUTION:Photodetector elements 16 and 18 are arranged on both sides of a diffraction grating 12 and the regular reflected light R1 of laser light L1 from the surface of an object is made incident on the light receiving surface of the photodetector element 16 and the regular reflected light R2 of laser light L2 from the surface of the object is made incident on the light receiving surface of the photodetector element 18. The elements 16 and 18 respectively output position signals indicating the positions of the light spots of the regular reflected light R1 and R2 on the light receiving surfaces parallel to the laser light reference planes including optical axes 2. Moving quantity calculating device 20 finds the displacement of the incident positions of 1st and 2nd regular reflected light R1 and R2 based on the detecting signals from the elements 16 and 18 and separately detects the inclination of the surface of the object and movement of 1st and 2nd detecting light L1 and L2 in the advancing direction based on both incident position displacement. Thus the displacement of the object can be detected by dividing the displacement between the displacement related to the movement and displacement related to the inclination.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対象物の表面に検出光を集中的に照射し、対
象物表面からの反射光の到達位置の変位に基づいて、対
象物が検出光の進行方向において移動したか否か、対象
物表面が傾いたか否か、あるいは移動もしくは傾きの量
等、対象物の変位を検出する光学式変位検出装置に関す
るものであり、特に、対象物の変位の検出精度を向上さ
せる技術に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention focuses on detecting light on the surface of an object, and detects the object based on the displacement of the arrival position of the reflected light from the surface of the object. It relates to an optical displacement detection device that detects the displacement of an object, such as whether or not the object has moved in the traveling direction of the detection light, whether the object surface is tilted, or the amount of movement or inclination. This invention relates to technology that improves the accuracy of detecting the displacement of objects.

〔従来の技術] 上記光学式変位検出装置は一般に、(a)検出光を発す
る光源と、b)その検出光が対象物表面で反射された反
射光を受け、その反射光の入射位置を検出する光検出素
子と、(C)その素子からの検出信号に基づいて反射光
の入射位置変位を求め、その入射位置変位に基づいて対
象物の変位を検出する変位検出手段とを含むように構成
される。
[Prior Art] The above-mentioned optical displacement detection device generally includes (a) a light source that emits detection light, and b) receives reflected light from which the detection light is reflected on the surface of an object, and detects the incident position of the reflected light. and (C) displacement detection means for determining the displacement of the incident position of the reflected light based on the detection signal from the element and detecting the displacement of the object based on the displacement of the incident position. be done.

光学式変位検出装置の一つとして第4図に示す光学式変
位計が既に知られている。これは、(a)各々が共同し
て検出光たるレーザ光りを対象物0の表面に照射するレ
ーザ駆動回路100.半導体レーザ102および投光レ
ンズ104と、(b)レーザ光りが対象物表面で乱反射
された乱反射光Rを集光する受光レンズ106と、(C
)その受光レンズ106によって集光された乱反射光R
を受光する受光面を有し、受光面上における乱反射光R
の入射位置を検出する光検出素子110と、(d)その
光検出素子110からの検出信号に基づいて入射位置変
位量を算出し、その入射位置変位量に応じて対象物Oの
レーザ光りの進行方向における移動1sを算出する移動
量算出手段112を含み、かつ、半導体レーザ102.
投光レンズ104.受光レンズ106および光検出素子
110が一定の相対位置関係で当該変位計のフレーム1
14に固定されたものである。すなわち、本従来例にお
いては、レーザ駆動回路100および半導体レーザ10
2が光源であり、移動量算出手段112が変位検出手段
なのである。
An optical displacement meter shown in FIG. 4 is already known as one type of optical displacement detection device. This consists of (a) laser drive circuits 100, each of which works together to irradiate the surface of the object 0 with laser light serving as detection light; a semiconductor laser 102 and a light projecting lens 104; (b) a light receiving lens 106 that collects diffusely reflected light R obtained by diffusely reflecting laser light on the surface of an object;
) The diffusely reflected light R collected by the light receiving lens 106
It has a light-receiving surface that receives the diffused reflected light R on the light-receiving surface.
(d) calculates the amount of displacement of the incident position based on the detection signal from the photodetecting element 110, and detects the laser beam of the object O according to the amount of displacement of the incident position; The semiconductor laser 102.
Light projection lens 104. The light receiving lens 106 and the photodetecting element 110 are arranged in the frame 1 of the displacement meter in a certain relative positional relationship.
It is fixed at 14. That is, in this conventional example, the laser drive circuit 100 and the semiconductor laser 10
2 is a light source, and the movement amount calculating means 112 is a displacement detecting means.

この種の光学式変位計(以下、乱反射光型変位計という
。)は測定に先立って、対象物Oから一定の基準距離D
0だけ離れた基準位置P0に位置決めされ、半導体レー
ザ102から対象物表面に照射されたレーザ光りのうち
、対象物表面からの乱反射光Rが光検出素子110の受
光面に垂直に入射し、その乱反射光Rが受光面上の予め
定められた基準入射位置に到達するようにされる。
This type of optical displacement meter (hereinafter referred to as a diffused reflection type displacement meter) uses a fixed reference distance D from the object O before measurement.
Of the laser light irradiated from the semiconductor laser 102 to the surface of the object, the diffusely reflected light R from the surface of the object is perpendicularly incident on the light receiving surface of the photodetector 110, and the The diffusely reflected light R is made to reach a predetermined reference incident position on the light receiving surface.

対象物0が基準位置P0からレーザ光りの進行方向にお
いて移動した場合には、乱反射光Rの入射位置が、レー
ザ光りの光軸と乱反射光Rの進行方向との双方を含む平
面内において、基準入射位置から対象物Oの移動量Sに
対応する量だけ変位する。したがって、乱反射光Rの基
準入射位置からの入射位置変位量が判れば、その値から
対象物0の移動IS、ひいては当該変位計との現在距離
りを算出することができる。
When the object 0 moves from the reference position P0 in the traveling direction of the laser beam, the incident position of the diffusely reflected light R is within the plane that includes both the optical axis of the laser beam and the traveling direction of the diffusely reflected light R. The object O is displaced from the incident position by an amount corresponding to the movement amount S. Therefore, if the amount of displacement of the incident position of the diffusely reflected light R from the reference incident position is known, it is possible to calculate the movement IS of the object 0 and, by extension, the current distance to the displacement meter from that value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記乱反射光型変位計においては、光検出素子に達する
光が対象物表面での乱反射光であるから、光検出素子に
よって検出される光は強度が弱くてSN比が低いものと
なり、対象物の移動量の測定精度を十分に高めることが
できない。
In the above-mentioned diffused reflection light type displacement meter, the light reaching the photodetection element is diffusely reflected light from the surface of the object, so the light detected by the photodetection element has a low intensity and a low S/N ratio, and the It is not possible to sufficiently improve the accuracy of measuring the amount of movement.

これに対して、対象物表面からの正反射光を利用して対
象物の移動量を検出すれば、光検出素子によって検出さ
れる光のSN比が向上して測定精度が向上する。しかし
、この場合、正反射光の到達位置は対象物表面の傾きに
よって大きな影響を受けるから、移動量測定時に対象物
表面に傾きが発生した場合には検出精度に誤差が含まれ
るという事態が生ずる。
On the other hand, if the amount of movement of the object is detected using specularly reflected light from the surface of the object, the signal-to-noise ratio of the light detected by the photodetecting element is improved and measurement accuracy is improved. However, in this case, the arrival position of the specularly reflected light is greatly affected by the inclination of the object surface, so if the object surface is inclined when measuring the amount of movement, an error may be included in the detection accuracy. .

そこで、本発明は、対象物表面からの正反射光を利用し
て対象物の変位を、移動に係る変位と傾きに係る変位と
に分けて検出し得る光学式変位検出装置を提供すること
を課題として為されたものである。
Therefore, the present invention provides an optical displacement detection device that can detect the displacement of an object by dividing it into a displacement related to movement and a displacement related to tilt, using specularly reflected light from the surface of the object. This was done as a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、前記光源、光検出素子および変位検出
手段を含む光学式変位検出装置に、前記検出光を一基準
平面内で互いに一定角度を成して進行する第1および第
2検出光に分割し、両検出光をそれぞれ対象物表面にほ
ぼ等しい角度で斜めにかつ集中的に照射する光分割器を
設けるとともに、光検出素子を、第1および第2検出光
が対象物表面で正反射された第1および第2正反射光を
それぞれ受け、各正反射光の入射位置を検出する第1お
よび第2光検出素子から成るものとし、さらに、変位検
出手段を、第1および第2光検出素子からの検出信号に
基づいて第1および第2正反射光の入射位置変位を求め
、それら両入射位置変位に基づいて対象物の変位を検出
するものとしたことにある。
The gist of the present invention is to provide an optical displacement detecting device including the light source, a photodetecting element, and a displacement detecting means with first and second detection lights that propagate the detection light at a constant angle to each other within a reference plane. At the same time, a light splitter is provided that divides the first and second detection lights into two, and irradiates both detection lights obliquely and intensively onto the object surface at approximately the same angle. The device is composed of first and second photodetecting elements each receiving the reflected first and second specularly reflected lights and detecting the incident position of each specularly reflected light. The displacement of the incident position of the first and second specularly reflected lights is determined based on the detection signal from the photodetecting element, and the displacement of the object is detected based on the displacement of both of the incident positions.

また、互いに直角な2つの基準平面内での傾きをそれぞ
れ検出する必要がある場合には、上記光分割器を、検出
光を第1および第2検出光に加えて、第1基準平面とし
ての上記一基準平面と直交する第2基準平面内で互いに
一定角度を成して進行する第3および第4検出光にも分
割し、それら第3および第4検出光をそれぞれ対象物表
面にほぼ等しい角度で斜めにかつ集中的に照射するもの
とするとともに、それら第3および第4検出光が対象物
表面で正反射された第3および第4正反射光を受け、各
正反射光の入射位置を検出する第3および第4光検出素
子を含むものとし、さらに、上記変位検出手段を、第3
および第4光検出素子からの検出信号に基づいて第3お
よび第4正反射光の入射位置変位をも求め、第1および
第2正反射光の入射位置変位に基づいて第1基準平面内
での対象物表面の傾きを検出するとともに、第3および
第4正反射光の入射位置変位に基づいて第2基準平面内
での対象物表面の傾きを検出する傾き検出手段を含むも
のとすることが望ましい。
In addition, when it is necessary to detect the inclinations within two reference planes that are perpendicular to each other, the light splitter is used to add the detection light to the first and second detection light and use the light splitter as the first reference plane. It is also divided into third and fourth detection lights that travel at a certain angle to each other within a second reference plane orthogonal to the first reference plane, and the third and fourth detection lights are each approximately equal to the surface of the object. At the same time, the third and fourth detection lights receive the third and fourth specularly reflected lights that are specularly reflected on the object surface, and the incident position of each specularly reflected light is determined. The displacement detecting means includes third and fourth photodetecting elements for detecting the displacement detecting means.
The incident position displacements of the third and fourth specularly reflected lights are also determined based on the detection signal from the fourth photodetecting element, and the incident position displacements of the first and second specularly reflected lights are determined within the first reference plane. It is preferable to include an inclination detection means for detecting the inclination of the object surface within the second reference plane based on the displacement of the incident position of the third and fourth specularly reflected lights. .

〔作用] 本発明に係る光学式変位検出装置においては、第1およ
び第2検出光がそれぞれ対象物表面の第1および第2照
射位置に互いにほぼ等しい入射角で斜めに照射され、そ
れら両検出光の対象物表面での第1および第2正反射光
がそれぞれ第1および第2光検出素子に入射する。
[Function] In the optical displacement detection device according to the present invention, the first and second detection lights are obliquely irradiated onto the first and second irradiation positions on the surface of the object, respectively, at substantially equal incident angles, and both of the detection lights are The first and second specularly reflected lights on the surface of the object enter the first and second photodetecting elements, respectively.

したがって、当該検出装置と対象物表面とが互いに傾く
ことなく、すなわち、第1および第2検出光の対象物表
面への入射角が互いに完全に等しく保たれつつ、対象物
と検出装置とが接近・離間する単純移動状態では、それ
に伴って、第1および第2正反射光が互いに逆方向に等
しい距離ずつ移動する結果、第1正反射光の第1光検出
素子への入射位置(第1入射位置)および第2正反射光
の第2光検出素子への入射位置(第2入射位置)も互い
に逆方向に等しい距離ずつ変位することとなる。このと
きの各入射位置の変位量は対象物の移動量に対応する。
Therefore, the object and the detection device approach each other without the detection device and the surface of the object being tilted relative to each other, that is, while the angles of incidence of the first and second detection lights on the surface of the object are kept completely equal to each other. - In the simple moving state of separation, the first and second specularly reflected lights move by equal distances in opposite directions, and as a result, the incident position of the first specularly reflected light on the first photodetecting element (first The incident position) and the incident position (second incident position) of the second specularly reflected light onto the second photodetecting element are also displaced by equal distances in opposite directions. The amount of displacement of each incident position at this time corresponds to the amount of movement of the object.

これに対して、対象物が移動することなく、第1および
第2検出光の光軸を含む基準平面内での対象物表面の角
度が小角度変化する単純傾き状態、すなわち、対象物表
面が第1および第2照射位置の中央となる基準位置を回
転中心として上記基準平面内で小角度回転する状態(説
明上、対象物表面は基準平面内においてのみ回転し、そ
れと直角な平面内においては回転しないものとする。)
では、第1および第2正反射光がそれぞれ第1および第
2照射位置を回転中心として互いに同方向に等しい角度
で回転する結果、第1および第2入射位置が共に同じ方
向にほぼ等しい距離変位することとなる。
On the other hand, a simple tilt state in which the angle of the object surface within the reference plane including the optical axes of the first and second detection lights changes by a small angle without the object moving; A state in which the object surface rotates by a small angle within the reference plane with the reference position, which is the center of the first and second irradiation positions, as the center of rotation (for purposes of explanation, the object surface rotates only within the reference plane, and in a plane perpendicular to it, (It shall not rotate.)
In this case, as a result of the first and second specularly reflected lights rotating at equal angles in the same direction around the first and second irradiation positions, respectively, the first and second incident positions are both displaced by approximately equal distances in the same direction. I will do it.

このときの第1および第2入射位置変位量は、対象物表
面の角度変化量に対応する真正の入射位置変位量、すな
わち、対象物表面の前記基準位置を照射位置として第1
および第2検出光とそれぞれ平行な検出光を照射した状
態で、対象物表面を、基準位置を一定に保ちつつその基
準位置を回転中心として小角度回転させた場合に得られ
るはずの入射位置変位量とは厳密には一致しない。これ
は、対象物表面の傾きによって、第1および第2照射位
置の一方がそれに対応する光検出素子に近づくのに対し
て、他方がそれに対応する光検出素子から遠ざかってし
まうことや、例えば、第1および第2光検出素子の入射
面が、検出装置と正対する平面と平行に配置されている
場合には、対象物表面の傾きによって、第1および第2
正反射光の−方とそれに対応する光検出素子の入射面と
の成す角度が、傾き発生前の状態より傾き発生後のほう
が大きくなるのに対して、第1および第2正反射光の他
方とそれに対応する光検出素子の入射面との成す角度が
、小さくなってしまうことが原因である。しかし、傾き
変化量が小さい場合には、第1および第2入射位置変位
量が共に真正の人、射位置変位量と等しいとみなすこと
ができる。
The first and second incident position displacement amounts at this time are the true incident position displacement amounts corresponding to the angular changes on the object surface, that is, the first and second incident position displacement amounts with the reference position on the object surface as the irradiation position.
and the incident position displacement that should be obtained when the target surface is rotated by a small angle around the reference position while keeping the reference position constant while being irradiated with detection light parallel to the second detection light. It doesn't exactly match the quantity. This is because one of the first and second irradiation positions approaches the corresponding photodetector element while the other moves away from the corresponding photodetector element due to the inclination of the object surface. When the incident surfaces of the first and second photodetecting elements are arranged parallel to the plane that directly faces the detection device, the first and second photodetecting elements may be
The angle formed by the - side of the specularly reflected light and the incident surface of the corresponding photodetecting element is larger after the tilt occurs than before the inclination occurs, whereas the angle formed by the other side of the first and second specularly reflected light This is because the angle formed by the incident surface of the photodetector and the corresponding incident surface of the photodetecting element becomes small. However, when the amount of change in inclination is small, both the first and second incident position displacement amounts can be considered to be equal to the true person's injection position displacement amount.

したがって、対象物が測定開始位置から測定終了位置ま
で移動するとともに、対象物表面の傾きが測定開始時と
測定終了時とで互いに異なった場合には、移動と傾きと
が重なって発生したと考えることができ、第1および第
2入射位置変位量(測定開始時から測定終了時までに第
1および第2入射位置がそれぞれ変位したN)のいずれ
か一方が、対象物の移動量に対応する入射位置変位量(
以下、移動に係る変位量という。)と対象物表面の傾き
変化量に対応する入射位置変位量(以下、傾きに係る変
位量という。)との和となるのに対して、他方が、移動
に係る変位量と傾きに係る変位量との差となる。
Therefore, if the object moves from the measurement start position to the measurement end position and the slope of the object surface is different at the start and end of the measurement, it is considered that the movement and the slope overlap. and either one of the first and second incident position displacement amounts (N by which the first and second incident positions are respectively displaced from the start of measurement to the end of measurement) corresponds to the amount of movement of the target object. Incident position displacement (
Hereinafter, this will be referred to as the amount of displacement related to movement. ) and the displacement amount of the incident position corresponding to the amount of change in inclination of the object surface (hereinafter referred to as the displacement amount related to inclination), whereas the other is the amount of displacement related to movement and the displacement amount related to inclination. The difference is the amount.

以下、これらの変位量に基づいて、対象物の移動の有無
および移動量と、対象物表面の傾き発生の有無とをそれ
ぞれ検出する場合に好適な本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail, which is suitable for detecting the presence or absence of movement of a target object, the amount of movement, and the presence or absence of tilting of the surface of the target object, based on these displacement amounts.

まず、対象物の移動の有無および移動量、正確には、当
該対象物の前記基準位置と変位計との距離変化の有無お
よび変化量を測定したい場合には、変位検出手段を、第
1および第2入射位置変位量の平均値を算出し、その平
均値の変化の有無から移動の有無を検出する移動有無検
出手段と、平均値の変化量から移動量を算出する移動量
算出手段とを含むものとする。両変位量の平均を取れば
、第1入射位置の傾きに係る変位量と、第2入射位置の
傾きに係る変位量とが互いに打ち消し合う結果、移動に
係る変位量のみを取り出すことができるのである。
First, when it is desired to measure the presence or absence and amount of movement of an object, more precisely, the presence or absence and amount of change in the distance between the reference position of the object and the displacement meter, the displacement detection means is movement detection means for calculating the average value of the displacement amount of the second incident position and detecting the presence or absence of movement based on the presence or absence of a change in the average value; and movement amount calculation means for calculating the movement amount from the amount of change in the average value. shall be included. By taking the average of both displacement amounts, the displacement amount related to the inclination of the first incident position and the displacement amount related to the inclination of the second incident position cancel each other out, so that only the displacement amount related to movement can be extracted. be.

また、対象物表面の角度が変わったか否か、すなわち、
対象物表面に傾きが発生したか否かを検出したい場合に
は、変位検出手段を、第1および第2入射位置変位量の
差を算出し、その値が0であれば傾きが発生しなかった
と判定し、0でなければ傾きが発生したと判定する傾き
検出手段を含むものとする。第1および第2入射位置変
位量の差を取れば、第1入射位置の移動に係る変位量と
第2入射位置の移動に係る変位量とが互いに打ち消し合
う結果、傾き角度の変化に対応する入射位置変位量(傾
きに係る変位量)のみを取り出すことができるのである
Also, whether or not the angle of the object surface has changed, that is,
When it is desired to detect whether or not a tilt has occurred on the surface of the object, the displacement detection means calculates the difference between the displacement amount of the first and second incident positions, and if the value is 0, no tilt has occurred. and, if it is not 0, determines that a tilt has occurred. If we take the difference between the displacement of the first and second incident positions, the displacement due to the movement of the first incident position and the displacement due to the movement of the second incident position cancel each other out, which corresponds to the change in the inclination angle. Only the amount of displacement of the incident position (the amount of displacement related to the tilt) can be extracted.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に従えば、対象物表面からの第1お
よび第2正反射光の、第1および第2光検出素子への入
射位置の変位量に基づいて、対象物の移動と傾きとを分
けて検出し得るから、対象物の変位の検出精度が向上す
るという効果が得られる。
As described above, according to the present invention, the movement and inclination of the object can be determined based on the amount of displacement of the incident positions of the first and second specularly reflected lights from the object surface onto the first and second photodetecting elements. Since the displacement of the target object can be detected separately, it is possible to improve the accuracy of detecting the displacement of the target object.

例えば、前述の、変位検出手段が移動量算出手段を含む
態様においては、対象物の移動量を対象物表面からの正
反射光を利用して測定するのにも関わらず、対象物表面
の角度変化とはほぼ無関係に、対象物の移動量を正確に
測定することができ、測定時に対象物表面に傾きが生じ
ても移動量の測定精度が良好に維持されるという効果も
得られる。
For example, in the above-mentioned embodiment in which the displacement detection means includes the movement amount calculation means, although the movement amount of the object is measured using specularly reflected light from the object surface, the angle of the object surface is The amount of movement of the object can be accurately measured almost independently of changes, and even if the surface of the object is tilted during measurement, the accuracy of measuring the amount of movement can be maintained at a good level.

なお、今までの説明は、対象物表面の角度変化量が小さ
く、対象物表面が傾くことによって発生する第1および
第2入射位置の変位量が前記傾きに係る変位量と等しい
とみなし得るとの前提の下に為されているが、角度変化
量がそれより大きい場合であっても、対象物表面に1つ
の検出光を照射することにより、対象物表面での正反射
光の変位量に基づいて対象物の移動量を測定する場合に
比べれば、対象物表面の角度変動によって生ずる検出誤
差が小さく抑えられるという効果が得られる。
The explanation so far has been based on the assumption that the amount of angular change on the object surface is small and that the amount of displacement of the first and second incident positions caused by the tilting of the object surface can be considered to be equal to the amount of displacement related to the tilt. However, even if the amount of angular change is larger than that, by irradiating the object surface with one detection light, the amount of displacement of the specularly reflected light on the object surface can be reduced. Compared to the case where the amount of movement of the target object is measured based on the above-described method, an effect can be obtained in that detection errors caused by angular fluctuations on the surface of the target object can be suppressed to a small value.

また、前述の、変位検出手段が傾き検出手段を含む態様
においては、1個の検出装置で対象物表面の傾きを検出
することが可能となり、測定費用が少なくて済むととも
に、測定作業が容易となる効果が得られる。
Furthermore, in the above-mentioned embodiment in which the displacement detection means includes the inclination detection means, it is possible to detect the inclination of the object surface with one detection device, which reduces measurement costs and facilitates measurement work. You can get the following effect.

さらに、本態様においては、対象物表面の傾きを検出す
る際、対象物が移動しても傾きの検出に支障を来すこと
はないという効果も得られる。
Further, in this aspect, when detecting the inclination of the surface of the object, there is an effect that even if the object moves, the detection of the inclination is not hindered.

なお、変位検出手段が移動量算出手段を含む態様の説明
において、対象物表面が前記基準平面内においてのみ回
転し、それとは直角な平面内においては回転しないもの
としたが、その直角な平面内においても回転する結果、
第1および第2入射位置が基準平面と交差する方向に変
位する場合には、各入射位置が基準平面と平行な方向に
変位した長さを入射位置変位量として取り扱うようにす
ればよい。このようにすれば、第1および第2入射位置
変位量が、対象物表面の基準平面内での傾きに係る変位
量となる。
In the description of the embodiment in which the displacement detection means includes the movement amount calculation means, it is assumed that the object surface rotates only within the reference plane and does not rotate within the plane perpendicular to the reference plane. As a result of rotating in
When the first and second incident positions are displaced in a direction intersecting the reference plane, the length by which each incident position is displaced in a direction parallel to the reference plane may be treated as the amount of incident position displacement. In this way, the first and second incident position displacement amounts become displacement amounts related to the inclination of the object surface within the reference plane.

また、前記第3および第4光検出素子を含む態様によれ
ば、一基準平面内での1頃きのみならず、その基準平面
と直交する別の基準平面内での傾きをも検出することが
できる。
Further, according to the aspect including the third and fourth photodetecting elements, it is possible to detect not only the tilt in one reference plane but also the tilt in another reference plane perpendicular to the reference plane. can.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例である光学式変位計を示す。図
において10が、波長λのレーザ光を回折格子12へ照
射するレーザ発生装置である。回折格子12は多数のス
リットが一直線方向に一定の格子ピッチPで並ぶ1次元
のものであり、この回折格子12によりレーザ光の回折
光が発生させられ、それら回折光のうち±1次回折光が
それぞれレーザ光り、、L、とされて測定対象たる対象
物0の平らな表面に到達するようになっている。
FIG. 1 shows an optical displacement meter which is an embodiment of the present invention. In the figure, reference numeral 10 denotes a laser generator that irradiates the diffraction grating 12 with a laser beam having a wavelength λ. The diffraction grating 12 is one-dimensional with many slits lined up in a straight line at a constant grating pitch P. This diffraction grating 12 generates diffracted light of the laser beam, and among these diffracted lights, the ±1st-order diffracted lights are The laser beams, , L, respectively, are designed to reach the flat surface of the object 0 to be measured.

±1次回折光の出射角φは、5in−’(λ/P)で表
されるから、回折格子12の格子ピッチPおよびレーザ
光の波長λが、出射角φが所定角度となるように選定さ
れている。なお、14は、回折格子12からの0次回折
光が対象物表面に到達することを防止するトラップであ
る。すなわち、本実施例においては、レーザ発生装置1
0が検出光たるレーザ光を発する光源であり、回折格子
12が光分割器であり、レーザL、、L2がそれぞれ第
1および第2検出光なのである。
Since the output angle φ of the ±1st-order diffracted light is expressed as 5 in-' (λ/P), the grating pitch P of the diffraction grating 12 and the wavelength λ of the laser beam are selected so that the output angle φ is a predetermined angle. has been done. Note that 14 is a trap that prevents the 0th order diffracted light from the diffraction grating 12 from reaching the surface of the object. That is, in this embodiment, the laser generator 1
0 is a light source that emits a laser beam serving as detection light, the diffraction grating 12 is a light splitter, and lasers L, L2 are the first and second detection lights, respectively.

光学式変位計には、レーザ光り、、L、の進行方向との
成すそれぞれの角度が共に一定角度αとなる仮想の測定
基準平面が定められており、光学式変位計は測定に先立
って、対象物表面がその測定基準平面とほぼ平行となる
ように位置決めされる。つまり、光学式変位計は測定に
先立って、レーザL、、L、が対象物表面に共にほぼ入
射角αで入射するように位置決めされるのである。
The optical displacement meter has a virtual measurement reference plane whose respective angles with the traveling direction of the laser beams, L, are a constant angle α, and the optical displacement meter, prior to measurement, The object surface is positioned approximately parallel to its measurement reference plane. That is, prior to measurement, the optical displacement meter is positioned so that the lasers L, , L are both incident on the surface of the object at approximately the incident angle α.

回折格子12の両側にそれぞれ光検出素子16と18と
が配置され、レーザ光L10対象物表面での正反射光R
,が光検出素子16の受光面に、レーザ光L2の対象物
表面での正反射光R2が光検出素子18の受光面に入射
するようになっている。両光検出素子16.18の受光
面は測定基準平面と平行、かつ、測定基準平面から等距
離とされている。
Photodetecting elements 16 and 18 are arranged on both sides of the diffraction grating 12, and the laser beam L10 specularly reflected light R on the object surface
, are arranged on the light-receiving surface of the photodetector 16, and specularly reflected light R2 of the laser beam L2 on the object surface is made incident on the light-receiving surface of the photodetector 18. The light receiving surfaces of both photodetecting elements 16 and 18 are parallel to the measurement reference plane and equidistant from the measurement reference plane.

各光検出素子16.18は、受光面に各正反射光R,,
R,が入射すると、それら正反射光R+。
Each of the photodetecting elements 16, 18 has a light receiving surface for each specularly reflected light R, .
When R, is incident, the specularly reflected light R+.

Rzの光点の、レーザ光し+、Lz双方の光軸を含むレ
ーザ光基準平面と平行な方向における受光面上の位置を
表す位置信号を出力するようになっている。位置信号の
大きさは、光点位置が回折格子12に向かうにつれて増
大するように定められている。つまり、本実施例におい
ては、対象物表面がレーザ光基準平面内で傾くのに併せ
て、その平面とは直角な平面内で傾くことがあっても、
傾き発生前と傾き発生後とでそれぞれ得られる2つの位
置信号の差は、対象物表面がレーザ光基準子    ゛
面内でのみ傾いたと仮定した場合に得られるべき位置信
号の差とほぼ一致するようにされているのである。
A position signal representing the position of the Rz light spot on the light receiving surface in a direction parallel to the laser beam reference plane including the optical axes of both the laser beam + and Lz is output. The magnitude of the position signal is determined to increase as the light spot position moves toward the diffraction grating 12. In other words, in this example, even if the object surface is tilted within the laser beam reference plane and also tilted within a plane perpendicular to that plane,
The difference between the two position signals obtained before and after the tilt occurs is almost the same as the difference between the position signals that should be obtained if the object surface is tilted only within the laser beam reference plane. This is how it is done.

対象物Oが位置Pゆに位置し、そこでの対象物表面が測
定基準平面と一致している場合には、正反射光R3の光
検出素子16上における第1光点が点A0に位置し、正
反射光R2の光検出素子18上における第2光点が点B
0に位置する。この状態から、対象物Oが変位計に移動
1sで接近して位置P1に達し、そこでの対象物表面も
測定基準平面と一致している場合には、第1光点が点A
0から図において左方向に離れた点A、に、第2光点が
点B0から右方向に離れた点B、<変位する。
When the object O is located at position P and the object surface there coincides with the measurement reference plane, the first light spot of the specularly reflected light R3 on the photodetecting element 16 is located at the point A0. , the second light spot of the specularly reflected light R2 on the photodetecting element 18 is point B.
Located at 0. From this state, the object O approaches the displacement meter in 1 s and reaches position P1, and if the object surface there also coincides with the measurement reference plane, the first light point will be at point A.
The second light spot is displaced to point A, which is away from point B0 to the left in the figure, and point B, which is away from point B0 to the right.

このとき、対象物表面の移動量Sは図の三角形IJKの
高さと等しく、また、三角形IJKの底辺IJの長さは
点A0と点A、との距離(以下、(Ao AI :lで
表す。他の距離についても同じとする。)とも(Ba 
B+ )とも等しいから、移動量Sは出射角φを用いて
(Ao AI ) / (2t anφ)あるいは(B
OB+ )/ (2tanφ)と表すことができる。
At this time, the amount of movement S of the object surface is equal to the height of triangle IJK in the figure, and the length of the base IJ of triangle IJK is the distance between point A0 and point A (hereinafter expressed as (Ao AI :l) .The same applies to other distances.) Tomo (Ba
B+ ) is also equal, so the movement amount S can be expressed as (Ao AI ) / (2t anφ) or (B
OB+ )/(2tanφ).

対象物表面は一般には基準測定平面と正確に平行とはな
らない。そこで、第1図に示すように、位置P0におい
ては対象物表面がそれとレーザ光LI、Lzの二等分線
LDとの交点を中心に図において反時計方向に小角度Δ
θ。回転した状態にあり、位置P1においては時計方向
に小角度Δθ1回転した状態となったと仮定する。
The object surface is generally not exactly parallel to the reference measurement plane. Therefore, as shown in FIG. 1, at position P0, the surface of the object is rotated by a small angle Δ in the counterclockwise direction in the figure, centering on the intersection between it and the bisector LD of the laser beams LI and Lz.
θ. Assume that it is in a rotated state, and has been rotated clockwise by a small angle Δθ1 at position P1.

この場合、まず、位置P0においては、正反射光RI、
Rzがそれぞれ対象物表面における第1および第2照射
位置を回転中心として互いに同方向に等しい角度で回転
する結果、第1光点が点A0から図において左方向に離
れた点A。′に変位し、一方、第2光点も点B。から上
記と同じ左方向に離れた点80 “に変位する。このと
き、第1照射位置が光検出素子16の位置信号が増大す
る方向にずれるのに対し、第2照射位置は光検出素子1
6の位置信号が減少する方向にずれ、かつ、正反射光R
Iと光検出素子16の受光面との成す角度(回折格子1
2の側の角度)は、対象物表面が測定基準平面と一致し
て変位計に正対する正対状態より、対象物表面がΔθ。
In this case, first, at position P0, specularly reflected light RI,
As a result of Rz rotating in the same direction and at equal angles about the first and second irradiation positions on the surface of the object, respectively, the first light spot is a point A that is separated from point A0 to the left in the figure. ', while the second light spot is also at point B. The first irradiation position is shifted in the direction in which the position signal of the photodetecting element 16 increases, while the second irradiation position is displaced from the photodetecting element 1 to a point 80'' which is the same distance to the left as above.
The position signal of No. 6 is shifted in the decreasing direction, and the specularly reflected light R
The angle formed by I and the light receiving surface of the photodetecting element 16 (diffraction grating 1
The angle on the side of 2) is Δθ when the object surface is aligned with the measurement reference plane and directly faces the displacement meter.

回転した傾き状態のほうが大きくなるのに対し、正反射
光R2と光検出素子18の入射面との成す角度(回折格
子12の側の角度)は、正対状態の場合より傾き状態の
場合のほうが小さくなるため、(AoAo  °〕とC
BoBe  tlとは厳密には一致しない。しかし、傾
き角度Δθ。が小さく、しかも、レーザ光L1゜L2の
対象物表面への入射角αが90度に近いことから、(A
OAO’ )と(B、B、  −とが互いに等しく、共
に対象物表面の傾き変化量に対応する光点変位量とみな
すことができる。
While the angle formed by the specularly reflected light R2 and the incident surface of the photodetecting element 18 (the angle on the side of the diffraction grating 12) is larger in the rotated tilted state than in the tilted state, Since (AoAo °] and C
It does not exactly match BoBe tl. However, the tilt angle Δθ. Since (A
OAO') and (B, B, - are equal to each other, and both can be regarded as the amount of light spot displacement corresponding to the amount of change in the inclination of the object surface.

したがって、点A。′および点B。′の位置はそれぞれ
次式(1)および(2)で表される。
Therefore, point A. ' and point B. The positions of ' are expressed by the following equations (1) and (2), respectively.

AO’=A、 十C(Δθ。)・・・・・(1)B、’
=B、−C(Δθ。)・・・・・(2)ただし、C(Δ
θ。)は、位置P0において、対象物表面が角度Δθ。
AO'=A, 10C (Δθ.)...(1) B,'
=B, -C(Δθ.) (2) However, C(Δθ.)
θ. ), the object surface is at an angle Δθ at position P0.

たけ回転することに対応する光点変位量を表す。represents the amount of light spot displacement corresponding to the rotation.

位置P1においても位置P0におけると同様に考えられ
、点Al lおよび点B、+の位置はそれぞれ次式(3
)および(4)で表される。
The position P1 can be considered in the same way as the position P0, and the positions of the point Al l and the points B and + are calculated by the following equation (3
) and (4).

A、’=A、−D (Δθ、)   ・・・・・(3)
B、’=B、+D (Δθ、)   ・・・・・(4)
ただし、D(Δθ1)は、位置P1において、対象物表
面が角度Δθ、だけ回転することに対応する光点変位量
を表す。
A,'=A,-D (Δθ,)...(3)
B,'=B,+D (Δθ,) ・・・(4)
However, D(Δθ1) represents the amount of light spot displacement corresponding to rotation of the object surface by an angle Δθ at position P1.

光検出素子16.18には移動量算出装置2゜が接続さ
れている。この移動量算出装置2oは、■各光検出素子
16.18の、位置P1における位置信号から位置P0
における位置信号を差し引くことによって第1および第
2光点の変位量をそれぞれ算出し、■両変位量の平均値
を算出し、さらに、■その平均値に応じて移動1sを算
出する。
A movement amount calculating device 2° is connected to the photodetecting elements 16 and 18. This movement amount calculating device 2o calculates the position P0 from the position signal of each photodetecting element 16.18 at the position P1.
The displacement amounts of the first and second light spots are respectively calculated by subtracting the position signals in , ① the average value of both displacement amounts is calculated, and ② the movement 1 s is calculated according to the average value.

平均値には対象物表面の傾き変化に応じて発生した変位
量C(Δθ。)およびD(Δθ1)が含まれず、平均値
が移動−1sにのみ対応する真正の光点変位量、すなわ
ち、(All AI 3または(B。
The average value does not include the displacement amounts C (Δθ.) and D (Δθ1) that occur in response to changes in the inclination of the object surface, and the average value is the true light spot displacement amount corresponding only to movement -1 s, that is, (All AI 3 or (B.

BI3となる。このように、本実施例においては、対象
物表面に傾きが発生したか否かに関わらず、真正の光点
変位量が得られるのである。すなわち、本実施例におい
ては、移動量算出装置20が対象物の移動量Sを算出す
る変位検出手段なのである。
It becomes BI3. In this way, in this embodiment, the true amount of light spot displacement can be obtained regardless of whether or not the surface of the object is tilted. That is, in this embodiment, the movement amount calculation device 20 is a displacement detection means that calculates the movement amount S of the object.

なお、以上の説明は、対象物Oが当該変位計に接近する
場合についてであるが、変位計から離間する場合につい
ても同様である。
Note that the above description is for the case where the object O approaches the displacement meter, but the same applies to the case where the object O moves away from the displacement meter.

以上の説明から明らかなように、本実施例においては、
対象物Oの移動量Sが対象物表面での正反射光R+、R
zを利用して測定されるから、光検出素子16.18の
正反射光R,,R2の第1および第2光点の位置検出精
度が向上し、ひいては対象物0の移動1sの測定精度が
向上する効果が得られる。
As is clear from the above explanation, in this example,
The amount of movement S of the object O is the regular reflection light R+, R on the object surface
z, the position detection accuracy of the first and second light spots of the specularly reflected lights R, , R2 of the photodetecting elements 16, 18 is improved, and the measurement accuracy of the movement 1 s of the object 0 is improved. The effect of improving this can be obtained.

また、本実施例においては、移動量Sを測定するに当た
って、変位計を、対象物Oが変位計から一定距離D0離
れた測定基準位置に位置し、かつ、変位計と正対するよ
うに位置決めすることは不可欠でなくなり、測定が容易
である。ただし、変位計を測定に先立って、対象物が測
定基準位置となるように位置決めすれば、変位計と測定
基準位置との距離D0と、移動制御装置20によって算
出された移動量Sとから、変位計と対象物0との現在距
離を算出することが可能となる。なお、この場合、上記
位置決め時に変位計を対象物表面に正対させることは不
可欠ではない。
In addition, in this embodiment, when measuring the movement amount S, the displacement meter is positioned so that the object O is located at a measurement reference position a certain distance D0 from the displacement meter, and is directly facing the displacement meter. This is no longer essential and is easy to measure. However, if the displacement meter is positioned so that the object is at the measurement reference position before measurement, then from the distance D0 between the displacement meter and the measurement reference position and the movement amount S calculated by the movement control device 20, It becomes possible to calculate the current distance between the displacement meter and the target object 0. In this case, it is not essential that the displacement meter be directly opposed to the surface of the object during the positioning.

また、本実施例においては、第1および第2光点の変位
量さえ取り出されればよいから、第1および第2光点が
それぞれ光検出素子16.18の受光面上において、回
折格子12の中心から等距離に位置する場合に、光検出
素子16.18の位置信号の大きさが互いに等しくなる
ように、両光検出素子16.18と回折格子12との相
対位置を定める必要はなく、それら光検出素子16,1
8等の配設が容易である。
In addition, in this embodiment, since it is only necessary to extract the displacement amount of the first and second light spots, the first and second light spots are located on the light receiving surface of the photodetecting element 16.18, respectively, of the diffraction grating 12. It is not necessary to determine the relative positions of both photodetecting elements 16.18 and the diffraction grating 12 so that the magnitudes of the position signals of the photodetecting elements 16.18 are equal to each other when they are located equidistant from the center. Those photodetecting elements 16,1
8 etc. is easy to install.

ただし、両光検出素子16.18を回折格子12の中心
から所定のかつ互いに等しい距離の位置に高い精度で配
置することにより、位置信号の大きさが変位計と対象物
との距離に応じた所定の大きさとなるようにし、その上
で、第1光点の位置信号と第2光点の位置信号との平均
値を算出すれば、変位計と対象物Oとの現在距離を算出
するために、測定開始時に変位計を測定基準平面から所
定の距離の位置に位置決めすることが不要となる。
However, by arranging both photodetecting elements 16 and 18 with high precision at predetermined and equal distances from the center of the diffraction grating 12, the magnitude of the position signal can be adjusted according to the distance between the displacement meter and the target object. By setting it to a predetermined size and then calculating the average value of the position signal of the first light point and the position signal of the second light point, the current distance between the displacement meter and the object O can be calculated. Furthermore, it is not necessary to position the displacement meter at a predetermined distance from the measurement reference plane at the start of measurement.

さらに、本実施例においては、レーザ発生装置10から
のレーザ光を、互いに出射角φおよび強度が等しくなる
状態で分割するために回折格子12が用いられており、
それによって、光分割器の構造が簡素化されるとともに
装置コストが低減する効果が得られる。
Furthermore, in this embodiment, a diffraction grating 12 is used to divide the laser beam from the laser generator 10 so that the emission angle φ and intensity are equal to each other.
This has the effect of simplifying the structure of the light splitter and reducing the cost of the device.

なお、以上詳記した実施例においては、光検出素子16
.18の受光面が測定基準平面と平行とされているが、
両受光面を、対象物表面が測定基準平面と平行である場
合に得られるはずの正反射光R,,R,が垂直に入射す
る角度で配置することができる。このようにすれば、対
象物表面に傾きが発生した場合の光点変位量が第1光点
と第2光点とで互いに高い精度で等しくなり、測定精度
が向上する効果が得られる。なお、この態様は、対象物
表面の傾き変化量が比較的大きい場合に特に有意義であ
る。
In addition, in the embodiment described in detail above, the photodetector element 16
.. 18 light-receiving surfaces are parallel to the measurement reference plane,
Both light-receiving surfaces can be arranged at an angle such that specularly reflected light R, , R, which would be obtained if the object surface was parallel to the measurement reference plane, is incident perpendicularly. In this way, when a tilt occurs on the surface of the object, the amount of displacement of the light spot becomes equal with high accuracy for the first light spot and the second light spot, resulting in the effect of improving measurement accuracy. Note that this aspect is particularly meaningful when the amount of change in inclination of the surface of the object is relatively large.

第2図は、本発明を、対象物表面の傾きを高い精度で防
止しつつ対象物を移動させる平行移動装置に適用した場
合の実施例を示す。
FIG. 2 shows an embodiment in which the present invention is applied to a parallel movement device that moves an object while preventing the surface of the object from tilting with high precision.

図において30が、対象物Oをそれの表面に直角な方向
に移動させる移動機構、32がその移動機構30の作動
状態を制御する移動制御装置である。また、34.36
がそれぞれ対象物表面のX方向とX方向とにおける傾き
角度を修正するX方向およびX方向角度修正機構であり
、それらは移動機構30と一体的に移動可能に設けられ
ている。
In the figure, 30 is a moving mechanism that moves the object O in a direction perpendicular to its surface, and 32 is a movement control device that controls the operating state of the moving mechanism 30. Also, 34.36
are an X-direction angle correction mechanism and an X-direction angle correction mechanism for correcting the inclination angle in the X direction and the X direction of the object surface, respectively, and these are provided so as to be movable integrally with the moving mechanism 30.

なお、X方向およびX方向は対象物表面に平行であり、
かつ互いに直交する方向である。各角度修正機構34.
36はそれぞれX方向およびX方向角度修正制御装置4
0.42によって制御され、各制御装置40.42はそ
れに供給される修正信号に応じて各角度修正機構34.
36を作動させる。移動機構30および角度修正機構3
4.36はいずれも圧電素子を駆動源とするものである
Note that the X direction and the X direction are parallel to the object surface,
and the directions are orthogonal to each other. Each angle correction mechanism 34.
36 are the X-direction and X-direction angle correction control devices 4, respectively;
0.42, each control device 40.42 being controlled by each angle correction mechanism 34.42 in response to a correction signal supplied to it.
36 is activated. Moving mechanism 30 and angle correction mechanism 3
4.36 all use a piezoelectric element as a driving source.

対象物表面には前記実施例と同様にレーザ発生装置10
が発したレーザ光が照射される。レーザ発生装置lOと
対象物表面との間に光分割器としての回折格子44が設
けられているが、これは前記実施例の回折格子12とは
異なり、第3図(a)および(b)にそれぞれ−例を示
すように、X方向およびX方向にそれぞれ多数のスリッ
トが並ぶ2次元のものとされている。この回折格子44
により、レーザ発生装置10が発したレーザ光がレーザ
光り、、L、に加えてレーザ光り、、L、にも分割され
る。このとき、レーザ光り、、L、の対象物表面への照
射位置がX方向に、し=ザ光L3.L4の対象物表面へ
の照射位置がX方向に並ぶ。レーザ光り、、L、の対象
物表面での正反射光R3゜R2は前記実施例と同様に光
検出素子16.18に入射し、一方、レーザ光L3.L
、の対象物表面での正反射光R3,R4はそれぞれ光検
出素子46.48に入射する。それら光検出素子46゜
48の受光面は光検出素子16.18と同一平面上に位
置するようにされている。
A laser generator 10 is provided on the surface of the object as in the previous embodiment.
is irradiated with a laser beam emitted by A diffraction grating 44 as a light splitter is provided between the laser generator lO and the surface of the object, but this is different from the diffraction grating 12 of the previous embodiment, as shown in FIGS. 3(a) and (b). As shown in the example shown in FIG. This diffraction grating 44
As a result, the laser beam emitted by the laser generator 10 is divided into laser beams ,L, in addition to laser beams, ,L. At this time, the irradiation position of the laser beams, L, on the object surface is in the X direction, and the laser beam L3. The irradiation positions of L4 on the object surface are arranged in the X direction. The specularly reflected light R3°R2 of the laser beams L3, . L
The specularly reflected lights R3 and R4 on the object surface are incident on the photodetecting elements 46 and 48, respectively. The light receiving surfaces of the photodetecting elements 46 and 48 are located on the same plane as the photodetecting elements 16 and 18.

それら光検出素子16.1B、46.48に修正信号出
力装置50が接続されている。この装置50は、各光検
出素子16.18,46.48の位置信号から、第1な
いし第4光点の位置の変位量である第1ないし第4光点
変位量を算出する。
A correction signal output device 50 is connected to these photodetecting elements 16.1B and 46.48. This device 50 calculates the displacement amounts of the first to fourth light spots, which are the displacement amounts of the positions of the first to fourth light spots, from the position signals of the respective photodetecting elements 16.18, 46.48.

そして、光点変位量が第1光点と第2光点とで一致する
場合には、X方向における傾き(レーザ光り、、L2双
方の光軸を含むレーザ基準平面内での傾き)が発生しな
いと判定し、X方向角度修正制御装置40に修正信号を
出力しないが、−敗しない場合には、X方向における傾
きが発生したと判定し、修正信号を出力する。修正信号
出力装置50はまた、光点変位量が第3光点と第4光点
とで一致する場合には、X方向における傾き(レーザ光
L3.L4双方の光軸を含むレーザ基準平面内での傾き
)が発生しないと判定し、X方向角度修正制御装置42
に修正信号を出力しないが、−致しない場合には、X方
向における傾きが発生したと判定し、修正信号を出力す
る。すなわち、本実施例においては、修正信号出力装置
50の、第1および第2光点変位量からX方向における
傾き発生の有無を検出する部分と、第3および第4光点
変位量からX方向における傾き発生の有無を検出する部
分とが傾き検出手段を構成するのである。
When the amount of light spot displacement is the same between the first light spot and the second light spot, a tilt in the X direction (laser light, tilt in the laser reference plane including the optical axes of both L2) occurs. If not, it is determined that a tilt in the X direction has occurred, and a correction signal is output. The correction signal output device 50 also determines the inclination in the X direction (within a laser reference plane including the optical axes of both laser beams L3 and L4) when the light spot displacement amounts match between the third and fourth light spots. The X-direction angle correction control device 42
However, if they do not match, it is determined that a tilt in the X direction has occurred, and a correction signal is output. That is, in this embodiment, a part of the correction signal output device 50 detects the presence or absence of a tilt in the X direction from the first and second light spot displacement amounts, and a part that detects the occurrence of tilt in the X direction from the third and fourth light spot displacement amounts. The portion that detects whether or not a tilt occurs constitutes a tilt detecting means.

以上の説明から明らかなように、本実施例においては、
移動時における対象物0の表面の傾きが高い精度で検出
され、対象物表面の傾きが高い精度で防止されるという
効果が得られる。さらに、レーザ発生装置10が発した
レーザ光のレーザ光り、、L、、L3.L、への分割が
1つの回折格子44で行われており、光分割器の装置コ
ストが節減できるという効果も得られる。
As is clear from the above explanation, in this example,
The effect is that the inclination of the surface of the object 0 during movement is detected with high precision, and the inclination of the surface of the object 0 is prevented with high precision. Furthermore, the laser beams of the laser beams emitted by the laser generator 10, , L, , L3. Since the division into L, is performed by one diffraction grating 44, the cost of the light splitter device can be reduced.

以上2実施例の他、当業者の知識に基づいて、種々の変
更、改良等を施した態様で本発明を実施することができ
る。
In addition to the above two embodiments, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である光学式変位計の系統図で
ある。第2図は上記実施例とは異なる実施例の系統図で
あり、第3図(a)および(b)はそれぞれ、その実施
例で用いられた回折格子の一例を模型的に示す正面図で
ある。第4図は従来の光学式変位計の系統図である。 10:レーザ発生装置 12.44:回折格子 16.1B、46.48:光検出素子 20:移動量算出装置 50:修正信号出力装置 出願人 株式会社 豊田自動織機製作所第1図
FIG. 1 is a system diagram of an optical displacement meter which is an embodiment of the present invention. FIG. 2 is a system diagram of an embodiment different from the above embodiment, and FIGS. 3(a) and 3(b) are front views schematically showing an example of a diffraction grating used in that embodiment. be. FIG. 4 is a system diagram of a conventional optical displacement meter. 10: Laser generator 12.44: Diffraction grating 16.1B, 46.48: Photodetection element 20: Movement amount calculation device 50: Correction signal output device Applicant: Toyota Industries Corporation, Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)対象物の表面に光源が発した検出光を集中的に照
射し、対象物表面からの反射光の到達位置の変位に基づ
いて対象物の変位を検出する装置であって、 前記検出光を一基準平面内で互いに一定角度を成して進
行する第1および第2検出光に分割し、両検出光をそれ
ぞれ前記対象物表面にほぼ等しい角度で斜めにかつ集中
的に照射する光分割器と、前記第1および第2検出光が
前記対象物表面で正反射された第1および第2正反射光
をそれぞれ受け、各正反射光の入射位置を検出する第1
および第2光検出素子と、 それら画素子からの検出信号に基づいて前記両正反射光
の入射位置変位を求め、それら両入射位置変位に基づい
て前記対象物の表面の傾きと前記第1および第2検出光
の進行方向における移動とを分けて検出する変位検出手
段と を含む光学式変位検出装置。
(1) A device that intensively irradiates the surface of an object with detection light emitted by a light source and detects the displacement of the object based on the displacement of the arrival position of the reflected light from the surface of the object, wherein the detection Light that divides light into first and second detection lights that travel at a constant angle to each other within a reference plane, and irradiates both detection lights obliquely and intensively onto the surface of the object, respectively, at approximately the same angle. a splitter, a first detecting light receiving the first and second specularly reflected lights, the first and second detection lights being specularly reflected on the object surface, and detecting the incident position of each specularly reflected light;
and a second photodetecting element. Based on the detection signals from these pixel elements, the displacements of the incident positions of both the specularly reflected lights are determined, and based on the displacements of the incident positions, the inclination of the surface of the object and the first and second photodetecting elements are determined. An optical displacement detection device including displacement detection means for separately detecting movement of the second detection light in the traveling direction.
(2)前記光分割器が、前記検出光を前記第1および第
2検出光に加えて、第1基準平面としての前記一基準平
面と直交する第2基準平面内で互いに一定角度を成して
進行する第3および第4検出光にも分割し、それら第3
および第4検出光をそれぞれ前記対象物表面にほぼ等し
い角度で斜めにかつ集中的に照射するものであるととも
に、それら第3および第4検出光が前記対象物表面で正
反射された第3および第4正反射光をそれぞれ受け、各
正反射光の入射位置を検出する第3および第4光検出素
子を含み、さらに、前記変位検出手段が、前記第3およ
び第4光検出素子からの検出信号に基づいて前記第3お
よび第4正反射光の入射位置変位をも求め、前記第1お
よび第2正反射光の入射位置変位に基づいて前記第1基
準平面内での前記対象物表面の傾きを検出するとともに
、前記第3および第4正反射光の入射位置変位に基づい
て前記第2基準平面内での対象物表面の傾きを検出する
傾き検出手段を含んでいる請求項1記載の光学式変位検
出装置。
(2) The light splitter adds the detection light to the first and second detection lights and forms a certain angle with each other within a second reference plane orthogonal to the one reference plane serving as the first reference plane. It is also divided into third and fourth detection beams traveling by the third and fourth detection lights.
and a fourth detection light is irradiated obliquely and intensively onto the surface of the object at approximately the same angle, and the third and fourth detection lights are specularly reflected on the surface of the object. The displacement detecting means includes third and fourth photodetecting elements each receiving the fourth specularly reflected light and detecting the incident position of each specularly reflected light, and further, the displacement detecting means detects the detection from the third and fourth photodetecting elements. Based on the signal, the incident position displacements of the third and fourth specularly reflected lights are also determined, and based on the incident position displacements of the first and second specularly reflected lights, the surface of the object in the first reference plane is determined. 2. The method according to claim 1, further comprising a tilt detecting means for detecting the tilt and also detecting the tilt of the object surface within the second reference plane based on the displacement of the incident position of the third and fourth specularly reflected lights. Optical displacement detection device.
JP15295988A 1988-06-21 1988-06-21 Optical displacement detector Pending JPH01320430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15295988A JPH01320430A (en) 1988-06-21 1988-06-21 Optical displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15295988A JPH01320430A (en) 1988-06-21 1988-06-21 Optical displacement detector

Publications (1)

Publication Number Publication Date
JPH01320430A true JPH01320430A (en) 1989-12-26

Family

ID=15551902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15295988A Pending JPH01320430A (en) 1988-06-21 1988-06-21 Optical displacement detector

Country Status (1)

Country Link
JP (1) JPH01320430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308416A (en) * 2005-04-28 2006-11-09 Sharp Corp Multi-beam optical distance measuring sensor and self-running type cleaner and air-conditioner equipped with it
JP2009092535A (en) * 2007-10-10 2009-04-30 Ono Sokki Co Ltd Optical displacement gauge
WO2013034812A1 (en) * 2011-09-09 2013-03-14 Oy Sparklike Ab Method and device for measuring a distance from a reflecting surface
DE102022205524A1 (en) 2022-05-31 2023-11-30 Carl Zeiss Microscopy Gmbh Distance measuring device and method for determining the spatial orientation of a sample carrier in microscopy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308416A (en) * 2005-04-28 2006-11-09 Sharp Corp Multi-beam optical distance measuring sensor and self-running type cleaner and air-conditioner equipped with it
JP4589169B2 (en) * 2005-04-28 2010-12-01 シャープ株式会社 Multi-beam optical distance sensor, self-propelled vacuum cleaner and air conditioner equipped with the same
JP2009092535A (en) * 2007-10-10 2009-04-30 Ono Sokki Co Ltd Optical displacement gauge
WO2013034812A1 (en) * 2011-09-09 2013-03-14 Oy Sparklike Ab Method and device for measuring a distance from a reflecting surface
DE102022205524A1 (en) 2022-05-31 2023-11-30 Carl Zeiss Microscopy Gmbh Distance measuring device and method for determining the spatial orientation of a sample carrier in microscopy

Similar Documents

Publication Publication Date Title
GB2121165A (en) Laser measurement system virtual detector probe and carriage yaw compensator
JPH0363001B2 (en)
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
JP3921004B2 (en) Displacement tilt measuring device
JPH01320430A (en) Optical displacement detector
US4836678A (en) Double-path interferometer
US4725146A (en) Method and apparatus for sensing position
JPH0123041B2 (en)
JP3014499B2 (en) Position information detecting device and transfer device using the same
EP0227136B1 (en) Arrangement for optically measuring a surface profile
JPH0226164B2 (en)
JP2851053B2 (en) Light beam incident angle detection sensor
JP2698446B2 (en) Interval measuring device
US20040150833A1 (en) Interferometric plural-dimensional displacement measuring system
JPH09189545A (en) Distance measuring device
JP3160402B2 (en) Displacement measuring device
JP3192461B2 (en) Optical measuring device
JP2643270B2 (en) Interval measuring device
JPH08233524A (en) Multiaxial positioning device
JPH10339605A (en) Optical range finder
JP3237022B2 (en) Projection exposure equipment
JP3028848B2 (en) Position measuring device
RU1803727C (en) Method of measurement of right angle in prisms of @@@ type
JPH08304020A (en) Movement-accuracy measuring apparatus
JPH01292206A (en) Surface condition measuring apparatus for object