JPH0324603B2 - - Google Patents

Info

Publication number
JPH0324603B2
JPH0324603B2 JP15350383A JP15350383A JPH0324603B2 JP H0324603 B2 JPH0324603 B2 JP H0324603B2 JP 15350383 A JP15350383 A JP 15350383A JP 15350383 A JP15350383 A JP 15350383A JP H0324603 B2 JPH0324603 B2 JP H0324603B2
Authority
JP
Japan
Prior art keywords
spot light
scanning
dimensional
sensor
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15350383A
Other languages
Japanese (ja)
Other versions
JPS6044810A (en
Inventor
Seiichiro Tamai
Masao Murata
Keiichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15350383A priority Critical patent/JPS6044810A/en
Publication of JPS6044810A publication Critical patent/JPS6044810A/en
Publication of JPH0324603B2 publication Critical patent/JPH0324603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、産業用ロボツトの視覚センサとし
て、あるいは物体の形状、寸法、位置等の検査、
位置決め用非接触センサとして利用されるスポツ
ト光位置検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used as a visual sensor for industrial robots, or for inspecting the shape, size, position, etc. of objects.
The present invention relates to a spot light position detection device used as a non-contact sensor for positioning.

従来例の構成とその問題点 溶接、塗装、組立、検査等の自動化、無人化の
ために、各種のセンサが使用されている。中で
も、光学方式のものは、測定レンジ、分解能、応
答性、柔軟性あるいは大局的および微視的な計測
ができる等の優位性を他方的のものに比し有して
いるため、注目されている。その代表的な方法
は、固体撮像素子(例えば、CCD素子)やPSD
(POSITION SENSITIVE DETECTOR)をセ
ンサとして用い、スリツト光やスポツト光を被測
定物(ワーク)に投光して、その投光像の特徴点
(例えば、折曲点)等から、ワークの形状や位置
等を計測する方法である。
Conventional configurations and their problems Various sensors are used to automate and unattend welding, painting, assembly, inspection, etc. Among these, optical methods are attracting attention because they have advantages over other methods, such as measurement range, resolution, responsiveness, flexibility, and ability to perform global and microscopic measurements. There is. Typical methods include solid-state imaging devices (such as CCD devices) and PSD devices.
(POSITION SENSITIVE DETECTOR) is used as a sensor to project slit light or spot light onto the object to be measured (workpiece), and determine the shape and position of the workpiece from the characteristic points (for example, bending points) of the projected image. This is a method of measuring things such as

第1図は、前記方式のものの実施例を示し、第
11回産業用ロボツトシンポジウム(1981年10月東
京で開催)で発表されたものである。図におい
て、1は近赤外LED、2は前記近赤外LED1か
ら光をスポツト光(略円形状の平行光束)に絞る
ためのコリメートレンズ、3はスポツト光を溶接
ワーク4上に投光し、そのスポツト光を走査する
ためのガルバノメータ、5はワーク4上でのスポ
ツト光像で、このスポツト光像5を集光レンズ6
を介して、2次元PSDセンサ7上に結像させる。
周知のように前記2次元PSDセンサ7は、その
上に結像されたスポツト光像5の照度重心に比例
した信号を出力するので、前記2次元PSDセン
サ7面上にX−Y軸を設け、前記2次元PSDセ
ンサ7面に垂直な軸をZ軸とするような座標系を
設定し、前記2次元PSDセンサ7と集光レンズ
6およびガルバノメータ3の位置関係と、スポツ
ト光の投光方向(位置)を決めれば、前記2次元
PSDセンサ7面上のスポツト光像5の位置デー
タからワーク4面上のスポツト光像5の位置を三
角測量の原理で算出できる。したがつて、第1図
のようなワーク4の溶接線8の位置は、前記2次
元PSDセンサ7で検出されたスポツト光像5の
位置データをもとにして、マイコン等で容易に算
出できる。そして2次元PSDセンサ7を用いれ
ば、スポツト光像5の照度重心を自動的に検出し
てくれるのでCCD素子を用いる方法に比し、像
のぼけを気にしなくてもよいし、スポツトの位置
を求めるための細線化処理等の演算が不要なこと
やランダムアクセスであるため高速の検出が可能
である等の利点を有する。
FIG. 1 shows an embodiment of the above method, and FIG.
This was announced at the 11th Industrial Robot Symposium (held in Tokyo in October 1981). In the figure, 1 is a near-infrared LED, 2 is a collimating lens for focusing the light from the near-infrared LED 1 into a spot light (approximately circular parallel light flux), and 3 is a collimator lens for projecting the spot light onto a welding work 4. , a galvanometer for scanning the spot light, 5 is a spot light image on the workpiece 4, and this spot light image 5 is passed through a condenser lens 6.
The image is formed on the two-dimensional PSD sensor 7 via the .
As is well known, the two-dimensional PSD sensor 7 outputs a signal proportional to the center of gravity of the illuminance of the spot light image 5 formed thereon, so an X-Y axis is provided on the surface of the two-dimensional PSD sensor 7. , a coordinate system is set in which the axis perpendicular to the surface of the two-dimensional PSD sensor 7 is the Z axis, and the positional relationship between the two-dimensional PSD sensor 7, the condensing lens 6, and the galvanometer 3, and the direction of spot light projection are determined. (position), the two-dimensional
The position of the spot light image 5 on the workpiece 4 surface can be calculated from the position data of the spot light image 5 on the PSD sensor 7 surface using the principle of triangulation. Therefore, the position of the welding line 8 of the workpiece 4 as shown in FIG. . If the two-dimensional PSD sensor 7 is used, the center of illuminance of the spot light image 5 is automatically detected, so compared to the method using a CCD element, there is no need to worry about blurring the image, and the position of the spot can be detected automatically. This method has advantages such as not requiring calculations such as line thinning processing to obtain , and high-speed detection because of random access.

しかしながら、第2図に示すように凹状の形状
をしたワーク4の斜面にスポツト光9を投光する
と、C点で反射された光がC′点にも像をつくるこ
とになり、前記2次元PSDセンサ7上には、C
点、C′点に対するD点、D′点の像が検出され、前
記2次元PSDセンサ7はD点、D′点の照度重心
の位置すなわち、D″点を出力する。検出したい
のは、スポツト光9のC点に対するD点の位置で
あるのに、このような2次反射の影響からD″点
に偏位し、(D−D″)分が検出誤差となる。この
量は、斜面の反射状態によつても大きく影響を受
け、2次元PSDセンサ7を利用する場合は、ワ
ーク4の斜面の形状を検出することは困難であ
る。一方、ワーク4が特に厚板の場合は、第3図
に示すように、V型の開先を取つて溶接をするの
が通例であるが、このとき、開先ギヤツプ巾
(GW)を±0.2mm程度の精度で検出する必要があ
る。
However, as shown in FIG. 2, when the spot light 9 is projected onto the slope of the concave workpiece 4, the light reflected at the point C will also form an image at the point C'. On PSD sensor 7, C
The images of points D and D' with respect to points D and C' are detected, and the two-dimensional PSD sensor 7 outputs the position of the center of illuminance of points D and D', that is, point D''.What is desired to be detected is Although point D is located relative to point C of the spot light 9, it deviates to point D'' due to the influence of such secondary reflection, and the detection error is (D-D'').This amount is It is also greatly affected by the reflection state of the slope, and when using the two-dimensional PSD sensor 7, it is difficult to detect the shape of the slope of the workpiece 4.On the other hand, if the workpiece 4 is a thick plate, As shown in Figure 3, it is customary to weld with a V-shaped groove, but at this time, it is necessary to detect the groove gap width (GW) with an accuracy of about ±0.2 mm. .

しかし、前記の反射の問題や、この従来例のよ
うにスポツト光9の光源として、近赤近LEDを
使用している場合はスポツト光径として0.7〜1.0
mm程度にしか、光径を絞れないため、開先ギヤツ
プ巾GWを要求精度内で計測することができな
い。このため、2次元PSDセンサ7を使用した
方法では、反射の影響を受けない凸状物体の計測
にしか適用できないことになり、制約が多くかつ
計測精度も十分ではない問題があつた。
However, due to the problem of reflection mentioned above, and when a near-infrared LED is used as a light source for the spot light 9 as in this conventional example, the spot light diameter is 0.7 to 1.0.
Since the optical diameter can only be narrowed down to about mm, it is not possible to measure the groove gap width GW within the required accuracy. For this reason, the method using the two-dimensional PSD sensor 7 can only be applied to the measurement of convex objects that are not affected by reflection, and has many limitations and the measurement accuracy is insufficient.

発明の目的 本発明は、前記従来例の問題点(反射の問題や
スポツト光の形状)を改善することにより、物体
の3次元的な位置、形状、寸法の測定を可能にす
る視覚センサとしてのスポツト光位置検出装置を
得ることを目的とする。
Purpose of the Invention The present invention provides a visual sensor that can measure the three-dimensional position, shape, and dimensions of an object by improving the problems of the conventional example (reflection problem and shape of spot light). The purpose of this invention is to obtain a spot light position detection device.

発明の構成 そのための構成として、本発明はスポツト光を
設定する手段と、前記スポツト光を被測定物に
投光し2次元的に走査する手段と、前記走査に
よるスポツト光の投光方向を検出する手段と、
光学レンズと1次元光電素子を複数個並列に配置
したセンサとで構成したスポツト光像検出手段
と、前記手段の検出データに基き、前記1次元
光電素子を順次選択するセンサ出力選択手段と
を備えたものである。
Structure of the Invention As a structure for that purpose, the present invention includes means for setting a spot light, means for projecting the spot light onto an object to be measured and scanning it two-dimensionally, and detecting the projection direction of the spot light by the scanning. and the means to
Spot light image detection means constituted by an optical lens and a sensor in which a plurality of one-dimensional photoelectric elements are arranged in parallel, and sensor output selection means for sequentially selecting the one-dimensional photoelectric elements based on detection data of the means. It is something that

実施例の説明 以下、本発明の一実施例につき図面第4図〜第
7図に沿つて説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 4 to 7 of the drawings.

はスポツト光9を設定する手段であつて、発
光部10と前記発光部10を制御する回路11と
前記発光部10から出力された光をスポツト光に
絞るレンズ12とから構成される。一例として、
発光部10は近赤外LEDや半導体レーザやガス
レーザ等を利用するが、半導体レーザ等のレーザ
を利用すれば、近赤外LEDの場合に比し、スポ
ツト光9のスポツトをより小さく絞れ、単一波長
の利点を生かして、干渉フイルタ等による外乱ノ
イズ光のカツトが容易である。レンズ12はコリ
メートレンズであつて、通常の光学レンズや屈折
率が中心軸から外周面に向つて放射状に分布して
いる円柱状光学ガラスレンズ等を利用する。つぎ
に、はスポツト光を被測定物(ここでは、溶接
ワーク4)上に投光するとともに、スポツト光9
を2次元的に走査する手段であつて、反射鏡1
3,14と反射鏡13,14を回転もしくは揺動
させるための走査機構部15,16とから構成す
る。例えば、第4図に示すように、反射鏡13を
走査機構部15としてのパルスモータに接続し、
他の反射鏡14を走査機構部16としてのACま
たはDCモータに接続し、これらモータを各々の
駆動回路17,18により駆動させることによ
り、図で示すように、スポツト光像5をワーク4
上で、2次元的に走査させる。この場合は、パル
スモータをX軸方向走査用、ACまたはDCモータ
をY軸方向走査用にしている。また各々の走査シ
ーケンスは、Y軸方向の1走査が完了する毎に、
パルスモータを制御して、Y軸方向走査ラインを
X軸方向に単位長さシフトさせる制御をしてい
る。
1 is means for setting the spot light 9, and is composed of a light emitting section 10, a circuit 11 for controlling the light emitting section 10, and a lens 12 for focusing the light output from the light emitting section 10 into a spot light. As an example,
The light emitting unit 10 uses a near-infrared LED, a semiconductor laser, a gas laser, etc., but if a laser such as a semiconductor laser is used, the spot of the light spot 9 can be narrowed down to a smaller size than in the case of a near-infrared LED. Taking advantage of the single wavelength, it is easy to cut out disturbance noise light using an interference filter or the like. The lens 12 is a collimating lens, and uses a normal optical lens, a cylindrical optical glass lens whose refractive index is distributed radially from the central axis toward the outer peripheral surface, or the like. Next, the spot light is projected onto the object to be measured (here, the welding work 4), and the spot light 9
is a means for two-dimensionally scanning a reflecting mirror 1.
3 and 14 and scanning mechanism sections 15 and 16 for rotating or swinging the reflecting mirrors 13 and 14. For example, as shown in FIG. 4, the reflecting mirror 13 is connected to a pulse motor as the scanning mechanism section 15,
By connecting the other reflecting mirror 14 to an AC or DC motor as the scanning mechanism section 16 and driving these motors by respective drive circuits 17 and 18, the spot light image 5 is transferred to the workpiece 4 as shown in the figure.
The image is scanned two-dimensionally. In this case, the pulse motor is used for scanning in the X-axis direction, and the AC or DC motor is used for scanning in the Y-axis direction. In addition, each scanning sequence is such that each time one scan in the Y-axis direction is completed,
The pulse motor is controlled to shift the Y-axis scanning line by a unit length in the X-axis direction.

また、ここでは、反射鏡13,14を回転もし
くは揺動させるためにモータを利用する一例を示
したが、モータ以外の例えば音又の振動の利用等
も有効でこれを制限するものではない。
Further, here, an example is shown in which a motor is used to rotate or swing the reflecting mirrors 13 and 14, but other methods than the motor, such as the use of sound or vibration, are also effective and are not limited thereto.

つぎには前記手段により、スポツト光9を
走査させた時のスポツト光9の投光方向を検出す
る手段であつて、例えば、検知器19と信号処理
回路20とにより構成される。そして、第4図に
示すように、Y軸方向走査用の機構部16(AC
またはDCモータ等)に接続したパルスエンコー
ダもしくはポテンシヨメータ等の検知器19によ
り、反射鏡14の回転角度を検出し、回路20に
より次段の回路21を制御するために必要な信号
に変換する。なおX軸方向走査機構部15に、サ
ーボモータ等によるサーボ制御を使用する場合
は、当然のことながら走査位置検出制御は必要で
ある。ここでは、パルスモータを使用した例をあ
げたので、パルスエンコーダのような検出器は不
要であり、その走査位置は、予め検知することが
できる。つぎに、はワーク4上に投光されたス
ポツト光像の位置を検出するスポツト光像検出手
段である。これは光学レンズ22と(タンザク
状)1次元光電素子23を複数個並列に(横に)
ならべたものとで構成される。1次元光電素子2
3としては、例えば、1次元のイメージセンサや
1次元のPSDセンサ等を用いることができる。
また光学レンズとして、光学フイルタ効果のある
もの、例えば一定の波長の光のみを通す干渉フイ
ルタ効果のあるものを用いると、光ノイズに対し
てS/Nの高い信号が得られる。つぎに、は前
記手段の出力信号にもとずいて、前記1次元光
電素子23を順次選択するセンサ出力選択手段で
あつて、アナログ信号マルチプレクサ等の回路2
1により構成される。選択されたPSDセンサの
出力はV0として出力される。この出力V0をA/
D変換して、マイコン内に取込めば、各種の計
測、認識処理ができる。
Next is means for detecting the projection direction of the spot light 9 when the spot light 9 is scanned by the above means, and is constituted by, for example, a detector 19 and a signal processing circuit 20. As shown in FIG. 4, a mechanical section 16 (AC
A detector 19 such as a pulse encoder or potentiometer connected to a DC motor, etc.) detects the rotation angle of the reflector 14, and a circuit 20 converts it into a signal necessary to control the next stage circuit 21. . Note that when using servo control using a servo motor or the like for the X-axis direction scanning mechanism section 15, scanning position detection control is of course necessary. Here, an example is given in which a pulse motor is used, so a detector such as a pulse encoder is not necessary, and the scanning position can be detected in advance. Next, there is a spot light image detecting means for detecting the position of the spot light image projected onto the workpiece 4. This consists of multiple optical lenses 22 and (tanzak-shaped) one-dimensional photoelectric elements 23 arranged in parallel (horizontally).
It is composed of things that are arranged side by side. One-dimensional photoelectric element 2
As the sensor 3, for example, a one-dimensional image sensor, a one-dimensional PSD sensor, or the like can be used.
Furthermore, if an optical lens that has an optical filter effect, for example, an interference filter effect that allows only light of a certain wavelength to pass through, is used, a signal with a high S/N ratio relative to optical noise can be obtained. Next, sensor output selection means sequentially selects the one-dimensional photoelectric element 23 based on the output signal of the means, and includes a circuit 2 such as an analog signal multiplexer.
1. The output of the selected PSD sensor is output as V0 . This output V 0 is A/
By converting the data into D and importing it into a microcomputer, various measurements and recognition processes can be performed.

以上のように、特にセンサとして、スポツト光
の投光方向と同期して、1次元光電素子23が選
択される仕組みになつているため、従来の2次元
PSDセンサを用いたものに比し、反射の影響に
よる検出精度の低下は格段に小さくなる。
As described above, since the one-dimensional photoelectric element 23 is selected as a sensor in synchronization with the direction of spot light projection, it is different from the conventional two-dimensional photoelectric element 23.
Compared to those using PSD sensors, the drop in detection accuracy due to the effects of reflection is much smaller.

さらに実施例につき具体的に説明する。まず、
光源10として、25mWの半導体レーザ(波長
830nm)を10kHzに変調したものを用い、レンズ
12としてコリメートレンズを用い、スポツト光
の光径として、0.4φmmに絞り、これを走査機構部
15,16としてパルスモータおよびDCモータ
にそれぞれ取付けた反射鏡13,14により第5
図に示すような溶接ワーク4上を2次元的に走査
させる。Y軸方向走査用の反射鏡14の回転角は
5゜で、これはワーク4面上の走査巾にして、約20
mmに相当するものである。また反射鏡14の回転
角の検出はDCモータに直結した検知器19とし
てのパルスエンコーダ(4000パルス/T)にて検
出し、回路20のエンコーダパルス4倍周波回路
により、0.025゜の分解能で検出する。また回路2
0では、この検出パルスをベースにして、反射鏡
14の回転角0.5゜毎に、回路21としてのアナロ
グマルチプレクサに信号を送り、1次元PSDセ
ンサ(1×10mm)を10ケ並べた1次元光電素子2
3のPSDセンサの出力選択を行う。一方、X軸
走査用パルスモータは、Y軸走査が1回完了する
毎に、0.5゜づつ反射鏡13を回転させ、これを5゜
周期に制御する。なお、光学レンズ22には、通
常の凸レンズと800〜850nmの波長の光を85%以
上通す干渉フイルタを組合せて使用した。なお、
第5図において、l1=20mm、l2=15mm、l3=5mm、
l4=2mmであり、また反射鏡14から溶接ワーク
4の平板部までの距離は約150mmであつた。
Further, examples will be specifically explained. first,
As the light source 10, a 25 mW semiconductor laser (wavelength
830nm) modulated to 10kHz, a collimating lens was used as the lens 12, the diameter of the spot light was focused to 0.4φmm, and this was used as the scanning mechanism parts 15 and 16, which were attached to a pulse motor and a DC motor, respectively. 5th by mirrors 13 and 14
A welding workpiece 4 as shown in the figure is scanned two-dimensionally. The rotation angle of the reflecting mirror 14 for scanning in the Y-axis direction is
5 degrees, which is about 20 degrees as the scanning width on the four surfaces of the workpiece.
It is equivalent to mm. The rotation angle of the reflector 14 is detected by a pulse encoder (4000 pulses/T) as a detector 19 directly connected to the DC motor, and detected with a resolution of 0.025° by the encoder pulse quadruple frequency circuit of the circuit 20. do. Also circuit 2
0, based on this detection pulse, a signal is sent to an analog multiplexer as a circuit 21 at every 0.5° rotation angle of the reflecting mirror 14, and a one-dimensional photoelectric sensor with ten one-dimensional PSD sensors (1 x 10 mm) arranged Element 2
Select the output of the PSD sensor in step 3. On the other hand, the X-axis scanning pulse motor rotates the reflecting mirror 13 by 0.5 degrees every time one Y-axis scan is completed, and controls this in a 5-degree cycle. As the optical lens 22, a combination of a normal convex lens and an interference filter that allows 85% or more of light with a wavelength of 800 to 850 nm to pass through was used. In addition,
In Figure 5, l 1 = 20 mm, l 2 = 15 mm, l 3 = 5 mm,
l 4 =2 mm, and the distance from the reflecting mirror 14 to the flat plate portion of the welding work 4 was approximately 150 mm.

本実施例により得られた検出データの一例を第
6図aに示す。波線が実際の開先形状に対応する
基準値であり、黒点が検出データである。なお、
1次元光電素子23としてのPSDセンサからの
出力は電流信号のためこれを電流電圧変換し、信
号増巾を行い、さらに10kHzのバンドパスフイル
タを介し、A/D変換してマイコン内に取込み、
1次元PSDセンサ面上でのスポツト光像の位置
信号に変換したものが、この黒点のデータであ
る。これより、開先ギヤツプ巾の検出精度は、±
0.2mm以内にできること、反射の影響がほとんど
なく、開先形状を±0.2mmの精度で検出できるこ
とが明らかになつた。つぎに、第6図bは1次元
光電素子23に従来の2次元PSDセンサを用い
た場合(したがつて、手段およびは不要)の
結果であるが、開先内のスポツト光の反射の影響
により、開先ギヤツプ巾はもちろんのこと、開先
形状の検出もきわめて不正確であることが明白で
ある。
An example of the detection data obtained by this example is shown in FIG. 6a. The wavy lines are reference values corresponding to the actual groove shape, and the black dots are detected data. In addition,
The output from the PSD sensor as the one-dimensional photoelectric element 23 is a current signal, so it is converted into a current voltage, amplified, and then passed through a 10kHz bandpass filter, A/D converted, and input into the microcontroller.
This sunspot data is converted into a position signal of a spot light image on the one-dimensional PSD sensor surface. From this, the detection accuracy of the groove gap width is ±
It was revealed that the groove shape can be detected within 0.2 mm, there is almost no effect of reflection, and the groove shape can be detected with an accuracy of ±0.2 mm. Next, FIG. 6b shows the results when a conventional two-dimensional PSD sensor is used as the one-dimensional photoelectric element 23 (therefore, means and means are not required). It is clear that the detection of not only the groove gap width but also the groove shape is extremely inaccurate.

つぎに、第7図は本発明装置を隅肉溶接継手の
溶接開始点24と溶接線8の検出に応用した例を
示す。従来の1次元走査方式では、この溶接開始
点24を検出するのに、きわめて繁雑かつ多大の
時間を要していたが、本装置によれば、1回の2
次元スキヤンで、X軸方向の検出精度2mm、Y軸
方向の検出精度0.4mm精度で検出できた。検出時
間は約2秒であつた。
Next, FIG. 7 shows an example in which the device of the present invention is applied to detecting the welding start point 24 and weld line 8 of a fillet weld joint. In the conventional one-dimensional scanning method, detecting the welding start point 24 was extremely complicated and took a lot of time, but with this device, it is possible to detect the welding start point 24 at one time.
Dimensional scan was able to detect with a detection accuracy of 2 mm in the X-axis direction and 0.4 mm in the Y-axis direction. The detection time was about 2 seconds.

なお、この場合、溶接開始点24を検出してか
らは、XとY軸方向の走査巾を半分以下にし、検
出時間の短縮を図つている。
In this case, after the welding start point 24 is detected, the scanning width in the X and Y axis directions is reduced to less than half, in order to shorten the detection time.

発明の効果 以上のように本発明によれば、如何なる形状の
物体でも、2次反射の影響をほとんど無視できる
くらい低減でき、かつ半導体レーザによるスポツ
ト光径の小径化や干渉フイルタ等による光ノイズ
カツト効果により、きわめて正確な物体の3次元
位置、形状、寸法等の計測が可能となる。また、
2次元走査機能により、2次元的な距離情報を得
ることができ、溶接開始、終了点、コーナ点等の
検出も大巾に高速化されることになる。また本装
置とマイコン等の制御回路とを組み合わせること
により、高性能、高信頼、低コストの産業用視覚
センサを構成できる優れた効果を奏するものであ
る。
Effects of the Invention As described above, according to the present invention, it is possible to reduce the influence of secondary reflection to an almost negligible extent for objects of any shape, and to reduce the optical noise reduction effect by reducing the spot light diameter by a semiconductor laser and by using an interference filter, etc. This makes it possible to measure the three-dimensional position, shape, dimensions, etc. of an object with extremely high accuracy. Also,
With the two-dimensional scanning function, two-dimensional distance information can be obtained, and detection of welding start, end points, corner points, etc. can be greatly speeded up. Furthermore, by combining this device with a control circuit such as a microcomputer, it is possible to construct a high-performance, highly reliable, and low-cost industrial visual sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の3次元物体検出方法の例を示す
説明図、第2図および第3図は同従来例の2次反
射の影響を示す説明図、第4図は本発明の一実施
例におけるスポツト光位置検出装置の説明図、第
5図はワークの斜視図、第6図a,bはそれぞれ
開先形状の結果を示す特性図、第7図は隅肉溶接
継手の溶接開始点の検出例を示す斜視図である。 4……溶接ワーク、8……溶接線、9……スポ
ツト光、10……発光部、11……回路、12…
…レンズ、13,14……反射鏡、15……X方
向の走査機構部、16……Y方向の走査機構部、
17,18……駆動回路、19……検知器、20
……信号処理回路、21……回路、22……光学
レンズ、23……1次元光電素子、24……溶接
開始点、……スポツト光を設定する手段、…
…スポツト光を2次元的に走査する手段、……
スポツト光の投光方向を検出する手段、……ス
ポツト光像検出手段、……センサ出力選択手
段。
Fig. 1 is an explanatory diagram showing an example of a conventional three-dimensional object detection method, Figs. 2 and 3 are explanatory diagrams showing the influence of secondary reflection in the conventional example, and Fig. 4 is an example of an embodiment of the present invention. Fig. 5 is a perspective view of the workpiece, Fig. 6 a and b are characteristic diagrams showing the results of the groove shape, and Fig. 7 shows the welding start point of a fillet weld joint. It is a perspective view showing an example of detection. 4... Welding workpiece, 8... Welding line, 9... Spot light, 10... Light emitting part, 11... Circuit, 12...
...Lens, 13, 14...Reflector, 15...X direction scanning mechanism section, 16...Y direction scanning mechanism section,
17, 18...drive circuit, 19...detector, 20
... signal processing circuit, 21 ... circuit, 22 ... optical lens, 23 ... one-dimensional photoelectric element, 24 ... welding start point, ... means for setting spot light, ...
...Means for scanning spot light two-dimensionally,...
Means for detecting the direction of spot light projection, . . . spot light image detection means, . . . sensor output selection means.

Claims (1)

【特許請求の範囲】 1 スポツト光を設定する手段と、前記スポツ
ト光を被測定物に投光し2次元的に走査する手段
と、前記走査によるスポツト光の投光方向を検
出する手段と、光学レンズと1次元光電素子を
複数個並列に配置したセンサとで構成したスポツ
ト光像検出手段と、前記手段の検出データに
基き、前記1次元光電素子を順次選択するセンサ
出力選択手段とを備えたスポツト光位置検出装
置。 2 スポツト光を設定する手段が、半導体レー
ザとコリメートレンズとで構成されている特許請
求の範囲第1項記載のスポツト光位置検出装置。 3 スポツト光を2次元的に走査する手段が、
反射鏡とその反射鏡を回転もしくは揺動させる機
構部とで構成されている特許請求の範囲第1項記
載のスポツト光位置検出装置。 4 スポツト光像検出手段の1次元光電素子
が、PSDセンサである特許請求の範囲第1項記
載のスポツト光位置検出装置。 5 スポツト光像検出手段の光学レンズが、光
学的フイルタ作用のあるレンズである特許請求の
範囲第1項記載のスポツト光位置検出装置。
[Scope of Claims] 1. means for setting a spot light, means for projecting the spot light onto an object to be measured and scanning it two-dimensionally, and means for detecting the projection direction of the spot light by the scanning; Spot light image detection means constituted by an optical lens and a sensor in which a plurality of one-dimensional photoelectric elements are arranged in parallel, and sensor output selection means for sequentially selecting the one-dimensional photoelectric elements based on detection data of the means. Spot light position detection device. 2. The spot light position detecting device according to claim 1, wherein the means for setting the spot light comprises a semiconductor laser and a collimating lens. 3 The means for two-dimensionally scanning the spot light is
A spot light position detecting device according to claim 1, which comprises a reflecting mirror and a mechanism for rotating or swinging the reflecting mirror. 4. The spot light position detection device according to claim 1, wherein the one-dimensional photoelectric element of the spot light image detection means is a PSD sensor. 5. The spot light position detection device according to claim 1, wherein the optical lens of the spot light image detection means is a lens having an optical filter function.
JP15350383A 1983-08-22 1983-08-22 Device for detecting position of spot light Granted JPS6044810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15350383A JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15350383A JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Publications (2)

Publication Number Publication Date
JPS6044810A JPS6044810A (en) 1985-03-11
JPH0324603B2 true JPH0324603B2 (en) 1991-04-03

Family

ID=15563977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15350383A Granted JPS6044810A (en) 1983-08-22 1983-08-22 Device for detecting position of spot light

Country Status (1)

Country Link
JP (1) JPS6044810A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259109A (en) * 1985-05-13 1986-11-17 Matsushita Electric Ind Co Ltd Optical range finder
JPS6217606A (en) * 1985-07-15 1987-01-26 Hitachi Zosen Corp Underwater measuring device
JPH0625653B2 (en) * 1985-12-03 1994-04-06 幸男 佐藤 Shape measuring method and device
JPH02161302A (en) * 1988-12-14 1990-06-21 Juki Corp Shape measuring instrument
JPH0726825B2 (en) * 1990-09-14 1995-03-29 松下電工株式会社 Shape recognition device

Also Published As

Publication number Publication date
JPS6044810A (en) 1985-03-11

Similar Documents

Publication Publication Date Title
JP2510786B2 (en) Object shape detection method and apparatus
JP2956657B2 (en) Distance measuring device
JPH0324603B2 (en)
US4521113A (en) Optical measuring device
JP2001183117A (en) Instrument and method for measuring surface shape
JP2008513750A (en) Interferometer with mirror device for measuring objects
JPH0334563B2 (en)
JP2987540B2 (en) 3D scanner
JPS60117102A (en) Welding-seam profile-detecting apparatus
GB2157419A (en) Optical sensor for for use in controlling a robot
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JP2650830B2 (en) Straightness measuring device
JPH0240506A (en) Distance measuring apparatus
JPS63138204A (en) Shape measuring method
JPH063119A (en) Measuring method of depth of minute recessed surface
JPS62287107A (en) Center position measuring instrument
JPH10111107A (en) Method and device for measuring distance
JP2858819B2 (en) Optical scanning displacement sensor
JP2674129B2 (en) Distance measuring device
JPS63252204A (en) Distance and angle-of-inclination measuring device
JPH033550B2 (en)
JP2005043203A (en) Rotation accuracy measuring device of revolving shaft
JPH09113234A (en) Sensor for measuring two-dimensional shape
JP2008256463A (en) Measurement apparatus and miller attitude rotation and monitoring apparatus
JPH0318887Y2 (en)