JPH0240506A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPH0240506A
JPH0240506A JP19232588A JP19232588A JPH0240506A JP H0240506 A JPH0240506 A JP H0240506A JP 19232588 A JP19232588 A JP 19232588A JP 19232588 A JP19232588 A JP 19232588A JP H0240506 A JPH0240506 A JP H0240506A
Authority
JP
Japan
Prior art keywords
light
axis
lens
measured
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19232588A
Other languages
Japanese (ja)
Other versions
JPH0778429B2 (en
Inventor
Nobuo Hirata
平田 伸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19232588A priority Critical patent/JPH0778429B2/en
Publication of JPH0240506A publication Critical patent/JPH0240506A/en
Publication of JPH0778429B2 publication Critical patent/JPH0778429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve resolution in distance measurement and linearity by constituting an apparatus by using three condenser lenses so as to satisfy Scheinpflug conditions, and specifying the positions of a photodetector and the three condenser lenses. CONSTITUTION:A position detector 6 is composed of the following parts: a light source 1 which emits a light beam; a light projecting lens 2 which projects the light beam on a body to be measured 4; first - third condenser lenses 51 - 53; a photodetector 7; and an operator 8. Said second condenser lens 52 is arranged so that the central surface of the lens 52 agrees with the (x) axis that is perpendicular to the (y) axis which is the path of the light beam from the light source 1 to the body 4. The photodetector 7 is arranged so that the light receiving surface of the photodetector agrees with the (y) axis. The body 4, the first condenser lens 51 and the second condenser lens 52 satisfy the first Shine Pruge conditions. The second condenser lens 52, the third condenser lens 53 and the photodetector 7 satisfy the second Scheinpflug conditions. The first condenser lens and the third condenser lens are arranged so that the (x) coordinates of the lenses are the same when the (x) axis and the (y) axis are made to be the coordinate axes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザービーム等の光ビームを被測定物体に
照射し、その反射光を用いて被測定物体までの距離ある
いはその変位を測定する測距装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a measurement method in which a light beam such as a laser beam is irradiated onto an object to be measured, and the reflected light is used to measure the distance to the object or its displacement. Concerning distance devices.

〔従来の技術〕[Conventional technology]

この種の測距装置としては、例えば特開昭55−409
42号公報に開示されている三角測量方式を基本とする
ものと、特開昭55−119006号公報。
As this type of distance measuring device, for example, Japanese Patent Application Laid-Open No. 55-409
One is based on the triangulation method disclosed in Japanese Patent Publication No. 119006/1983.

特開昭57−67815号公報などに開示されているシ
ャインプルーグ条件を満足する光学系配置によるものが
知られている。これらの装置は、いずれも投光光学系よ
り被測定物体上に投射された光点を投光軸に対して斜め
に配置した受光光学系iζより受光素子上に結像させ、
例えば被測定物体の投光軸に沿りた被測定物体の変位量
を、その受光素子上の光点の像の位置の変化として検出
することにより測定している。
There is known an optical system arrangement that satisfies the Scheimpflug condition as disclosed in Japanese Patent Application Laid-Open No. 57-67815. In both of these devices, a light spot projected onto the object to be measured from a light projection optical system is imaged onto a light receiving element by a light receiving optical system iζ arranged obliquely to the light projection axis.
For example, the amount of displacement of the object to be measured along the light projection axis of the object to be measured is measured by detecting the change in the position of the image of the light spot on the light receiving element.

第3図は、前記特開昭55−119006号公報の光学
系の構成を示すものである。光源lからの照射光ビーム
Iは、投光レンズ2を介して被測定物体4に照射される
。被測定物体4で反射した反射光31は、集光レンズ5
0を介して受光素子であるPAD(Position 
5ensitive Detector ) 7  (
以下では単に受光素子7と記す。)上に結像する。6は
位置検出器で、前記受光素子7と演算器8とから成る。
FIG. 3 shows the configuration of the optical system disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 55-119006. An irradiation light beam I from a light source I is irradiated onto an object to be measured 4 via a projection lens 2 . The reflected light 31 reflected by the object to be measured 4 is passed through the condenser lens 5.
PAD (Position
5intensive Detector ) 7 (
Hereinafter, it will simply be referred to as a light receiving element 7. ). Reference numeral 6 denotes a position detector, which is composed of the light receiving element 7 and an arithmetic unit 8.

受光素子7上の光点の位置は、受光素子7の2つの出力
電流I、 、 I2の差を算出する減算器と。
The position of the light spot on the light receiving element 7 is determined by a subtracter that calculates the difference between the two output currents I, , I2 of the light receiving element 7.

和を算出する加算器と、前記差と和との比を算出する除
算器と、除算結果をKo倍するオペアンプ等からなる係
数器と力)ら構成される前記演算器8により、下記(1
1式を演算して求められる。
The following (1
It can be found by calculating Equation 1.

但し、ここで dy:受光素子7上の光点の位置の変位。However, here dy: Displacement of the position of the light spot on the light receiving element 7.

I、、I2:受光素子7の2Illtl力電流。I,,I2: 2Illtl force current of the light receiving element 7.

Ko:定数 さらに、(1)式の演算結果と被測定物体4の変位とを
比例させるための、折線近似回路、指数関数回路、デジ
タル演算回路等の非直線性補正回路9により、信号処理
を行ない、変位の測定が行なわれる。
Ko: Constant Furthermore, signal processing is performed by a nonlinearity correction circuit 9 such as a polygonal line approximation circuit, an exponential function circuit, or a digital calculation circuit in order to make the calculation result of equation (1) proportional to the displacement of the measured object 4. The displacement is measured.

第3図の構成では、前記したようにシャインプルーグ条
件が満たされている。ここで、このシャインプルーグ条
件について簡単に説明する。第3図において、集光レン
ズ関の中心面を含む面501と、受光素子7を含む面7
1(結像面に相当する)が、照射光ビーム田土の任意の
一点75で交わるように配置すれば、照射光ビーム美上
の任意の点は全てピントが合って受光素子7上に結像さ
れることが知られている。これが、シャインプルーグ条
件と呼ばれるものである。
In the configuration of FIG. 3, the Scheimpflug condition is satisfied as described above. Here, this Scheimpflug condition will be briefly explained. In FIG. 3, a surface 501 including the central plane of the condenser lens and a surface 7 including the light receiving element 7 are shown.
1 (corresponding to the imaging plane) intersect at any point 75 on the irradiated light beam, all arbitrary points on the irradiated light beam will be in focus and will form an image on the light receiving element 7. It is known that This is called the Scheimpflug condition.

さて、前記のようなレーザービーム等を使用して非接触
で被測定物体の位置あるいは変位を測定する測距装置は
、軟かいプラスチックのようなものでも傷付けることな
く測定が可能であり、かつ工場内ロボット等の自動化機
器の距離検出器としても使えるなど、接触式の位置i*
++足装置にはない幾つかの長所を持っている。
Now, the above-mentioned distance measuring device that uses a laser beam or the like to measure the position or displacement of an object in a non-contact manner is capable of measuring objects such as soft plastic without damaging them, and can be used at the factory. The contact-type position i* can also be used as a distance detector for automated equipment such as internal robots.
++It has several advantages that foot devices do not have.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこの種の測距装置における問題点は次のとおりで
ある。即ち、前記したように、(1)式の演算結果と被
測定物体の変位とを比例させるために。
Problems with conventional distance measuring devices of this type are as follows. That is, as described above, in order to make the calculation result of equation (1) proportional to the displacement of the object to be measured.

折線近似回路等の非直線性補正回路を必要とし、このた
め信号処理用′電気回路か複雑で、かつ高価なものにな
る問題があった。さらに、このシャインプルーグ条件を
用いた場合は、その光学系の構成上、受光素子上に反射
光が斜めに照射されるため、受光素子での測距出力に誤
差が生じ、測距装置の直馴性や分解能が低下するなどの
問題もあった0 この発明の目的は、前記従来の問題点を除去し。
A non-linearity correction circuit such as a polygonal line approximation circuit is required, which poses a problem in that the electrical circuit for signal processing becomes complicated and expensive. Furthermore, when this Scheimpflug condition is used, due to the configuration of the optical system, the reflected light is irradiated obliquely onto the photodetector, which causes an error in the distance measurement output from the photodetector, which causes the distance measurement device to There were also problems such as deterioration of orthogonality and resolution.An object of the present invention is to eliminate the above-mentioned conventional problems.

特別な非直線性補正回路を必要とせず、かつ分解能が優
れ直線性が良く、シかも安価な測距装置を提供すること
にある。
It is an object of the present invention to provide an inexpensive distance measuring device that does not require a special nonlinearity correction circuit, has excellent resolution, and has good linearity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を過酸するために、この発明によれば、光ビー
ムを照射して被測定物体までの距離あるいは前記被測定
物体の変位を非接触に測定する測距装置において、前記
光ビームを出す光源と、前記党ビームを前記被測定物体
に投光する投光レンズと、第1.第2.第3の集光レン
ズと、受光素子と演算器とから成る位置検出器とを備え
、前記第2の集光レンズは前記光源から前記被測定物体
に至る前記光ビームの経路をy軸としたときにレンズの
中心面が前記y軸と直交するy軸に一致して配置され、
前記受光素子はその受光面がy軸に一致して配置され、
前記被測定物体と前記第1の集光レンズと前記第2の集
光レンズとで第1のシャインプルーグ条件を満たし、前
記第2の集光レンズと前記第3の集光レンズと前記受光
素子とで第2のシャインプルーグ条件を満たし、かつ前
記第1の集光レンズと前記第3の集光レンズは前記y軸
およびy軸を座標軸としたときにそのX座標が同一であ
ることとする。
In order to achieve the above object, according to the present invention, in a distance measuring device that measures the distance to an object to be measured or the displacement of the object to be measured in a non-contact manner by irradiating a light beam, the light beam is emitted. a light source; a light projection lens that projects the beam onto the object to be measured; Second. The second condenser lens includes a third condensing lens and a position detector including a light receiving element and a computing unit, and the second condensing lens has the path of the light beam from the light source to the object to be measured as the y-axis. When the central plane of the lens is arranged to coincide with the y-axis orthogonal to the y-axis,
The light-receiving element is arranged so that its light-receiving surface coincides with the y-axis,
The object to be measured, the first condensing lens, and the second condensing lens satisfy the first Scheimpflug condition, and the second condensing lens, the third condensing lens, and the light receiving and the first condensing lens and the third condensing lens have the same X coordinate when the y-axis and the y-axis are the coordinate axes. shall be.

〔作用〕[Effect]

このように、シャインプルーグ条件を満たす元学系を、
3個の集光レンズを用いて2段に構成し。
In this way, the original school that satisfies the Scheimpflug condition is
It is constructed in two stages using three condensing lenses.

かつ受光素子および3個の集光レンズを配置する位置を
特定したことにより、単なる1段のシャインプルーグ条
件を用いた場合のように単に被測定物体の像を受光素子
上にピントの合った状態で結像できるだけでなく%被測
定物体の変位と受光素子上での光点の変位とを比例させ
ることができる。
In addition, by specifying the positions for arranging the light receiving element and three condensing lenses, it is possible to simply focus the image of the object on the light receiving element, unlike when using a simple single-stage Scheimpflug condition. Not only can the image be formed in the same state, but also the displacement of the object to be measured can be made proportional to the displacement of the light spot on the light receiving element.

これにより、従来のような折線近似回路等の非直線性補
正回路を使用しなくとも、受光素子の2つの出力電流の
和と差の比を演算するだけで、被測定物体の位置あるい
は変位を測定することが可能となる。また反射光を受光
素子上に垂直に近い角度(垂直からのずれが10°〜2
0°の角度)で照射することができるので、測定を直線
性や分解能の優れたものにすることが可能となる。
As a result, the position or displacement of the object to be measured can be determined simply by calculating the ratio of the sum and difference of the two output currents of the light receiving element, without using a nonlinearity correction circuit such as a conventional broken line approximation circuit. It becomes possible to measure. In addition, the reflected light is directed onto the light receiving element at an angle close to perpendicular (with a deviation from vertical of 10° to 2°).
Since the irradiation can be performed at an angle of 0°, it is possible to perform measurements with excellent linearity and resolution.

〔実施例〕〔Example〕

第1図ζこ本発明の一実施例になる2段のシャインプル
ーグ条件を満たした測距装置の構成を示す。
FIG. 1 shows the configuration of a distance measuring device that satisfies the two-stage Scheimpflug condition, which is an embodiment of the present invention.

第3図と同一の部材には同一の符号を付し、説明を省略
する。51 、52 、53は夫々第1.第2.第3の
集光レンズであり1反射光32は第2の集光レンズ52
により屈折し1反射元おとなって受光素子7上に光点を
結像する。受光素子7は、照射ビーム光の中心面はX軸
と一致している。さらに第1.第3の集光レンズ51 
、53はそのX座標が同じになるように配置されている
。第1のシャインプルーグ条件は、被測定物体4と第1
の集光レンズ51と第2の集光レンズ52とにより満た
さ−れている。また第2のシャインプルーグ条件は、第
2の集光レンズ52と第3の集光レンズ閏と受光素子7
とにより満たされている。第1図の第3図との大きな相
異点は、集光レンズが3個に増えたかわりに、非直線性
補正回路が無くなったことである。次に第2図により、
この第1図に示した本発明の一実施例の動作を幾何学的
に説明する。
The same members as in FIG. 3 are denoted by the same reference numerals, and explanations thereof will be omitted. 51, 52, and 53 are the first. Second. The third condensing lens 1 reflected light 32 is the second condensing lens 52.
The light beam is refracted by the light beam and becomes a single reflection source to form a light spot on the light receiving element 7. In the light receiving element 7, the center plane of the irradiation beam coincides with the X axis. Furthermore, the first. Third condensing lens 51
, 53 are arranged so that their X coordinates are the same. The first Scheimpflug condition is that the object to be measured 4 and the first
is filled with a condenser lens 51 and a second condenser lens 52. Further, the second Scheimpflug condition is that the second condenser lens 52, the third condenser lens, and the light receiving element 7
It is filled with. The major difference between FIG. 1 and FIG. 3 is that the number of condensing lenses has increased to three, but the nonlinearity correction circuit has been eliminated. Next, according to Figure 2,
The operation of the embodiment of the present invention shown in FIG. 1 will be explained geometrically.

第2図でX@は第2の集光レンズ52の中心面、y軸は
照射光ビームIの元軸に相当する。なお説明の便宜上第
2図においてはy軸の正方向をy1y軸の負方向をYで
表わしている。反射光32を示す式1反射光おを示す式
は夫々次の(2) 、 (3)式で表わされる。
In FIG. 2, X@ corresponds to the center plane of the second condensing lens 52, and the y-axis corresponds to the original axis of the irradiation light beam I. For convenience of explanation, in FIG. 2, the positive direction of the y-axis is represented by y, and the negative direction of the y-axis is represented by Y. Equation 1 representing the reflected light 32 Equations representing the reflected light 32 are expressed by the following equations (2) and (3), respectively.

Y  Yo=M(x  xo)          (
2)Y  Yo = m (X−Xo )      
    (3)但しここで。
Y Yo=M(x xo) (
2) Y Yo = m (X-Xo)
(3) However, here.

M:反射光32の傾き。M: Inclination of reflected light 32.

m:反射光あの傾き。m: That tilt of reflected light.

xo:第1の集光レンズ51.第3の集光レンズ53の
X座標。
xo: first condensing lens 51. X coordinate of the third condensing lens 53.

Yo:第1の集光レンズ51のY座標。Yo: Y coordinate of the first condensing lens 51.

yo:第3の集光レン×53のX座標。yo: X coordinate of the third condenser lens x53.

である。被測定物体4上の光点の位置(Y切片)は(2
)式より。
It is. The position (Y-intercept) of the light spot on the object to be measured 4 is (2
) From the formula.

Y −Yo = −Mxo            (
4)となり、また反射元諺が第2の集光レンズ52に入
射している点、即ち反射光32とX軸との交点(Xとな
る。そこで(4)式と(5)式とより。
Y −Yo = −Mxo (
4), and the point where the reflection source is incident on the second condensing lens 52, that is, the intersection of the reflected light 32 and the X axis (X). Therefore, from equations (4) and (5), .

(Y−Yo ) m (x−XO)=xoYo    
     (6)となる。次に受光素子7上の光点の像
位置(X切片)は(3)式より、 y −yo = −mXQ             
+’7)となり、また反射光おが第2の集光レンズ52
から照射している点、即ち反射光おとX軸との交点(X
切片)は(3)式より。
(Y-Yo) m (x-XO)=xoYo
(6) becomes. Next, the image position (X-intercept) of the light spot on the light-receiving element 7 is determined from equation (3), y −yo = −mXQ
+'7), and the reflected light is reflected by the second condensing lens 52.
The point where the reflected light is irradiated from, that is, the intersection of the reflected light and the X axis (
Intercept) is from equation (3).

O x −x6 = −−(8) となる。そこで(13)式と(14)式とより。O x −x6 = −−(8) becomes. Therefore, from equations (13) and (14).

(yyo)・(x−xo )=xo yo      
 (9)となるっ一方、反射光32と反射光あとのX軸
でのとなる。ここで被測定物体4がY、からY2まで変
位した時受光素子7上で光点が’fsからy2まで変化
する場合、  (10)式より。
(yyo)・(x-xo)=xo yo
(9) On the other hand, the reflected light 32 and the reflected light on the X axis become as follows. Here, when the measured object 4 is displaced from Y to Y2, and the light spot on the light receiving element 7 changes from 'fs to y2, then from equation (10).

O YI   Y2=    ()’t  Y2)となる。O YI   Y2=     ()'t Y2).

この(11)式は被測定物体4の変位dYがyo/Yo
倍されて受光素子7上で変位することを意味している。
This equation (11) shows that the displacement dY of the object to be measured 4 is yo/Yo
This means that it is multiplied and displaced on the light receiving element 7.

よって(11)式は。Therefore, equation (11) is.

Y。Y.

dY = −ay             (12)
Y。
dY = -ay (12)
Y.

と表わせる。It can be expressed as

上記の説明から明らかなように、受光素子と3個の集光
レンズの位置が特定され、かつ2段のシャインプルーグ
条件が満たされているので、受光素子7上での変位ay
は被測定物体4上での変位dYに比例し、かつ被測定物
体4の表面上の像点は常に受光素子7の表面上にピント
の合った状態で結IIすることになる。従って受光素子
7上の光点の位置を求めれば被測定物体4の変位を直接
測定できる。しかも受光素子7上の光点は非常に小さく
なり直線性に優れている。さらに第2の集光レンズ52
で反射132を屈折させ、照射光ビーム(至)の光軸上
に平行に配置した受光素子7上に反射光おを垂直に近い
角度、即ち垂直からのずれが10゜ないし200の範囲
の角度で照射するように構成したので、受光素子におけ
る出力誤差も小さくなり。
As is clear from the above explanation, since the positions of the light receiving element and the three condensing lenses are specified and the two-stage Scheimpflug condition is satisfied, the displacement ay on the light receiving element 7
is proportional to the displacement dY on the object to be measured 4, and the image point on the surface of the object to be measured 4 is always focused on the surface of the light receiving element 7 II. Therefore, by determining the position of the light spot on the light receiving element 7, the displacement of the object to be measured 4 can be directly measured. Furthermore, the light spot on the light receiving element 7 is extremely small and has excellent linearity. Furthermore, a second condensing lens 52
The reflected light 132 is refracted at a angle close to perpendicular to the light receiving element 7 arranged parallel to the optical axis of the irradiated light beam, that is, at an angle in which the deviation from the vertical is in the range of 10° to 200°. Since the structure is configured to irradiate light with

測距装置としての測距分解能も非常に優れたものになる
。その理由として、受光素子においては、光が受光素子
に対し当直に近い角度で照射するほうが、測距装置の組
立後に起り得る受光素子の機械的な配置ずれ(0,1°
〜1° くらいの微小な回転ずれ)が生じても%出力誤
差を数pm程度におさえられるからである。
The distance measurement resolution as a distance measurement device is also very excellent. The reason for this is that it is better for the light receiving element to be irradiated with light at an angle close to that on duty due to mechanical misalignment of the light receiving element (0.1°) that may occur after the rangefinder is assembled.
This is because even if a small rotational deviation of about 1° occurs, the % output error can be suppressed to about several pm.

以上により、求めるべき変位dYは、(1)式をY。From the above, the displacement dY to be found can be calculated using equation (1) as Y.

(12)式に代入しに=−・KOとすれば、となる(但
しここでKは定数)。
By substituting =-.KO into equation (12), we get (where K is a constant).

〔発明の効果〕〔Effect of the invention〕

以上に述べたように1本発明によれば、測距装置の光学
系を3個の集光レンズを用いて% 2段のシャインプル
ーグ条件を満たすように構成し、かつ受光素子と3個の
集光レンズを配置する位置を特定したので、被測定物体
の位置あるいは変位を。
As described above, according to the present invention, the optical system of the distance measuring device is configured to satisfy the Scheimpflug condition of 2 steps using three condenser lenses, and the optical system of the distance measuring device is configured using three condenser lenses, and Now that we have determined the position to place the condenser lens, we can determine the position or displacement of the object to be measured.

非直線性補正回路のために信号処理用電気回路を複雑に
することなく、従って安価に、演算器の出力として直接
水めることが可能になる。また、第2の集光レンズによ
り反射光を屈折させ、受光素子上に垂直に近い角度、即
ち垂直からのずれが10’ないし20’の範囲の角度で
照射させるので、受光素子での出力誤差が小さくなV)
、測距装置の直線性や測距分解能を同上することも可能
になるっ
It is possible to directly output the signal as the output of the arithmetic unit at low cost without complicating the signal processing electric circuit due to the nonlinearity correction circuit. In addition, since the reflected light is refracted by the second condensing lens and irradiated onto the light receiving element at an angle close to perpendicular, that is, at an angle with a deviation from the vertical in the range of 10' to 20', the output error at the light receiving element is reduced. is small V)
It will also be possible to improve the linearity and distance measurement resolution of the distance measurement device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる。2段のシャインプル
ーグ条件を満たした測距装置の構成図。 第2図は第1図の実施例の動作を幾何学的に説明するた
めの図、第3図ヲ工従来のシャインプルーグ条件を用い
た測距装置の構成図である。 1:光源、2:投光レンズ% 4:被測定物体。 6:位g1検出器、7:受光素子、8:演算器、9:非
直線性補正回路、31,32.33:反射光。 50=集光レンズ、51:第1の集光レンズ%52:第
2のMKレンズ、53:第3の集光レンズ。 第 1 口
FIG. 1 shows one embodiment of the present invention. FIG. 2 is a configuration diagram of a distance measuring device that satisfies two-stage Scheimpflug conditions. FIG. 2 is a diagram for geometrically explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a block diagram of a conventional distance measuring device using Scheimpflug conditions. 1: Light source, 2: Projection lens% 4: Object to be measured. 6: position g1 detector, 7: light receiving element, 8: arithmetic unit, 9: nonlinearity correction circuit, 31, 32, 33: reflected light. 50 = condenser lens, 51: first condenser lens % 52: second MK lens, 53: third condenser lens. 1st mouth

Claims (1)

【特許請求の範囲】[Claims] 光ビームを照射して被測定物体までの距離あるいは前記
被測定物体の変位を非接触に測定する測距装置において
、前記光ビームを出す光源と、前記光ビームを前記被測
定物体に投光する投光レンズと、第1、第2、第3の集
光レンズと、受光素子と演算器とから成る位置検出器と
を備え、前記第2の集光レンズは前記光源から前記被測
定物体に至る前記光ビームの経路をy軸としたときにレ
ンズの中心面が前記y軸と直交するx軸に一致して配置
され、前記受光素子はその受光面がy軸に一致して配置
され、前記被測定物体と前記第1の集光レンズと前記第
2の集光レンズとで第1のシャインプルーグ条件を満た
し、前記第2の集光レンズと前記第3の集光レンズと前
記受光素子とで第2のシャインプルーグ条件を満たし、
かつ前記第1の集光レンズと前記第3の集光レンズは前
記x軸およびy軸を座標軸としたときに、そのx座標が
同一であることを特徴とする測距装置。
A distance measuring device that non-contactly measures the distance to an object to be measured or the displacement of the object by irradiating a light beam, including a light source that emits the light beam, and a light source that projects the light beam onto the object to be measured. A position detector including a light projecting lens, first, second, and third condensing lenses, a light receiving element, and an arithmetic unit, and the second condensing lens moves from the light source to the object to be measured. When the path of the light beam reaching the y-axis is set as the y-axis, the center plane of the lens is arranged to coincide with the x-axis orthogonal to the y-axis, and the light-receiving element is arranged so that its light-receiving surface coincides with the y-axis, The object to be measured, the first condensing lens, and the second condensing lens satisfy the first Scheimpflug condition, and the second condensing lens, the third condensing lens, and the light receiving satisfies the second Scheimpflug condition with the element,
The distance measuring device is characterized in that the first condenser lens and the third condenser lens have the same x-coordinate when the x-axis and the y-axis are used as coordinate axes.
JP19232588A 1988-08-01 1988-08-01 Ranging device Expired - Lifetime JPH0778429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19232588A JPH0778429B2 (en) 1988-08-01 1988-08-01 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19232588A JPH0778429B2 (en) 1988-08-01 1988-08-01 Ranging device

Publications (2)

Publication Number Publication Date
JPH0240506A true JPH0240506A (en) 1990-02-09
JPH0778429B2 JPH0778429B2 (en) 1995-08-23

Family

ID=16289407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19232588A Expired - Lifetime JPH0778429B2 (en) 1988-08-01 1988-08-01 Ranging device

Country Status (1)

Country Link
JP (1) JPH0778429B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851159A (en) * 1981-09-21 1983-03-25 Ricoh Co Ltd Ink jet recorder
EP0499778A2 (en) * 1991-02-18 1992-08-26 Ushio Co. Ltd Image processing apparatus
JP2007316385A (en) * 2006-05-26 2007-12-06 Canon Inc Imaging optical system
JP2015512030A (en) * 2012-02-07 2015-04-23 株式会社ニコン Imaging optical system, imaging device, shape measuring device, structure manufacturing system, and structure manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851159A (en) * 1981-09-21 1983-03-25 Ricoh Co Ltd Ink jet recorder
JPH0428548B2 (en) * 1981-09-21 1992-05-14 Ricoh Kk
EP0499778A2 (en) * 1991-02-18 1992-08-26 Ushio Co. Ltd Image processing apparatus
US5351316A (en) * 1991-02-18 1994-09-27 Ushio Co., Ltd. Image processing apparatus
JP2007316385A (en) * 2006-05-26 2007-12-06 Canon Inc Imaging optical system
JP2015512030A (en) * 2012-02-07 2015-04-23 株式会社ニコン Imaging optical system, imaging device, shape measuring device, structure manufacturing system, and structure manufacturing method

Also Published As

Publication number Publication date
JPH0778429B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
JPH0240506A (en) Distance measuring apparatus
JPS587823A (en) Alignment method and device thereof
JPS6316892A (en) Distance measuring instrument for laser beam machine
JPS6355641B2 (en)
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPH04364414A (en) Distance-measuring device
JPH0334563B2 (en)
JPH0324603B2 (en)
JP3479515B2 (en) Displacement measuring device and method
JPH032512A (en) Three-dimensional position recognition device
JPH01259213A (en) Distance measuring instrument
JPH0695021B2 (en) Ranging device
JP2544789B2 (en) Optical displacement measuring device
JPS63252204A (en) Distance and angle-of-inclination measuring device
JPH0372208A (en) Angle measuring apparatus
JPH0661115A (en) Gap detection and setting device
JPS59202012A (en) Optical range finder
JPS63127103A (en) Position measuring apparatus
JPH06201326A (en) Displacement measuring device
JPS61231409A (en) Optical position measuring apparatus
JPH01245111A (en) Range finder
JPH06117852A (en) Optical displacement gauge
JPH0552550A (en) Detecting apparatus of distance
JPH04307308A (en) Displacement measuring instrument
JPH0558483B2 (en)