JPH06117852A - Optical displacement gauge - Google Patents

Optical displacement gauge

Info

Publication number
JPH06117852A
JPH06117852A JP26400692A JP26400692A JPH06117852A JP H06117852 A JPH06117852 A JP H06117852A JP 26400692 A JP26400692 A JP 26400692A JP 26400692 A JP26400692 A JP 26400692A JP H06117852 A JPH06117852 A JP H06117852A
Authority
JP
Japan
Prior art keywords
light
light receiving
light emitting
unit
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26400692A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26400692A priority Critical patent/JPH06117852A/en
Publication of JPH06117852A publication Critical patent/JPH06117852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve the measurement accuracy of the title gauge by reducing an error caused by the inclination of the surface to be measured of an object. CONSTITUTION:An object is irradiated with light by using a light emitting element having two light emitting points which can be independently driven and are arranged at a short interval as the light emitting element 11' for emitting the irradiating light. The measurement accuracy of the title displacement gauge is improved by detecting the inclined angle of the surface to be measured of the object 1 from two output signals obtained from a light receiving section 30 by means of an inclination correcting circuit 53 and correcting the distance to the object 1 from a light projecting section 10 in accordance with the magnitude of the detected inclined angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三角測量法にもとづ
き対象物までの距離を計測するための光学式変位計、特
にその改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement meter for measuring a distance to an object based on a triangulation method, and particularly to an improvement thereof.

【0002】[0002]

【従来の技術】図3はこの種の光学式変位計の従来例を
示す構成図である。同図において、10は発光素子11
および投光レンズ12などからなる投光部、30は受光
レンズ31および位置検出素子32などからなる受光
部、50は位置検出回路51および直線化補正回路52
などからなる信号処理部を示す。すなわち、投光部10
からその光軸に沿って出射された投光ビーム2は、その
光軸に沿った投光部10からの距離を測定されるべき対
象物1の表面に照射される。対象物1からの反射光3は
受光部30に入射して距離に対応する電流信号33(A
1,A2)に変換されて出力される。この電流信号33
は信号処理部50に入力され直線化補正などの処理が施
された後、距離信号55として外部に出力される。
2. Description of the Related Art FIG. 3 is a block diagram showing a conventional example of this type of optical displacement meter. In the figure, 10 is a light emitting element 11.
And a light projecting section including the light projecting lens 12, 30 a light receiving section including a light receiving lens 31, a position detecting element 32, and the like, 50 a position detecting circuit 51 and a linearization correcting circuit 52.
A signal processing unit including That is, the light projecting unit 10
The projection beam 2 emitted from the optical axis along the optical axis is applied to the surface of the object 1 whose distance from the light projecting unit 10 along the optical axis is to be measured. The reflected light 3 from the object 1 is incident on the light receiving unit 30 and a current signal 33 (A
1, A2) and output. This current signal 33
Is input to the signal processing unit 50, subjected to processing such as linearization correction, and then output as a distance signal 55 to the outside.

【0003】投光部10の発光素子11は例えば半導体
レーザなどからなり、投光レンズ12は発光素子11が
発する光を収束する。受光部30は主に、受光レンズ3
1と受光位置の検出が可能な位置検出素子32とからな
り、対象物1の表面の投光ビームにて照射された位置の
像が、対象物1の距離に応じて位置検出素子32の受光
面上の所定位置に結ばれる。信号処理部50は主に、受
光部30からの電流信号33に基づき位置検出素子32
上の受光位置を算出する位置検出回路51と、その受光
位置を表わす信号を被測定物までの距離または変位に比
例する信号55に変換する直線化回路52とから成って
いる。そして、所謂シャインプルーグ条件を満たすよう
に各光学部品が配置されており、その結果、受光レンズ
31の主面と位置検出素子32の受光面とが、投光部1
0の投光レンズ12の光軸上の点Sで交わることにな
る。
The light emitting element 11 of the light projecting section 10 is composed of, for example, a semiconductor laser, and the light projecting lens 12 converges the light emitted by the light emitting element 11. The light receiving unit 30 mainly includes the light receiving lens 3
1 and a position detection element 32 capable of detecting the light receiving position, and an image of the position of the surface of the object 1 illuminated by the projection beam is received by the position detection element 32 according to the distance of the object 1. It is tied in place on the surface. The signal processing unit 50 mainly uses the current signal 33 from the light receiving unit 30 to detect the position detecting element 32.
It comprises a position detection circuit 51 for calculating the upper light receiving position and a linearization circuit 52 for converting a signal representing the light receiving position into a signal 55 proportional to the distance or displacement to the object to be measured. The respective optical components are arranged so as to satisfy the so-called Scheimpflug condition, and as a result, the main surface of the light receiving lens 31 and the light receiving surface of the position detecting element 32 are arranged so that the light projecting section 1
The point S on the optical axis of the projection lens 12 of 0 intersects.

【0004】位置検出素子の具体例を図4に示す。これ
は、板状の高抵抗半導体5の一方の面にP形抵抗層6
が、また、他方の面にはN形層7が形成され、両面によ
りPN接合を構成したもので、一般にはPSD(Pos
ition Sensitive Detector)
と呼ばれるものである。長さLの抵抗層6において光電
効果により生成される光電流は、P形抵抗層6の両端に
設けられている1対の電極P1,P2より出力される。
このときの各電流出力をA1,A2とすると、その値は
受光面である抵抗層6上の受光量分布によってその大き
さが異なる。受光面への入射光がスポット状であるもの
とし、この光スポットのパワー分布の重心位置から抵抗
層6の中央までの距離をXとすれば、これら間には次式
の関係が成立する。 X=L/2・(A1−A2)/(A1+A2) …(1) 位置検出回路51はこの(1)式による演算を行なうこ
とになる。
A specific example of the position detecting element is shown in FIG. This is because the P-type resistance layer 6 is formed on one surface of the plate-shaped high resistance semiconductor 5.
However, an N-type layer 7 is formed on the other surface, and a PN junction is formed by both surfaces. Generally, PSD (Pos
edition Sensitive Detector)
Is called. The photocurrent generated by the photoelectric effect in the resistance layer 6 having the length L is output from the pair of electrodes P1 and P2 provided at both ends of the P-type resistance layer 6.
When the respective current outputs at this time are A1 and A2, the magnitudes thereof vary depending on the distribution of the amount of received light on the resistance layer 6 which is the light receiving surface. Letting the incident light on the light receiving surface be spot-like, and letting the distance from the center of gravity of the power distribution of this light spot to the center of the resistance layer 6 be X, the following relationship is established between them. X = L / 2 · (A1−A2) / (A1 + A2) (1) The position detection circuit 51 performs the calculation according to the equation (1).

【0005】図5に位置検出素子の特性を示す。これ
は、投光部10から対象物1までの距離Dと、位置検出
素子32の受光面上の受光位置Xとの関係を示す。三角
測量を利用する光学系配置に起因して、このDとXとは
比例せず非線形な関係となることを示しており、これを
直線関係に補正するために、直線化補正回路52が設け
られているというわけである。
FIG. 5 shows the characteristic of the position detecting element. This shows the relationship between the distance D from the light projecting unit 10 to the object 1 and the light receiving position X on the light receiving surface of the position detecting element 32. It is shown that D and X have a non-proportional non-linear relationship due to the arrangement of the optical system utilizing triangulation, and a linearization correction circuit 52 is provided to correct this to a linear relationship. That is why

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
ような光学式変位計では、対象物の被測定面が傾いて投
光ビームに対する角度が変化すると、位置検出素子の受
光面上の入射光のパワー分布が違ってしまい、このパワ
ー分布の重心位置が異なってくることがある。位置検出
素子は入射光のパワー分布の重心位置を検出するため、
この重心移動が位置検出素子の長手方向、すなわち電極
との距離が変わる方向へ起こるときには、測定すべき対
象物までの距離が同じであっても、上述のような被測定
面の傾斜に応じて受光素子は異なる位置を検出すること
になり、これが測定誤差の要因となる。一般に、変位計
の用途では対象物の被測定面の傾斜状態は一定であると
は限らないので、この点からも測定誤差を避けることが
難しいという問題がある。したがって、この発明の課題
は対象物の被測定面の傾斜状態の変化による測定誤差を
低減し得るようにし、測定精度を向上させることにあ
る。
However, in the optical displacement meter as described above, when the surface to be measured of the object is tilted and the angle with respect to the projection beam is changed, the incident light on the light receiving surface of the position detecting element is changed. The power distribution may be different, and the position of the center of gravity of this power distribution may be different. Since the position detection element detects the position of the center of gravity of the power distribution of the incident light,
When this movement of the center of gravity occurs in the longitudinal direction of the position detecting element, that is, in the direction in which the distance to the electrode changes, even if the distance to the object to be measured is the same, it depends on the inclination of the surface to be measured as described above. The light receiving element detects different positions, which causes a measurement error. In general, in the application of the displacement meter, the tilted state of the measured surface of the object is not always constant, and from this point as well, there is a problem that it is difficult to avoid a measurement error. Therefore, an object of the present invention is to make it possible to reduce the measurement error due to the change of the tilted state of the measured surface of the object, and to improve the measurement accuracy.

【0007】[0007]

【課題を解決するための手段】かかる課題を解決するた
め、この発明では、対象物に光ビームを照射する投光部
と、その対象物からの光ビーム反射光を受光して位置検
出素子上に照射することによりその照射位置を検出する
受光部と、この受光部から出力信号を受けて前記対象物
までの距離を求める信号処理部とを有してなる光学式変
位計において、前記投光部には個別に駆動可能な2つの
近接した発光点を有する発光素子と、この発光素子の2
つの発光点からそれぞれ放射される光のいずれをも収束
して投光ビームとなす投光レンズとを設け、この2つの
投光ビームによりそれぞれ対象物を照射したとき前記受
光部を介して得られる2つの出力信号から、そのときの
対象物の前記2つの投光ビームの各主光線と前記受光部
の光軸とがなす平面内の傾斜角度の大きさを検出すると
ともに、この検出された対象物の傾斜角度の大きさに応
じて、別途求めた前記投光部から対象物までの距離情報
に含まれる対象物の傾斜による誤差を補正可能にしたこ
とを特徴としている。
In order to solve such a problem, according to the present invention, a light projecting unit for irradiating an object with a light beam, and a light beam reflected from the object for receiving a light beam on the position detecting element. In the optical displacement gage, which comprises a light receiving unit that detects the irradiation position by irradiating the object and a signal processing unit that receives the output signal from the light receiving unit and obtains the distance to the object, A light emitting element having two light emitting points adjacent to each other, which can be individually driven, and
A light projecting lens for converging any of the light emitted from each of the two light emitting points to form a light projecting beam is provided, and when these two light projecting beams illuminate an object, the light is obtained via the light receiving unit. From the two output signals, the magnitude of the tilt angle in the plane formed by the principal rays of the two projected beams of the object at that time and the optical axis of the light receiving unit is detected, and the detected object is detected. It is characterized in that an error due to the inclination of the object included in the separately obtained distance information from the light projecting unit to the object can be corrected according to the size of the inclination angle of the object.

【0008】[0008]

【作用】個別に駆動可能な2つの近接した発光点を有す
る発光素子を用いて対象物をそれぞれ照射し、そのとき
得られる受光部からの2つの出力信号より対象物の傾斜
角度を検出し、その傾斜角度の大きさに応じて投光部か
ら対象物までの距離を補正することにり、測定精度の向
上を図る。
The object is irradiated with each of the light emitting elements having two adjacent light emitting points which can be individually driven, and the inclination angle of the object is detected from the two output signals from the light receiving section obtained at that time. By correcting the distance from the light projecting unit to the object according to the size of the tilt angle, the measurement accuracy is improved.

【0009】[0009]

【実施例】図1はこの発明の実施例を示す構成図で、図
3に示すものと同じものには同一の符号を付している。
すなわち、この実施例も大きくは投光部10、受光部3
0および信号処理部50から構成され、対象物1からの
反射光3が受光レンズ31を介して受光素子32に結像
される点は図3の場合と同様である。投光部10は発光
素子11’および投光レンズ12から構成される。発光
素子11’は例えば光ディスクの高速記録用光源として
用いられる2ビームLD(Laser Diode:半
導体レーザ)に代表されるように2つの発光点を持ち、
各発光点からの光が同一の投光レンズ12で収束され
て、それぞれ投光ビーム21,22となるようなものが
使用され、このため図3の発光素子11と区別すべくダ
ッシュを付して示しているわけである。
1 is a block diagram showing an embodiment of the present invention, in which the same components as those shown in FIG. 3 are designated by the same reference numerals.
That is, this embodiment also largely includes the light projecting unit 10 and the light receiving unit 3.
0 and the signal processing unit 50, the reflected light 3 from the object 1 is imaged on the light receiving element 32 via the light receiving lens 31 as in the case of FIG. The light projecting unit 10 includes a light emitting element 11 ′ and a light projecting lens 12. The light emitting element 11 ′ has two light emitting points as represented by a two-beam LD (Laser Diode) used as a light source for high-speed recording on an optical disc,
Light emitted from each light-emitting point is converged by the same light-projecting lens 12 to form light-projected beams 21 and 22, respectively. Therefore, a dash is added to distinguish it from the light-emitting element 11 in FIG. Is shown.

【0010】受光レンズ31の主面と位置検出素子32
の受光面とは、投光レンズ12の光軸上の点Sで交わる
ように各光学部品が配置されていて、いわゆるシャイン
プルーグ条件を満たし、投光ビーム21,22の各主光
線は投光レンズ12の光軸の近傍を通る。この各主光線
は受光部30の光軸と同一平面内にあるように配置され
ているので、投光ビーム21,22により照射された対
象物の被測定面上の位置は、位置検出素子32の受光面
上の互いに異なる位置に結像され、その位置関係は位置
検出素子32の長手方向、すなわち電極との距離が異な
る方向へ隔たった位置になる。
The principal surface of the light receiving lens 31 and the position detecting element 32
The respective optical components are arranged so as to intersect with the light receiving surface of the projection lens 12 at a point S on the optical axis of the projection lens 12, satisfy the so-called Shine-Plug condition, and the principal rays of the projection beams 21 and 22 are projected. It passes near the optical axis of the optical lens 12. Since the respective chief rays are arranged so as to be in the same plane as the optical axis of the light receiving section 30, the position of the object irradiated by the projection beams 21 and 22 on the measured surface is determined by the position detecting element 32. The images are formed at different positions on the light receiving surface of, and the positional relationship is such that they are separated in the longitudinal direction of the position detecting element 32, that is, in the direction in which the distance from the electrode is different.

【0011】上記の如く構成した場合の、2つの投光ビ
ームによる受光面上の結像状態を図2に示す。ここに、
投光ビーム21,22による反射光は、それらの主光線
71,72のみを図示し、その他は省略した。同図
(イ)は被測定面が投光レンズの光軸2’に対して垂直
な場合を示しており、このときの受光面上の各像間の間
隔はwとなっている。これに対し、同図(ロ)のように
被測定面が光軸2’に対してθだけ傾くと、そのときの
受光面上の各像間の間隔はwからw’へと変化し、 w>w’ である。これは、被測定面が反時計まわりに傾いたから
であり、被測定面が時計まわりに傾けば、 w<w’ となる。
FIG. 2 shows an image formation state on the light receiving surface by the two projection beams in the case of the above-mentioned structure. here,
Only the chief rays 71 and 72 of the reflected light from the projected beams 21 and 22 are shown, and the others are omitted. FIG. 9A shows the case where the surface to be measured is perpendicular to the optical axis 2 ′ of the light projecting lens, and the distance between the images on the light receiving surface at this time is w. On the other hand, when the surface to be measured is inclined by θ with respect to the optical axis 2 ′ as shown in FIG. 6B, the distance between the images on the light receiving surface at that time changes from w to w ′. w> w '. This is because the surface to be measured is tilted counterclockwise, and if the surface to be measured is tilted clockwise, then w <w '.

【0012】信号処理回路50は図3と同じく位置検出
回路51および直線化補正回路52を有しているので、
各投光ビームについてその反射光を受光部30で検出
し、その電流信号33を信号処理回路50に導入するこ
とにより、図3の場合と同様に投光部10から対象物1
までの距離を検出することができる。さらに、ここでは
直線化補正回路52の出力を傾斜補正回路53に入力す
るようにしている。すなわち、投光部10の発光素子1
1’の2つの発光点は投光ビーム21,22を交互に出
射するように駆動され、どちらの投光ビームが出射され
ているかは、光源判別信号54により傾斜補正回路53
に伝えられる。
Since the signal processing circuit 50 has a position detection circuit 51 and a linearization correction circuit 52 as in FIG. 3,
The reflected light of each projected beam is detected by the light receiving unit 30 and its current signal 33 is introduced into the signal processing circuit 50, so that the object 1 is emitted from the projected unit 10 as in the case of FIG.
The distance to can be detected. Further, here, the output of the linearization correction circuit 52 is input to the inclination correction circuit 53. That is, the light emitting element 1 of the light projecting unit 10
The two light emitting points 1'are driven so as to alternately emit the light emitting beams 21 and 22, and which light emitting beam is being emitted is determined by the tilt correction circuit 53 based on the light source determination signal 54.
Be transmitted to.

【0013】傾斜補正回路53は例えば投光ビーム21
が出射されているときの直線化補正回路52からの出力
を、被測定面の傾斜による測定誤差信号を含む距離信号
として一旦記憶する。次に、傾斜補正回路53は投光ビ
ーム22が出射されているときの直線化補正回路52か
らの出力を受け、これと先に記憶している値との差を求
める。最後に、傾斜補正回路53はこの差の大きさを基
準値と比較することにより、被測定面の傾斜の大きさを
検出し、これを用いて先に記憶している距離信号を補正
し、正しい距離信号55として外部に出力する。このよ
うに、投光ビームを交互に出射しながら上記のような動
作を繰り返すことにより、測定中の対象物の被測定面の
傾斜による測定誤差を低減させることができる。
The tilt correction circuit 53 is, for example, the projection beam 21.
The output from the linearization correction circuit 52 when is emitted is temporarily stored as a distance signal including a measurement error signal due to the inclination of the surface to be measured. Next, the inclination correction circuit 53 receives the output from the linearization correction circuit 52 when the projection beam 22 is emitted, and obtains the difference between this output and the previously stored value. Finally, the inclination correction circuit 53 detects the magnitude of the inclination of the surface to be measured by comparing the magnitude of this difference with a reference value, and uses this to correct the previously stored distance signal, The correct distance signal 55 is output to the outside. In this way, by repeating the above-described operation while alternately emitting the projection beams, it is possible to reduce the measurement error due to the inclination of the measured surface of the object under measurement.

【0014】上記では2つの投光ビームを交互に出射し
て測定毎に傾斜補正を行なうようにしたが、測定周期に
比べて被測定面の傾斜の変化が緩慢な場合は、傾斜検出
用の投光ビーム(22)の出射頻度を距離測定用の投光
ビーム(21)に比べて少なくし、傾斜補正回路53で
の傾斜補正量の更新を複数回の距離測定毎に行なうこと
もできるのはいうまでもない。なお、この場合は傾斜補
正量の更新を毎回行なうものに比べ、距離測定周期を短
くすることが可能となる。
In the above, the two projected beams are alternately emitted to perform the tilt correction for each measurement. However, when the change in the tilt of the surface to be measured is slow compared with the measurement cycle, the tilt detection is performed. It is also possible to reduce the emission frequency of the light projection beam (22) as compared with the light projection beam (21) for distance measurement, and to update the tilt correction amount in the tilt correction circuit 53 every multiple distance measurements. Needless to say. In this case, it is possible to shorten the distance measurement cycle as compared with the case where the tilt correction amount is updated every time.

【0015】[0015]

【発明の効果】この発明によれば、2つの投光ビームを
用い、測定結果に誤差を与えるような被測定面の傾斜を
検出してその誤差を補正するようにしたので、測定精度
および信頼性が向上するという利点がもたらされる。
According to the present invention, the two projection beams are used to detect the inclination of the surface to be measured which gives an error to the measurement result and correct the error. Therefore, the measurement accuracy and reliability can be improved. The advantage is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】この発明による2つの投光ビームによる受光面
上の結像状態を説明するための説明図である。
FIG. 2 is an explanatory diagram for explaining an image formation state on a light receiving surface by two projection beams according to the present invention.

【図3】光学式変位計の従来例を示す構成図である。FIG. 3 is a configuration diagram showing a conventional example of an optical displacement meter.

【図4】位置検出素子の具体例を示す概要図である。FIG. 4 is a schematic diagram showing a specific example of a position detection element.

【図5】位置検出素子の特性を示す特性図である。FIG. 5 is a characteristic diagram showing characteristics of a position detection element.

【符号の説明】[Explanation of symbols]

1…対象物、2,21,22…投光ビーム、2’…投光
レンズの光軸、3…反射光、5…高抵抗半導体、6…P
形抵抗層、7…N形層、10…投光部、11,11’…
発光素子、12…投光レンズ、30…受光部、31…受
光レンズ、32…位置検出素子、33…電流信号、50
…信号処理部、51…位置検出回路、52…直線化補正
回路、53…傾斜補正回路、55…距離信号、71,7
2…反射光の主光線。
1 ... Object, 2, 21, 22 ... Projection beam, 2 '... Optical axis of projection lens, 3 ... Reflected light, 5 ... High resistance semiconductor, 6 ... P
-Type resistance layer, 7 ... N-type layer, 10 ... Projector, 11, 11 '...
Light emitting element, 12 ... Projecting lens, 30 ... Light receiving part, 31 ... Light receiving lens, 32 ... Position detecting element, 33 ... Current signal, 50
... Signal processing unit, 51 ... Position detection circuit, 52 ... Linearization correction circuit, 53 ... Inclination correction circuit, 55 ... Distance signal, 71, 7
2 ... The chief ray of reflected light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対象物に光ビームを照射する投光部と、
その対象物からの光ビーム反射光を受光して位置検出素
子上に照射することによりその照射位置を検出する受光
部と、この受光部から出力信号を受けて前記対象物まで
の距離を求める信号処理部とを有してなる光学式変位計
において、 前記投光部には個別に駆動可能な2つの近接した発光点
を有する発光素子と、この発光素子の2つの発光点から
それぞれ放射される光のいずれをも収束して投光ビーム
となす投光レンズとを設け、この2つの投光ビームによ
りそれぞれ対象物を照射したとき前記受光部を介して得
られる2つの出力信号から、そのときの対象物の前記2
つの投光ビームの各主光線と前記受光部の光軸とがなす
平面内の傾斜角度の大きさを検出するとともに、この検
出された対象物の傾斜角度の大きさに応じて、別途求め
た前記投光部から対象物までの距離情報に含まれる対象
物の傾斜による誤差を補正可能にしてなることを特徴と
する光学式変位計。
1. A light projecting unit for irradiating an object with a light beam,
A light receiving unit for detecting the irradiation position by receiving the light beam reflected from the object and irradiating it on the position detecting element, and a signal for receiving the output signal from the light receiving unit and obtaining the distance to the object. In an optical displacement meter including a processing unit, the light projecting unit emits light from a light emitting element having two light emitting points adjacent to each other, which can be individually driven, and two light emitting points of the light emitting element. A light projecting lens for converging any of the light beams to form a light projecting beam is provided, and two output signals obtained through the light receiving unit when the object is irradiated with these two light projecting beams 2 of the object
The magnitude of the tilt angle in the plane formed by the principal rays of the two projected beams and the optical axis of the light receiving unit is detected, and separately determined according to the magnitude of the tilt angle of the detected object. An optical displacement gage capable of correcting an error due to the inclination of an object included in the distance information from the light projecting unit to the object.
JP26400692A 1992-10-02 1992-10-02 Optical displacement gauge Pending JPH06117852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26400692A JPH06117852A (en) 1992-10-02 1992-10-02 Optical displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26400692A JPH06117852A (en) 1992-10-02 1992-10-02 Optical displacement gauge

Publications (1)

Publication Number Publication Date
JPH06117852A true JPH06117852A (en) 1994-04-28

Family

ID=17397242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26400692A Pending JPH06117852A (en) 1992-10-02 1992-10-02 Optical displacement gauge

Country Status (1)

Country Link
JP (1) JPH06117852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117312A (en) * 2008-11-14 2010-05-27 Omron Corp Optical measuring apparatus
JP2015512030A (en) * 2012-02-07 2015-04-23 株式会社ニコン Imaging optical system, imaging device, shape measuring device, structure manufacturing system, and structure manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117312A (en) * 2008-11-14 2010-05-27 Omron Corp Optical measuring apparatus
JP2015512030A (en) * 2012-02-07 2015-04-23 株式会社ニコン Imaging optical system, imaging device, shape measuring device, structure manufacturing system, and structure manufacturing method

Similar Documents

Publication Publication Date Title
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JPH0650720A (en) Height measuring method and device
JP2000230807A (en) Method for distance measurement using parallel light and its instrument
JP3078069B2 (en) Distance measuring device
JPS59762B2 (en) displacement measuring device
JP2000234907A (en) Displacement inclination measuring apparatus
JPH06117852A (en) Optical displacement gauge
JPS61260113A (en) Detector for tilt angle of plane
JPS61104202A (en) Optical displacement meter
JPH05333152A (en) Inclination measuring device
JP2816257B2 (en) Non-contact displacement measuring device
JPH0778429B2 (en) Ranging device
JPH1082633A (en) Distance-measuring sensor
JP3323963B2 (en) Measuring device
JPH10339605A (en) Optical range finder
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
JP2544789B2 (en) Optical displacement measuring device
JPH05272969A (en) Range finder
JPH0618259A (en) Range finder for camera
JPH0510717A (en) Position and displacement measuring apparatus
JP2900940B2 (en) Optical system for three-dimensional shape measurement
JPS62156504A (en) Displacement measuring instrument
JPH04364414A (en) Distance-measuring device
JPH08304020A (en) Movement-accuracy measuring apparatus
JPH05126564A (en) Optical distance measuring instrument