JPH04307308A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPH04307308A
JPH04307308A JP9808991A JP9808991A JPH04307308A JP H04307308 A JPH04307308 A JP H04307308A JP 9808991 A JP9808991 A JP 9808991A JP 9808991 A JP9808991 A JP 9808991A JP H04307308 A JPH04307308 A JP H04307308A
Authority
JP
Japan
Prior art keywords
light
measured
displacement
light receiving
projection axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9808991A
Other languages
Japanese (ja)
Inventor
Kohei Tomita
公平 冨田
Takayoshi Horii
堀井 孝佳
Koji Morishita
森下 耕次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP9808991A priority Critical patent/JPH04307308A/en
Publication of JPH04307308A publication Critical patent/JPH04307308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a reflection type displacement measuring instrument which can highly accurately measure the displacement of an object in the direction perpendicular to the projecting axis of an optical beam emitted from a light projecting section over a wide range. CONSTITUTION:An optical beam having a spread which is larger than the dimension of an object 6 is emitted from a light projecting section 1. The image of the light spot of the optical beam on the object 6 is formed on the light receiving surface of the position detecting element 9 of a light receiving section 7. An arithmetic processing section 10 calculates the position or displacement of the object 6 in the direction perpendicular to the projecting axis C of the optical beam from the image forming position of the element 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、変位測定装置に関する
。特に、本発明は、投光部から投射される光ビームの投
射軸と直交する方向における物体の変位を検知すること
ができる変位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device. In particular, the present invention relates to a displacement measuring device that can detect the displacement of an object in a direction perpendicular to the projection axis of a light beam projected from a light projecting section.

【0002】0002

【従来の技術】図6に従来の変位測定装置51を示す。 受光部は、発光ダイオードや半導体レーザ素子のような
発光源52と、発光源52から放射された光ビームαを
被測定物体54の表面寸法と比較して非常に小さなスポ
ット状に絞るための投光レンズ53とからなり、投光部
から投射された光ビームαを被測定物体54の表面にス
ポット状に照射させている。一方、受光部は、受光レン
ズ55と位置検出素子(PSD)56とからなり、被測
定物体54の表面の光点を受光レンズ55によって位置
検出素子56の受光面に結像させ、その結像位置に応じ
て位置検出素子56から得られる光電流に基づき、演算
処理部において光ビームαの投射軸方向における被測定
物体54の変位を求めるようになっていた。
2. Description of the Related Art FIG. 6 shows a conventional displacement measuring device 51. The light receiving section includes a light emitting source 52 such as a light emitting diode or a semiconductor laser element, and a projection for focusing the light beam α emitted from the light emitting source 52 into a very small spot compared to the surface dimension of the object to be measured 54. It is composed of a light lens 53, and irradiates the surface of the object to be measured 54 with a light beam α projected from a light projector in a spot shape. On the other hand, the light receiving section includes a light receiving lens 55 and a position detecting element (PSD) 56, and the light receiving lens 55 forms an image of a light spot on the surface of the object to be measured 54 on the light receiving surface of the position detecting element 56. Based on the photocurrent obtained from the position detection element 56 according to the position, the displacement of the object to be measured 54 in the direction of the projection axis of the light beam α is determined in the arithmetic processing section.

【0003】しかしながら、従来の変位測定装置は、投
光部から投射される光ビームの投射軸方向における被測
定物体の変位を測定することができるが、光ビームの投
射軸と直交する方向における被測定物体の変位は測定す
ることができなかった。つまり、被測定物体を投射軸と
直交する方向に移動させても、光ビームのスポットは被
測定物体の寸法に比べて小さいので、光点の位置は移動
せず、この結果位置検出素子の光電流も変化せず、投射
軸と直交する方向における被測定物体の変位を検出する
ことはできなかった。
However, although conventional displacement measuring devices can measure the displacement of the object to be measured in the direction of the projection axis of the light beam projected from the light projector, they cannot measure the displacement of the object to be measured in the direction perpendicular to the projection axis of the light beam. The displacement of the measurement object could not be measured. In other words, even if the object to be measured is moved in a direction perpendicular to the projection axis, the spot of the light beam is small compared to the dimensions of the object to be measured, so the position of the light spot does not move, and as a result, the position of the light beam from the position detection element The current did not change either, and the displacement of the object to be measured in the direction perpendicular to the projection axis could not be detected.

【0004】また、従来の変位測定装置にあっては、変
位測定装置の前方のある範囲内で投射軸方向に変位する
物体の変位は測定できるが、投射軸方向に沿って1方向
へ移動し続けるような被測定物体の場合は、変位測定装
置が物体の移動を妨げ、物体が変位測定装置と衝突する
ことになるので、このような場合における物体の変位測
定には使用することができなかった。例えば、コンベア
によって1方向へ送られている物体の変位を測定する場
合、従来のような変位測定装置であるとコンベア上に設
置する必要があり、被測定物体の搬送の障害になるため
使用できない。
[0004]Furthermore, conventional displacement measuring devices can measure the displacement of an object that is displaced in the direction of the projection axis within a certain range in front of the displacement measuring device; In the case of an object to be measured that moves continuously, the displacement measuring device will prevent the object from moving and the object will collide with the displacement measuring device, so it cannot be used to measure the displacement of the object in such cases. Ta. For example, when measuring the displacement of an object being conveyed in one direction by a conveyor, conventional displacement measuring devices cannot be used because they must be installed on the conveyor, which obstructs the conveyance of the object to be measured. .

【0005】このため、従来にあっては、図7に示すよ
うに、コンベアの搬送路57の横に光電スイッチ58を
設置し、光電スイッチ58から物体59に向けてスリッ
ト光を投射させ、光電スイッチ58のオン・オフによっ
て物体59の通過を確認していた。しかしながら、光電
スイッチ58はそのオン・オフによって一定領域内にお
ける物体59の有無を判断するものにすぎず、物体59
の変位を追跡することができないので、高精度な位置検
出が不可能であった。
For this reason, conventionally, as shown in FIG. 7, a photoelectric switch 58 is installed next to a conveyor path 57, and a slit light is projected from the photoelectric switch 58 toward an object 59. The passage of the object 59 was confirmed by turning the switch 58 on and off. However, the photoelectric switch 58 merely determines the presence or absence of the object 59 within a certain area by turning it on or off.
Since it is not possible to track the displacement of the sensor, highly accurate position detection is impossible.

【0006】[0006]

【発明が解決しようとする課題】本発明は、叙上の従来
例の欠点に鑑みてなされたものであり、その目的とする
ところは、投光部から出射される光ビームの投射軸と直
交する方向における物体の変位もしくは距離を測定する
ことができる変位測定装置を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the drawbacks of the conventional examples described above, and its object is to provide a light beam that is perpendicular to the projection axis of the light beam emitted from the light projector. An object of the present invention is to provide a displacement measuring device capable of measuring the displacement or distance of an object in a direction.

【0007】[0007]

【課題を解決するための手段】本発明の変位測定装置は
、被測定物体の表面寸法よりも大きな広がりを有する光
ビームを投射する投光部と、被測定物体表面からの反射
光を集光する受光レンズと、集光された反射光の結像位
置近傍に置かれた位置検出素子とを有する受光部と、受
光部からの出力に基づいて光ビームの投射軸と直交する
方向における被測定物体の変位もしくは被測定物体まで
の距離を演算する演算処理手段と、からなることを特徴
としている。
[Means for Solving the Problems] The displacement measuring device of the present invention includes a light projecting section that projects a light beam having a spread larger than the surface dimension of the object to be measured, and a condensing light beam reflected from the surface of the object to be measured. a light-receiving unit having a light-receiving lens, a position detection element placed near the imaging position of the condensed reflected light; It is characterized by comprising a calculation processing means for calculating the displacement of the object or the distance to the object to be measured.

【0008】また、本発明の変位測定装置は、投光部の
両側にそれぞれ第一の受光部と第二の受光部を配置し、
第一及び第二の受光部からの出力によって投射軸と直交
する方向における被測定物体の変位等を求めるようにし
てもよい。
Further, the displacement measuring device of the present invention has a first light receiving section and a second light receiving section disposed on both sides of the light projecting section, and
The displacement of the object to be measured in the direction orthogonal to the projection axis may be determined based on the outputs from the first and second light receiving sections.

【0009】また、本発明の変位測定装置は、投光部の
両側にそれぞれ第一の受光部と第二の受光部を配置し、
第一及び第二の受光部からの出力によって投射軸方向に
おける物体の変位等及び投射軸と直交する方向における
物体の変位等とを同時に測定できるようにしてもよい。
Further, the displacement measuring device of the present invention has a first light receiving section and a second light receiving section disposed on both sides of the light projecting section, respectively.
The displacement of the object in the direction of the projection axis and the displacement of the object in the direction orthogonal to the projection axis may be simultaneously measured by the outputs from the first and second light receiving sections.

【0010】0010

【作用】本発明にあっては、被測定物体の表面寸法より
も大きな広がりを有する光ビームを投光部から投射させ
ているので、物体が光ビームの投射軸と直交する方向に
移動すると、物体表面の光点が投射軸と直交する方向に
移動する。したがって、この光点を位置検出素子の受光
面に結像させることにより、演算処理手段における演算
を経て当該物体の投射軸と直交する方向における変位ま
たは位置を検出することができる。
[Operation] In the present invention, since the light beam having a spread larger than the surface dimension of the object to be measured is projected from the light projecting section, when the object moves in a direction perpendicular to the projection axis of the light beam, The light spot on the object surface moves in a direction perpendicular to the projection axis. Therefore, by focusing this light spot on the light receiving surface of the position detection element, the displacement or position of the object in the direction orthogonal to the projection axis can be detected through calculation in the calculation processing means.

【0011】したがって、被測定物体の移動方向からで
なく、移動経路の横方向からその変位を測定できるので
、当該物体の移動を妨げることなく変位測定装置の前方
を横切る物体の変位を測定することができ、しかも広範
囲で被測定物体の変位を高精度に測定できる。
[0011] Therefore, the displacement of the object to be measured can be measured not from the direction of movement of the object but from the lateral direction of the movement path, so that the displacement of an object crossing in front of the displacement measuring device can be measured without interfering with the movement of the object. Moreover, the displacement of the object to be measured can be measured with high precision over a wide range.

【0012】また、投光部の両側に第一及び第二の受光
部を配置することにより、被測定物体の投射軸方向にお
ける変位の影響を除去し、投射軸と直交する方向におけ
る被測定物体の変位量を正確に測定することができる。 あるいは、被測定物体の投射軸方向及び投射軸と直交す
る方向の2方向における変位を同時に測定することもで
きる。
Furthermore, by arranging the first and second light receiving sections on both sides of the light projecting section, the influence of displacement of the object to be measured in the direction of the projection axis can be removed, and the effect of displacement of the object to be measured in the direction perpendicular to the projection axis can be removed. The amount of displacement can be accurately measured. Alternatively, displacement of the object to be measured in two directions, ie, the direction of the projection axis and the direction perpendicular to the projection axis, can be measured simultaneously.

【0013】[0013]

【実施例】図1に本発明の一実施例による変位測定装置
1の構成を示す。投光部2は、発光ダイオードや半導体
レーザ素子のような発光源3と、発光源3を駆動して発
光源3から光ビームαを放射させるための駆動回路4と
、発光源3から出射された光ビームαを平行光もしくは
適当な広がりの拡散光に変換するための投光レンズ5と
からなっている。投光部2から投射される光ビームαは
、従来例のようにスポット状に絞られておらず、被測定
物体6の表面寸法に比較して大きな広がりを有している
。したがって、この光ビームαの投射領域内において、
被測定物体6が投射軸Cと直交する方向に移動すると、
被測定物体6の表面の光点が被測定物体6とともに移動
する。受光部7は、被測定物体6の表面で反射した反射
光βを集光させるための受光レンズ8と、位置検出素子
(PSD)9とからなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a displacement measuring device 1 according to an embodiment of the present invention. The light projecting unit 2 includes a light emitting source 3 such as a light emitting diode or a semiconductor laser element, a driving circuit 4 for driving the light emitting source 3 to cause the light beam α to be emitted from the light emitting source 3, and a light beam α emitted from the light emitting source 3. It consists of a light projection lens 5 for converting the light beam α into parallel light or diffused light with an appropriate spread. The light beam α projected from the light projecting unit 2 is not focused into a spot shape as in the conventional example, but has a large spread compared to the surface dimension of the object to be measured 6. Therefore, within the projection area of this light beam α,
When the measured object 6 moves in a direction perpendicular to the projection axis C,
A light spot on the surface of the object to be measured 6 moves together with the object to be measured 6. The light receiving unit 7 includes a light receiving lens 8 for condensing the reflected light β reflected from the surface of the object to be measured 6, and a position detection element (PSD) 9.

【0014】この変位測定装置1は、位置検出素子9の
受光面の中心Q0と受光レンズ8の主点Rとを結ぶ直線
の延長線と光ビームαの投射軸Cとの交点を原点Oとし
、被測定物体6が原点Oを通り、投射軸Cと直交する移
動経路Vに沿って移動するように配置して用いられる。 いま、被測定物体6が移動経路V上の原点Oからxだけ
離れた位置Pにあるとし、その像が位置検出素子9上の
Q0点からρだけ離れた位置Q1に結像されているとす
る。また、被測定物体6の移動経路Vと受光レンズ8の
主点Rとの距離をaとし、位置検出素子9の受光面と受
光レンズ8の主点Rとの距離をbとすると、図1に示す
幾何学的関係より、次の数1が得られる。
This displacement measuring device 1 has an origin O that is the intersection of the extension of the straight line connecting the center Q0 of the light-receiving surface of the position detection element 9 and the principal point R of the light-receiving lens 8 and the projection axis C of the light beam α. , the object to be measured 6 is arranged and used so as to move along a movement path V passing through the origin O and perpendicular to the projection axis C. Now, suppose that the object to be measured 6 is located at a position P on the moving path V, which is a distance x away from the origin O, and its image is formed at a position Q1, which is a distance ρ from a point Q0 on the position detection element 9. do. Further, if the distance between the moving path V of the object to be measured 6 and the principal point R of the light receiving lens 8 is a, and the distance between the light receiving surface of the position detection element 9 and the principal point R of the light receiving lens 8 is b, then FIG. From the geometrical relationship shown in , the following equation 1 can be obtained.

【0015】[0015]

【数1】[Math 1]

【0016】位置検出素子9からは結像位置に応じて光
電流Ia,Ibが得られ、この光電流Ia,Ibは演算
処理回路10で演算処理される。演算処理回路10では
、光電流Ia,Ibは受光アンプ11a,11bによっ
て電流電圧変換され、受光アンプ11a,11bによっ
て変換された電圧信号A,Bは加算回路12によって受
光量に相当する信号A+Bとして出力され、同時に減算
回路13よって信号A−Bとして出力される。さらに、
減算回路13の出力A−Bと加算回路12の出力A+B
は除算回路14に入力され、除算回路14からは信号(
A−B)/(A+B)が出力される。
Photocurrents Ia and Ib are obtained from the position detection element 9 in accordance with the imaging position, and these photocurrents Ia and Ib are processed by an arithmetic processing circuit 10. In the arithmetic processing circuit 10, the photocurrents Ia and Ib are converted into currents and voltages by the light receiving amplifiers 11a and 11b, and the voltage signals A and B converted by the light receiving amplifiers 11a and 11b are converted by the adding circuit 12 as a signal A+B corresponding to the amount of light received. At the same time, the subtraction circuit 13 outputs the signal A-B. moreover,
Output A-B of subtraction circuit 13 and output A+B of addition circuit 12
is input to the division circuit 14, and from the division circuit 14 the signal (
A-B)/(A+B) is output.

【0017】いま、位置検出素子9の受光面の長さをL
とし、受光面の中心Q0で結像されている時はA=B、
受光面の端で結像されている時はA=0又はB=0とす
ると、位置検出素子9上の結像位置Q1の距離ρは下記
の数2で表わされる。
Now, the length of the light receiving surface of the position detection element 9 is L.
When the image is formed at the center Q0 of the light receiving surface, A=B,
Assuming that A=0 or B=0 when the image is formed at the end of the light receiving surface, the distance ρ of the image forming position Q1 on the position detection element 9 is expressed by the following equation 2.

【0018】[0018]

【数2】[Math 2]

【0019】したがって、数1,数2より、次の数3が
得られるので、演算処理回路10の出力(A−B)/(
A+B)を定数倍することにより被測定物体6の位置P
の原点0からの変位xを知ることができ、演算処理回路
10の出力の変化を見ることにより被測定物体6の変位
量を知ることができる。
Therefore, from equations 1 and 2, the following equation 3 can be obtained, so the output of the arithmetic processing circuit 10 (A-B)/(
By multiplying A+B) by a constant, the position P of the object to be measured 6 can be calculated.
The displacement x of the measured object 6 from the origin 0 can be known, and by observing the change in the output of the arithmetic processing circuit 10, the amount of displacement of the measured object 6 can be known.

【0020】[0020]

【数3】[Math 3]

【0021】なお、上記実施例では、位置検出素子9の
受光面を投射軸Cと垂直に配置しているが、位置検出素
子9の受光面と投射軸Cを平行にしてもよい。また、受
光面に立てた垂線が投射軸Cに対してφだけ傾斜してい
る場合には、上記数3は、下記数4のように修正される
In the above embodiment, the light receiving surface of the position detecting element 9 is arranged perpendicular to the projection axis C, but the light receiving surface of the position detecting element 9 and the projection axis C may be arranged parallel to each other. Further, when the perpendicular line erected on the light receiving surface is inclined by φ with respect to the projection axis C, the above equation 3 is modified as shown in the following equation 4.

【0022】[0022]

【数4】[Math 4]

【0023】図2は本発明の別な実施例による変位測定
装置21を示す概略構成図である。図1の実施例では、
被測定物体6が投射軸Cと垂直な一定の移動経路V上に
あるものとしたが、この変位測定装置21では被測定物
体6が投射軸方向に変位しても投射軸Cと垂直な方向の
変位を正確に求めることができる。図2の実施例では、
中央に投光部2が配置され、その両側に受光レンズ23
及び位置検出素子24からなる第一の受光部22と、受
光レンズ28及び位置検出素子29からなる第二の受光
部27とが投射軸Cに関して対称に配置されている。
FIG. 2 is a schematic diagram showing a displacement measuring device 21 according to another embodiment of the present invention. In the example of FIG.
Although it is assumed that the object to be measured 6 is on a fixed movement path V perpendicular to the projection axis C, in this displacement measuring device 21, even if the object to be measured 6 is displaced in the direction of the projection axis, it will not move in the direction perpendicular to the projection axis C. The displacement of can be determined accurately. In the example of FIG.
A light projecting unit 2 is arranged in the center, and light receiving lenses 23 are arranged on both sides of the light projecting unit 2.
A first light receiving section 22 consisting of a position detecting element 24 and a second light receiving section 27 consisting of a light receiving lens 28 and a position detecting element 29 are arranged symmetrically with respect to the projection axis C.

【0024】図3は図2の実施例の原理を説明するため
の説明図である。いま、両受光レンズ23,28の主点
R1,R2と投射軸Cの距離をいずれもdとし、両主点
R1,R2と両位置検出素子24,29の受光面の中心
Q10,Q20の投射軸Cと垂直な方向における距離を
gとし、両位置検出素子24,29の受光面の中心Q1
0,Q20と主点R1,R2を結ぶ延長線の投射軸Cと
の交点に被測定物体6の位置を表わす座標(投射軸方向
をy軸とし、直交する方向をx軸とする。)の原点Oが
あるとする。さらに、被測定物体6の位置を表す座標を
P(x1,y1)とし、両位置検出素子24,29上の
結像位置Q11,Q21の座標をQ10,Q20を基準
としてそれぞれρ1,ρ2(右方向を正方向とする。)
とすると、図3に示された幾何学的関係により、次の数
5が得られる。
FIG. 3 is an explanatory diagram for explaining the principle of the embodiment shown in FIG. Now, let the distances between the principal points R1, R2 of both the light receiving lenses 23, 28 and the projection axis C be d, and the projections of the centers Q10, Q20 of the light receiving surfaces of both the principal points R1, R2 and the position detecting elements 24, 29 The distance in the direction perpendicular to the axis C is g, and the center Q1 of the light receiving surfaces of both position detection elements 24 and 29 is
The coordinates (the direction of the projection axis is the y-axis, and the orthogonal direction is the x-axis) that represents the position of the object to be measured 6 are at the intersection of the projection axis C of the extension line connecting the principal points R1 and R2 with 0, Q20. Suppose there is an origin O. Further, let the coordinates representing the position of the object to be measured 6 be P (x1, y1), and the coordinates of the imaging positions Q11, Q21 on both position detection elements 24, 29 are ρ1, ρ2 (right (The direction is the positive direction.)
Then, the following equation 5 can be obtained from the geometrical relationship shown in FIG.

【0025】[0025]

【数5】[Math 5]

【0026】この数5をx1について整理すると、次の
数6が得られる。
When this number 5 is rearranged with respect to x1, the following number 6 is obtained.

【0027】[0027]

【数6】[Math 6]

【0028】したがって、被測定物体6がy軸方向に変
位していても、数6より左右の位置検出素子24,29
の結像位置Q11,Q21の座標ρ1,ρ2より被測定
物体6のx軸方向における位置を正確に求めることがで
きる。
Therefore, even if the object to be measured 6 is displaced in the y-axis direction, the left and right position detection elements 24 and 29
The position of the object to be measured 6 in the x-axis direction can be accurately determined from the coordinates ρ1 and ρ2 of the imaging positions Q11 and Q21.

【0029】図4は上記数6に従って被測定物体6の座
標x1を求めるための演算処理回路31を示すブロック
図である。位置検出素子24の光電流は受光アンプ32
a,32bによって電圧信号A1,B1に変換され、加
算回路33、減算回路34及び除算回路35により位置
検出素子24上の結像位置       ρ1=(L/2)×〔(A1−B1)/(
A1+B1)〕が求められ、除算回路35から出力され
る。同様に、位置検出素子29の光電流は受光アンプ4
2a,42bによって電圧信号A2,B2に変換され、
加算回路43、減算回路44及び除算回路45により位
置検出素子29上の結像位置       ρ2=(L/2)×〔(A2−B2)/(
A2+B2)〕が求められ、除算回路45から出力され
る。両除算回路35,45の出力ρ1,ρ2は加算回路
36で加算されて信号(ρ1+ρ2)が出力される。ま
た、両除算回路35,45の出力ρ1,ρ2及び既知の
値2gが減算回路46に入力され、減算回路46からは
信号(ρ2−ρ1−2g)が出力される。さらに、信号
(ρ1+ρ2)と信号(ρ2−ρ1−2g)は除算回路
37に入力され、前記数6から明らかなように座標x1
と比例する信号(ρ1+ρ2)/(ρ1−ρ2−2g)
が除算回路37から出力される。したがって、被測定物
体6のy座標の値y1に関係なく正確にx座標を求める
ことができる。
FIG. 4 is a block diagram showing an arithmetic processing circuit 31 for determining the coordinate x1 of the object to be measured 6 according to Equation 6 above. The photocurrent of the position detection element 24 is transmitted to the light receiving amplifier 32.
a and 32b into voltage signals A1 and B1, and an addition circuit 33, a subtraction circuit 34, and a division circuit 35 convert the imaging position on the position detection element 24 to ρ1=(L/2)×[(A1-B1)/(
A1+B1)] is obtained and output from the division circuit 35. Similarly, the photocurrent of the position detection element 29 is
2a and 42b into voltage signals A2 and B2,
The addition circuit 43, the subtraction circuit 44, and the division circuit 45 calculate the imaging position on the position detection element 29 ρ2=(L/2)×[(A2-B2)/(
A2+B2)] is obtained and output from the division circuit 45. The outputs ρ1 and ρ2 of both the division circuits 35 and 45 are added in an adder circuit 36 to output a signal (ρ1+ρ2). Further, the outputs ρ1 and ρ2 of both the division circuits 35 and 45 and the known value 2g are input to the subtraction circuit 46, and the subtraction circuit 46 outputs a signal (ρ2-ρ1-2g). Further, the signal (ρ1+ρ2) and the signal (ρ2-ρ1-2g) are input to the division circuit 37, and as is clear from the above equation 6, the coordinate x1
Signal proportional to (ρ1+ρ2)/(ρ1-ρ2-2g)
is output from the division circuit 37. Therefore, the x-coordinate can be accurately determined regardless of the y-coordinate value y1 of the object to be measured 6.

【0030】図5は本発明のさらに別な実施例による変
位測定装置47を示すブロック図である。この変位測定
装置47では、演算処理回路48以外の構成は図2及び
図3に示した実施例の構成と同じである。図3からは、
前記数6のように被測定物体6のx座標を求めることが
できたが、さらに次のようにして被測定物体6のy座標
も求めることができる。すなわち、数5より、次の数7
が得られる。
FIG. 5 is a block diagram showing a displacement measuring device 47 according to yet another embodiment of the present invention. The configuration of this displacement measuring device 47 other than the arithmetic processing circuit 48 is the same as that of the embodiment shown in FIGS. 2 and 3. From Figure 3,
Although the x-coordinate of the object to be measured 6 can be determined as shown in Equation 6, the y-coordinate of the object to be measured 6 can also be determined as follows. In other words, from number 5, the following number 7
is obtained.

【0031】[0031]

【数7】[Math 7]

【0032】この数7のx1に数6のx1を代入すると
、次の数8が得られる。
When x1 of equation 6 is substituted for x1 of equation 7, the following equation 8 is obtained.

【0033】[0033]

【数8】[Math. 8]

【0034】したがって、マイクロコンピュータで演算
処理を行なう演算処理回路48により数6及び数8の演
算を行わせ出力させることにより、被測定物体6の投射
軸方向及び投射軸Cに直交する方向の位置P(x1,y
1)または変位を求めることができる。
Therefore, the position of the object to be measured 6 in the direction of the projection axis and in the direction orthogonal to the projection axis C can be determined by performing and outputting the calculations of Equations 6 and 8 using the arithmetic processing circuit 48 that performs arithmetic processing using a microcomputer. P(x1,y
1) Or displacement can be determined.

【0035】[0035]

【発明の効果】本発明によれば、光ビームの投射軸と直
交する方向に移動する被検出物体の変位を検出すること
ができる。したがって、被測定物体の移動方向上でなく
、移動経路の横方向からその変位を測定することができ
、当該物体の移動を妨げることなく変位測定装置の前方
を一方向へ通過する物体の変位を広範囲に、且つ高精度
で測定することができる。
According to the present invention, the displacement of an object to be detected moving in a direction perpendicular to the projection axis of the light beam can be detected. Therefore, the displacement of the object to be measured can be measured not in the direction of movement of the object but in the lateral direction of the movement path, and the displacement of an object passing in one direction in front of the displacement measuring device can be measured without interfering with the movement of the object. Measurements can be made over a wide range and with high precision.

【0036】また、投光部の両側に第一及び第二の受光
部を配置することにより、被測定物体の投射軸方向にお
ける変位の影響を除去し、投射軸と直交する方向におけ
る被測定物体の変位量を正確に測定することができる。 あるいは、被測定物体の投射軸方向及び投射軸と直交す
る方向の2方向における変位を同時に測定することもで
きる。
Furthermore, by arranging the first and second light receiving sections on both sides of the light projecting section, the influence of displacement of the object to be measured in the direction of the projection axis can be removed, and the effect of displacement of the object to be measured in the direction perpendicular to the projection axis can be removed. The amount of displacement can be accurately measured. Alternatively, displacement of the object to be measured in two directions, ie, the direction of the projection axis and the direction perpendicular to the projection axis, can be measured simultaneously.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention.

【図2】本発明の別な実施例を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing another embodiment of the present invention.

【図3】同上の実施例における被測定物体の位置を求め
るための原理を説明する図である。
FIG. 3 is a diagram illustrating the principle for determining the position of an object to be measured in the above embodiment.

【図4】同上の演算処理回路を示すブロック図である。FIG. 4 is a block diagram showing an arithmetic processing circuit similar to the above.

【図5】本発明のさらに別な実施例を示す概略構成図で
ある。
FIG. 5 is a schematic configuration diagram showing still another embodiment of the present invention.

【図6】従来例の変位測定装置を示す概略構成図である
FIG. 6 is a schematic configuration diagram showing a conventional displacement measuring device.

【図7】光電スイッチを用いた測定方法を示す概略図で
ある。
FIG. 7 is a schematic diagram showing a measurement method using a photoelectric switch.

【符号の説明】[Explanation of symbols]

2    投光部 3    発光源 5    投光レンズ 6    被測定物体 7,22,27  受光部 8,23,28  受光レンズ 9,24,29  位置検出素子 10,31,48  演算処理回路 2    Light projection part 3. Luminous source 5     Light projection lens 6 Object to be measured 7, 22, 27 Light receiving section 8, 23, 28 Light receiving lens 9, 24, 29 Position detection element 10, 31, 48 Arithmetic processing circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  被測定物体の表面寸法よりも大きな広
がりを有する光ビームを投射する投光部と、被測定物体
表面からの反射光を集光する受光レンズと、集光された
反射光の結像位置近傍に置かれた位置検出素子とを有す
る受光部と、受光部からの出力に基づいて光ビームの投
射軸と直交する方向における被測定物体の変位もしくは
被測定物体までの距離を演算する演算処理手段と、から
なる変位測定装置。
Claim 1: A light projector that projects a light beam having a spread larger than the surface dimension of the object to be measured; a light receiving lens that collects reflected light from the surface of the object to be measured; Calculates the displacement of the object to be measured or the distance to the object to be measured in the direction orthogonal to the projection axis of the light beam based on the light receiving section that has a position detection element placed near the imaging position and the output from the light receiving section. A displacement measuring device comprising: arithmetic processing means;
【請求項2】  被測定物体の表面寸法よりも大きな広
がりを有する光ビームを投射する投光部と、被測定物体
表面からの反射光を集光する第一の受光レンズと、集光
された反射光の結像位置近傍に置かれた第一の位置検出
素子とを有し、前記投光部の側方に配置された第一の受
光部と、被測定物体表面からの反射光を集光する第二の
受光レンズと、集光された反射光の結像位置近傍に置か
れた第二の位置検出素子とを有し、前記投光部に関し第
一の受光部と反対側の側方に配置された第二の受光部と
、第一及び第二の受光部からの出力に基づいて光ビーム
の投射軸と直交する方向における被測定物体の変位もし
くは被測定物体までの距離を演算する演算処理手段と、
からなる変位測定装置。
2. A light projecting unit that projects a light beam having a spread larger than the surface dimension of the object to be measured, a first light receiving lens that collects reflected light from the surface of the object to be measured, a first position detection element placed near the image formation position of the reflected light; a first light receiving part placed on the side of the light projecting part; and a first light receiving part placed on the side of the light projecting part; a second light-receiving lens that emits light; and a second position detection element placed near the imaging position of the condensed reflected light; The displacement of the object to be measured in the direction orthogonal to the projection axis of the light beam or the distance to the object to be measured is calculated based on the output from the first and second light receiving sections and the second light receiving section placed on the side. arithmetic processing means for
Displacement measuring device consisting of.
【請求項3】  被測定物体の表面寸法よりも大きな広
がりを有する光ビームを投射する投光部と、被測定物体
表面からの反射光を集光する第一の受光レンズと、集光
された反射光の結像位置近傍に置かれた第一の位置検出
素子とを有し、前記投光部の側方に配置された第一の受
光部と、被測定物体表面からの反射光を集光する第二の
受光レンズと、集光された反射光の結像位置近傍に置か
れた第二の位置検出素子とを有し、前記投光部に関し第
一の受光部と反対側の側方に配置された第二の受光部と
、第一及び第二の受光部からの出力に基づいて光ビーム
の投射軸方向及び当該投射軸と直交する方向における被
測定物体の変位もしくは被測定物体までの距離を演算す
る演算処理手段と、からなる変位測定装置。
3. A light projector that projects a light beam having a spread larger than the surface dimension of the object to be measured, a first light receiving lens that collects the reflected light from the surface of the object to be measured, a first position detection element placed near the image formation position of the reflected light; a first light receiving part placed on the side of the light projecting part; and a first light receiving part placed on the side of the light projecting part; a second light-receiving lens that emits light; and a second position detection element placed near the imaging position of the condensed reflected light; A second light-receiving section disposed in the direction of the light beam, and a displacement of the object to be measured in the direction of the projection axis of the light beam and a direction orthogonal to the projection axis based on the outputs from the first and second light-receiving sections. A displacement measuring device comprising: arithmetic processing means for calculating the distance to.
JP9808991A 1991-04-02 1991-04-02 Displacement measuring instrument Pending JPH04307308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9808991A JPH04307308A (en) 1991-04-02 1991-04-02 Displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9808991A JPH04307308A (en) 1991-04-02 1991-04-02 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPH04307308A true JPH04307308A (en) 1992-10-29

Family

ID=14210619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9808991A Pending JPH04307308A (en) 1991-04-02 1991-04-02 Displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPH04307308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261975B2 (en) 2011-10-13 2016-02-16 Megachips Corporation Apparatus and method for optical gesture recognition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261975B2 (en) 2011-10-13 2016-02-16 Megachips Corporation Apparatus and method for optical gesture recognition

Similar Documents

Publication Publication Date Title
JPH05240640A (en) Optical distance measuring device
JP3150243B2 (en) Distance measuring device and camera
JPH04307308A (en) Displacement measuring instrument
JPS59184804A (en) Optical distance sensor
JPH0778429B2 (en) Ranging device
JPH07286811A (en) Optical device
JP2851053B2 (en) Light beam incident angle detection sensor
JPH04364414A (en) Distance-measuring device
JP2816257B2 (en) Non-contact displacement measuring device
JP2544789B2 (en) Optical displacement measuring device
JPH06281415A (en) Displacement measuring device
JP2885703B2 (en) Optical distance measuring device
JPS63206682A (en) Photoelectric switch
JPS61231409A (en) Optical position measuring apparatus
JPH0372208A (en) Angle measuring apparatus
JP2901747B2 (en) Distance measuring device
JPH06117852A (en) Optical displacement gauge
JPH0695021B2 (en) Ranging device
JPH0510717A (en) Position and displacement measuring apparatus
JPH04318465A (en) Speed-measuring device
JPS59202012A (en) Optical range finder
JPH0642929A (en) Surface displacement sensor
JPH01245111A (en) Range finder
JPS63127103A (en) Position measuring apparatus
JPS63206610A (en) Distance measuring apparatus